
Graduate Texts in Mathematics

Heinz-Dieter Ebbinghaus
Jörg Flum
Wolfgang Thomas

Mathematical
Logic
Third Edition

Graduate Texts in Mathematics 291

Graduate Texts in Mathematics

Series Editors:

Sheldon Axler
San Francisco State University, San Francisco, CA, USA

Kenneth Ribet
University of California, Berkeley, CA, USA

Advisory Board:

Alejandro Adem, University of British Columbia
David Eisenbud, University of California, Berkeley & MSRI
Brian C. Hall, University of Notre Dame
Patricia Hersh, University of Oregon
Jeffrey C. Lagarias, University of Michigan
Eugenia Malinnikova, Stanford University
Ken Ono, University of Virginia
Jeremy Quastel, University of Toronto
Barry Simon, California Institute of Technology
Ravi Vakil, Stanford University
Steven H. Weintraub, Lehigh University
Melanie Matchett Wood, Harvard University

Graduate Texts in Mathematics bridge the gap between passive study and
creative understanding, offering graduate-level introductions to advanced topics
in mathematics. The volumes are carefully written as teaching aids and highlight
characteristic features of the theory. Although these books are frequently used as
textbooks in graduate courses, they are also suitable for individual study.

More information about this series at http://www.springer.com/series/136

http://www.springer.com/series/136

Heinz-Dieter Ebbinghaus • Jörg Flum •

Wolfgang Thomas

Mathematical Logic
Third Edition

123

Heinz-Dieter Ebbinghaus
Mathematical Institute
University of Freiburg
Freiburg, Germany

Wolfgang Thomas
Department of Computer Science
RWTH Aachen University
Aachen, Germany

Jörg Flum
Mathematical Institute
University of Freiburg
Freiburg, Germany

ISSN 0072-5285 ISSN 2197-5612 (electronic)
Graduate Texts in Mathematics
ISBN 978-3-030-73838-9 ISBN 978-3-030-73839-6 (eBook)
https://doi.org/10.1007/978-3-030-73839-6

Mathematics Subject Classification: 13-01, 03B10, 03B25, 03B30, 03D05, 03D10, 03F40, 68N17

3rd edition: © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

First edition translated by Ann S. Ferebee

1st & 2nd editions: © Springer Science+Business Media, New York, 1984, 1994

Preface

What is a mathematical proof? How can proofs be justified? Are there limitations to
provability? To what extent can machines carry out mathematical proofs?

Only in the last century has there been success in obtaining substantial and satis-
factory answers. The present book contains a systematic discussion of these results.
The investigations are centered around first-order logic. Our first goal is Gödel’s
completeness theorem, which shows that the consequence relation coincides with
formal provability: By means of a calculus consisting of simple formal inference
rules, one can obtain all consequences of a given axiom system (and in particular,
imitate all mathematical proofs).

A short digression into model theory will help to analyze the expressive power of
first-order logic, and it will turn out that there are certain deficiencies. For example,
first-order logic does not allow the formulation of an adequate axiom system for
arithmetic or analysis. On the other hand, this difficulty can be overcome—even
in the framework of first-order logic—by developing mathematics in set-theoretic
terms. We explain the prerequisites from set theory necessary for this purpose and
then treat the subtle relation between logic and set theory in a thorough manner.

Gödel’s incompleteness theorems are presented in connection with several related
results (such as Trakhtenbrot’s theorem) which all exemplify the limitations of
machine-oriented proof methods. The notions of computability theory that are rel-
evant to this discussion are given in detail. The concept of computability is made
precise by means of the register machine as a computer model.

We use the methods developed in the proof of Gödel’s completeness theorem to
discuss Herbrand’s Theorem. This theorem is the starting point for a detailed de-
scription of the theoretical fundamentals of logic programming. The corresponding
resolution method is first introduced on the level of propositional logic.

The deficiencies in expressive power of first-order logic are a motivation to look for
stronger logical systems. In this context we introduce, among others, second-order
logic and the infinitary logics. For each of them we prove that central facts which

v

vi Preface

hold for first-order logic are no longer valid. Finally, this empirical fact is confirmed
by Lindström’s theorems, which show that there is no logical system that extends
first-order logic and at the same time shares all its advantages.

The book does not require special mathematical knowledge; however, it presupposes
an acquaintance with mathematical reasoning as acquired, for example, in the first
year of a mathematics or computer science curriculum.

For the present third English edition the text has been carefully revised. Moreover,
two important decidability results in arithmetic are now included, namely the de-
cidability of Presburger arithmetic and the decidability of the weak monadic theory
of the successor function. For the latter one, some facts of automata theory that are
usually taught in a computer science curriculum are developed as far as needed.

The authors have done their best to avoid typos and errors, but almost surely the
book will still contain some. Please let the authors know of any errors you find.
Corresponding corrections will be accessible online via the Springer page of the
book.

After the appearance of the first German edition of the book (1978), A. Ferebee
saw to the translation for the first English edition (1984), and J. Ward assisted in
preparing the final text of that edition. We are grateful to Margit Messmer who
translated the materials added in the second edition, and assisted with polishing the
English of the new sections in the present edition.

We thank Loretta Bartolini of Springer New York for a smooth and efficient coop-
eration, as well as the LaTex support team of Springer and the copy editor James
Waddington for valuable advice and help.

Freiburg and Aachen, February 2021 H.-D. Ebbinghaus
J. Flum
W. Thomas

Contents

Part A

I Introduction . 3
I.1 An Example from Group Theory . 4
I.2 An Example from the Theory of Equivalence Relations 5
I.3 A Preliminary Analysis . 6
I.4 Preview . 8

II Syntax of First-Order Languages . 11
II.1 Alphabets . 11
II.2 The Alphabet of a First-Order Language . 13
II.3 Terms and Formulas in First-Order Languages 14
II.4 Induction in the Calculi of Terms and of Formulas 18
II.5 Free Variables and Sentences . 23

III Semantics of First-Order Languages . 25
III.1 Structures and Interpretations . 26
III.2 Standardization of Connectives . 28
III.3 The Satisfaction Relation . 30
III.4 The Consequence Relation . 31
III.5 Two Lemmas on the Satisfaction Relation 37
III.6 Some Simple Formalizations . 41
III.7 Some Remarks on Formalizability . 45
III.8 Substitution . 49

IV A Sequent Calculus . 55
IV.1 Sequent Rules . 56
IV.2 Structural Rules and Connective Rules . 58
IV.3 Derivable Connective Rules . 59
IV.4 Quantifier and Equality Rules . 61
IV.5 Further Derivable Rules . 63

vii

viii Contents

IV.6 Summary and Example . 65
IV.7 Consistency . 67

V The Completeness Theorem . 71
V.1 Henkin’s Theorem . 71
V.2 Satisfiability of Consistent Sets of Formulas (the Countable Case) 75
V.3 Satisfiability of Consistent Sets of Formulas (the General Case) . 78
V.4 The Completeness Theorem . 81

VI The Löwenheim–Skolem and the Compactness Theorem 83
VI.1 The Löwenheim–Skolem Theorem . 83
VI.2 The Compactness Theorem . 84
VI.3 Elementary Classes . 86
VI.4 Elementarily Equivalent Structures . 90

VII The Scope of First-Order Logic . 95
VII.1 The Notion of Formal Proof . 96
VII.2 Mathematics Within the Framework of First-Order Logic 98
VII.3 The Zermelo–Fraenkel Axioms for Set Theory 103
VII.4 Set Theory as a Basis for Mathematics . 106

VIII Syntactic Interpretations and Normal Forms . 111
VIII.1 Term-Reduced Formulas and Relational Symbol Sets 111
VIII.2 Syntactic Interpretations . 114
VIII.3 Extensions by Definitions . 120
VIII.4 Normal Forms . 124

Part B

IX Extensions of First-Order Logic . 133
IX.1 Second-Order Logic . 133
IX.2 The System Lω1ω . 138
IX.3 The System LQ . 143

X Computability and Its Limitations . 147
X.1 Decidability and Enumerability . 148
X.2 Register Machines . 152
X.3 The Halting Problem for Register Machines 158
X.4 The Undecidability of First-Order Logic . 163
X.5 Trakhtenbrot’s Theorem and the Incompleteness of

Second-Order Logic . 165
X.6 Theories and Decidability . 168
X.7 Self-Referential Statements and Gödel’s Incompleteness

Theorems . 176
X.8 Decidability of Presburger Arithmetic . 182
X.9 Decidability of Weak Monadic Successor Arithmetic 188

Contents ix

XI Free Models and Logic Programming . 205
XI.1 Herbrand’s Theorem . 205
XI.2 Free Models and Universal Horn Formulas 209
XI.3 Herbrand Structures . 213
XI.4 Propositional Logic . 216
XI.5 Propositional Resolution . 222
XI.6 First-Order Resolution (without Unification) 233
XI.7 Logic Programming . 242

XII An Algebraic Characterization of Elementary Equivalence 257
XII.1 Finite and Partial Isomorphisms . 258
XII.2 Fraı̈ssé’s Theorem . 263
XII.3 Proof of Fraı̈ssé’s Theorem . 265
XII.4 Ehrenfeucht Games . 271

XIII Lindström’s Theorems . 273
XIII.1 Logical Systems . 273
XIII.2 Compact Regular Logical Systems . 276
XIII.3 Lindström’s First Theorem . 278
XIII.4 Lindström’s Second Theorem . 285

References . 291

List of Symbols . 293

Subject Index . 297

Part A

Chapter I
Introduction

Towards the end of the nineteenth century mathematical logic evolved into a sub-
ject of its own. It was the works of Boole, Frege, Russell, and Hilbert,1 among
others, that contributed to its rapid development. Various elements of the subject
can already be found in traditional logic, for example, in the works of Aristotle or
Leibniz.2 However, while traditional logic can be considered as part of philosophy,
mathematical logic is more closely related to mathematics. Some aspects of this
relation are:

(1) Motivation and Goals. Investigations in mathematical logic arose mainly from
questions concerning the foundations of mathematics. For example, Frege intended
to base mathematics on logical and set-theoretical principles. Russell tried to elim-
inate contradictions that arose in Frege’s system. Hilbert’s goal was to show that
“the generally accepted methods of mathematics taken as a whole do not lead to a
contradiction” (this is known as Hilbert’s program).

(2) Methods. In mathematical logic the methods used are primarily mathematical.
This is exemplified by the way in which new concepts are formed, definitions are
given, and arguments are conducted.

(3) Applications in Mathematics. The methods and results obtained in mathematical
logic are not only useful for treating foundational problems; they also increase the
stock of tools available in mathematics itself. There are applications in many areas
of mathematics, such as algebra and topology, but also in various parts of theoretical
computer science.

However, these mathematical features do not mean that mathematical logic is of in-
terest solely to mathematics or parts of computer science. For example, the mathe-
matical approach leads to a clarification of concepts and problems that are important
in traditional logic and also in other fields, such as epistemology or the philosophy

1 George Boole (1815–1864), Gottlob Frege (1848–1925), David Hilbert (1862–1943),
Bertrand Russell (1872–1970).
2 Aristotle (384–322 B.C.), Gottfried Wilhelm Leibniz (1646–1716).

3© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

https://doi.org/10.1007/978-3-030-73839-6_1
H.-D. Ebbinghaus et al., Mathematical Logic, Graduate Texts in Mathematics 291,

http://crossmark.crossref.org/dialog/?10.1007/978-3-030-73839-6_1&domain=pdf

4 I Introduction

of science. In this sense the restriction to mathematical methods turns out to be very
fruitful.

In mathematical logic, as in traditional logic, deductions and proofs are central ob-
jects of investigation. However, it is the methods of deduction and the types of
argument as used in mathematical proofs which are considered in mathematical
logic (cf. (1)). In the investigations themselves, mathematical methods are applied
(cf. (2)). This close relationship between the subject and the method of investigation,
particularly in the discussion of foundational problems, may create the impression
that we are in danger of becoming trapped in a vicious circle. We shall not be able
to discuss this problem in detail until Chapter VII, and we ask the reader who is
concerned about it to bear with us until then.

I.1 An Example from Group Theory

In this and the next section we present two simple mathematical proofs. They il-
lustrate some of the methods of proof used by mathematicians. Guided by these
examples, we raise some questions which lead us to the main topics of the book.

We begin with the proof of a theorem from group theory. We therefore require the
axioms of group theory, which we now state. We use ◦ to denote the group multipli-
cation and e to denote the identity element. The axioms may then be formulated as
follows:

(G1) For all x,y,z : (x◦ y)◦ z = x◦ (y◦ z).
(G2) For all x : x◦ e = x.
(G3) For every x there is a y such that x◦ y = e.

A group is a triple (G,◦G,eG) which satisfies (G1)–(G3). Here G is a set, eG is
an element of G, and ◦G is a binary function on G, i.e., a function defined on all
ordered pairs of elements from G, the values of which are also elements of G. The
variables x,y,z range over elements of G, ◦ refers to ◦G, and e refers to eG.

As an example of a group we mention the additive group of the reals (R,+,0),
where R is the set of real numbers, + is the usual addition, and 0 is the real number
zero. On the other hand, (R, ·,1) is not a group (where · is the usual multiplication).
For example, the real number 0 violates axiom (G3): there is no real number r such
that 0 · r = 1.

We call triples such as (R,+,0) or (R, ·,1) structures. In Chapter III we shall give
an exact definition of the notion of “structure.”

Now we prove the following simple theorem from group theory:

1.1 Theorem on the Existence of a Left Inverse. For every x there is a y such that
y◦ x = e.

I.2 An Example from the Theory of Equivalence Relations 5

Proof. Let x be chosen arbitrarily. By (G3) we have for suitable y,

(1) x◦ y = e.

Again from (G3) we get, for this y, an element z such that

(2) y◦ z = e.

We can now argue as follows:

y◦ x=(y◦ x)◦ e (by (G2))
=(y◦ x)◦ (y◦ z) (from (2))
=y◦ (x◦ (y◦ z)) (by (G1))
=y◦ ((x◦ y)◦ z) (by (G1))
=y◦ (e◦ z) (from (1))
=(y◦ e)◦ z (by (G1))
=y◦ z (by (G2))
=e (from (2)).

Since x was arbitrary, we conclude that for all x there is a y such that y◦x = e. � 3

The proof shows that in every structure where (G1), (G2), and (G3) are satisfied, i.e.,
in every group, the theorem on the existence of a left inverse holds. A mathematician
would also describe this situation by saying that the theorem on the existence of a
left inverse follows from, or is a consequence of the axioms of group theory.

I.2 An Example from the Theory of Equivalence Relations

The theory of equivalence relations is based on the following three axioms (xRy is
to be read as “x is equivalent to y”):

(E1) For all x: xRx.
(E2) For all x,y: If xRy, then yRx.
(E3) For all x,y,z: If xRy and yRz, then xRz.

Let A be a nonempty set, and let RA be a binary relation on A, i.e., RA ⊆ A×A. For
(a,b) ∈ RA we also write aRAb. The pair (A,RA) is another example of a structure.
We call RA an equivalence relation on A, and the structure (A,RA) an equivalence
structure, if (E1), (E2), and (E3) are satisfied. For example, (Z,R5) is an equivalence
structure, where Z is the set of integers and

R5 = {(a,b) | a,b ∈ Z and b−a is divisible by 5}.

We now prove a simple theorem about equivalence relations.

3 From now on, � denotes the end of a proof.

6 I Introduction

2.1 Theorem. If x and y are both equivalent to a third element, they are equivalent
to the same elements. More formally: For all x and y, if there is a u such that xRu
and yRu, then for all z, xRz if and only if yRz.

Proof. Let x and y be given arbitrarily; suppose that for some u

(1) xRu and yRu.

From (E2) we then obtain

(2) uRx and uRy.

From xRu and uRy we get, using (E3),

(3) xRy,

and from yRu and uRx we likewise get (using (E3))

(4) yRx.

Now let z be chosen arbitrarily. If

(5) xRz,

then, using (E3), we obtain from (4) and (5)

yRz.

On the other hand, if

(6) yRz,

then, using (E3), we get from (3) and (6)

xRz.

Thus the claim is proved for all z. �
As in the previous example, this proof shows that every structure (of the form
(A,RA)) which satisfies the axioms (E1), (E2), and (E3), also satisfies Theorem 2.1,
i.e., that Theorem 2.1 follows from (E1), (E2), and (E3).

I.3 A Preliminary Analysis

We now sketch some aspects which the two examples just given have in common.

In each case one starts from a system Φ of propositions which is taken to be a system
of axioms for the theory in question (group theory, theory of equivalence relations).
The mathematician is interested in finding the propositions which follow from Φ ,
where the proposition ψ is said to follow from Φ if ψ holds in every structure which
satisfies all propositions in Φ . A proof of ψ from a system Φ of axioms shows that ψ
follows from Φ .

I.3 A Preliminary Analysis 7

When we think about the scope of methods of mathematical proof, we are led to ask
about the converse:

(∗) Is every proposition ψ which follows from Φ also provable from Φ?

For example, is every proposition which holds in all groups also provable from the
group axioms (G1), (G2), and (G3)?

The material developed in Chapters II through V and in Chapter VII yields an essen-
tially positive answer to (∗). Clearly it is necessary to make the concepts “proposi-
tion”, “follows from”, and “provable”, which occur in (∗), more precise. We sketch
briefly how we shall do this.

(1) The Concept “Proposition.” Usually mathematicians use their everyday lan-
guage (e.g., English or German) to formulate their propositions. But since sentences
in everyday language are not, in general, completely unambiguous in their meaning
and structure, one cannot specify them by precise definitions. For this reason we
shall introduce a formal language L which reflects features of mathematical state-
ments. Like programming languages used today, L will be formed according to fixed
rules: Starting with a set of symbols (an “alphabet”), we obtain so-called formulas
as finite symbol strings built up in a standard way. These formulas correspond to
propositions expressed in everyday language. For example, the symbols of L will
include ∀ (to be read “for all”), ∧ (“and”), → (“if . . . then”), ≡ (“equal”) and vari-
ables like x,y and z. Formulas of L will be expressions like

∀xx ≡ x, x ≡ y, x ≡ z, ∀x∀y∀z((x ≡ y∧ y ≡ z)→ x ≡ z).

Although the expressive power of L may at first appear to be limited, we shall later
see that many mathematical propositions can be formulated in L. We shall even see
that L is, in principle, sufficient for all of mathematics. The definition of L will be
given in Chapter II.

(2) The Concept “Follows From” (the Consequence Relation). Axioms (G1), (G2),
and (G3) of group theory obtain a meaning when interpreted in structures of the form
(G,◦G,eG). In an analogous way we can define the general notion of an L-formula
holding in a structure. This enables us (in Chapter III) to define the consequence
relation: ψ follows from (is a consequence of) Φ if and only if ψ holds in every
structure where all formulas of Φ hold.

(3) The Concept “Proof.” A mathematical proof of a proposition ψ from a system
Φ of axioms consists of a series of inferences which proceed from axioms of Φ or
propositions that have already been proved, to new propositions, and which finally
ends with ψ . At each step of a proof mathematicians write something like “From . . .
and − − − one obtains directly that ∼∼∼,” and they expect it to be clear to anyone
that the validity of . . . and of − − − entails the validity of ∼∼∼.

An analysis of examples shows that the grounds for accepting such inferences are
often closely related to the meaning of connectives, such as “and”, “or”, or “if-then”,
and quantifiers, “for all” or “there exists”, which occur there. For example, this is the
case in the first step of the proof of Theorem 1.1, where we deduce from “for all x

8 I Introduction

there is a y such that x◦y = e” that for the given x there is a y such that x◦y = e. Or
consider the step from (1) and (2) to (3) in the proof of Theorem 2.1, where from
the proposition “xRu and yRu” we infer the left member of the conjunction, “xRu”,
and from “uRx and uRy” we infer the right member, “uRy”, and then using (E3) we
conclude (3).

The formal character of the language L makes it possible to represent these infer-
ences as formal operations on symbol strings (the L-formulas). Thus, the inference
of “xRu” from “xRu and yRu” mentioned above corresponds to the passage from the
L-formula (xRu∧ yRu) to xRu. We can view this as an application of the following
rule:

(+) One is allowed to pass from an L-formula (ϕ ∧ψ) to the L-formula ϕ .

In Chapter IV we shall give a finite system S of rules which, like (+), correspond to
elementary inference steps mathematicians use in their proofs.

A formal proof of the L-formula ψ from the L-formulas in Φ (the “axioms”) consists
then (by definition) of a sequence of formulas in L which ends with ψ , and in which
each L-formula is obtained by application of a rule from S to the axioms or to
preceding formulas in the sequence.

Having introduced the precise notions, one can convince oneself by examples that
mathematical proofs can be imitated by formal proofs in L. Moreover, in Chapter V
we return to the question (∗) at the beginning of this section and answer it positively,
showing that if a formula ψ follows from a set Φ of formulas, then there is a proof
of ψ from Φ , even a formal proof. This is the content of Gödel’s Completeness
Theorem.4

I.4 Preview

Gödel’s Completeness Theorem forms a bridge between the notion of proof, which
is formal in character, and the notion of consequence, which refers to the meaning
in structures. In Chapter VI we show how this connection can be used in algebraic
investigations.

Once a formal language and an exact notion of proof have been introduced, we have
a precise framework for mathematical investigations concerning, for instance, the
consistency of mathematics or a justification of rules of inference used in mathe-
matics (Chapters VII and X).

Finally, the formalization of the notion of proof gives the possibility of using a
computer to carry out or check proofs. In Chapter X we discuss the scope and the
limitations of such machine-oriented methods.

4 Kurt Gödel (1906–1978).

I.4 Preview 9

Certain formulas in L can themselves be interpreted in an operational way. For ex-
ample, one can view an implication of the form “if ϕ then ψ” as an instruction to
go from ϕ to ψ . This interpretation of L-formulas as programs forms the basis of
logic programming, which is the starting point of certain computer languages in so-
called artificial intelligence. In Chapter XI we develop the fundamentals of this part
of “applied” logic.

In formulas of L the variables refer to the elements of a structure, for example, to the
elements of a group or the elements of an equivalence structure. In a given structure
we often call elements of its domain A first-order objects, while subsets of A are
called second-order objects. Since L only has variables for first-order objects (and
thus expressions such as “∀x” and “∃x” apply only to the elements of a structure),
we call L a first-order language.

Unlike L, the so-called second-order language also has variables which range over
subsets of the domain of a structure. Thus a proposition about a given group which
begins “For all subgroups. . .” can be directly formulated in the second-order lan-
guage. We shall investigate this language and others in Chapter IX. In Chapter XIII
we shall be able to show that no language with more expressive power than L en-
joys both an adequate formal concept of proof and other useful properties of L. From
this point of view L is a “best-possible” language; and this fact might explain the
dominant role which the first-order language plays in mathematical logic.

Chapter II
Syntax of First-Order Languages

In this chapter we introduce the first-order languages. They obey simple, clear for-
mation rules. In Chapter VII we shall discuss whether, and to what extent, all math-
ematical propositions can be formalized in such languages.

II.1 Alphabets

By an alphabet A we mean a nonempty set of symbols. Examples of alphabets are
the sets A1 = {0,1,2, . . . ,9}, A2 = {a,b,c, . . . ,z} (the alphabet of lower-case let-
ters), A3 = {◦,∫ ,a,d,x, f ,),(}, and A4 = {c0,c1,c2, . . .}.

We call finite sequences of symbols from an alphabet A strings or words over A.
By A∗ we denote the set of all strings over A. The length of a string ζ ∈ A∗ is the
number of symbols, counting repetitions, occurring in ζ . The empty string is also
considered to be a word over A. It is denoted by �, and its length is zero.

Examples of strings over A2 are

so f tly, xdbxaz.

Examples of strings over A3 are∫
f (x)dx, x◦∫∫ a.

Suppose A = {|, ||}, that is, A consists of the symbols a1 := |1 and a2 := || . Then
the string ||| over A can be read in three ways: as a1a1a1, as a1a2, and as a2a1. In
the sequel we allow only those alphabets A where any string over A can be read in
exactly one way. The alphabets A1, . . . ,A4 given above satisfy this condition.

We now turn to questions concerning the number of strings over a given alphabet.

1 Here we write “a1 := | ” instead of “a1= | ” in order to make it clear that a1 is defined by the
right-hand side of the equation.

11© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

https://doi.org/10.1007/978-3-030-73839-6_2
H.-D. Ebbinghaus et al., Mathematical Logic, Graduate Texts in Mathematics 291,

http://crossmark.crossref.org/dialog/?10.1007/978-3-030-73839-6_2&domain=pdf

12 II Syntax of First-Order Languages

We call a set M countable if it is not finite and if there is a surjective map α from
the set of natural numbers N = {0,1,2, . . .} onto M. We can then represent M as
{α(n) | n ∈ N} or, if we write the arguments as indices, as {αn | n ∈ N}. A set M is
called at most countable if it is finite or countable.

1.1 Lemma. For a nonempty set M the following are equivalent:

(a) M is at most countable.
(b) There is a surjective map α : N→ M.
(c) There is an injective map β : M → N.

Proof. 2 We shall prove (b) from (a), (c) from (b), and (a) from (c).

(b) from (a): Let M be at most countable. If M is countable, (b) holds by definition.
For finite M, say M = {a0, . . . ,an} (M is nonempty), we define α : N→ M by

α(i) :=

{
ai if 0≤i≤n,
a0 otherwise.

Clearly, α is surjective.

(c) from (b): Let α : N → M be surjective. We define an injective map β : M → N
by setting, for a ∈ M,

β (a) := the least i such that α(i) = a.

(a) from (c): Let β : M → N be injective and suppose M is not finite. We must show
that M is countable. To do this we define a surjective map α : N→ M inductively as
follows:

α(0) := the a ∈ M with the smallest image under β in N,
α(n+1) := the a ∈ M with the smallest image under β greater

than β (α(0)), . . . ,β (α(n)).

Since the images under β are not bounded in N, α is defined for all n ∈ N, and
clearly every a ∈ M belongs to the range of α . �
With Lemma 1.1 one can easily show that every subset of an at most countable
set is at most countable and that, if M1 and M2 are at most countable, then so is
M1 ∪M2. The set R of real numbers is neither finite nor countable: it is uncountable
(cf. Exercise 1.3).

We shall later show that finite alphabets suffice for representing mathematical state-
ments. Moreover, the symbols may be chosen as “concrete” objects so that they can
be included on the keyboard of a typewriter. Often, however, one can improve the
transparency of an argument by using a countable alphabet such as A4, and we shall

2 The goal of our investigations is, among other things, a discussion of the notion of proof. There-
fore the reader may be surprised that we use proofs before we have made precise what a mathe-
matical proof is. As already mentioned in Chapter I, we shall return to this apparent circularity in
Chapter VII.

II.2 The Alphabet of a First-Order Language 13

do this frequently. For some mathematical applications of methods in mathemat-
ical logic it is also useful to consider uncountable alphabets. The set {cr | r ∈ R},
which contains a symbol cr for every real number r, is an example of an uncountable
alphabet. We shall justify the use of such alphabets in Section VII.4.

1.2 Lemma. If A is an at most countable alphabet, then the set A∗ of strings over
A is countable.

Proof. Let pn be the nth prime number: p0 = 2, p1 = 3, p2 = 5, and so on. If A is
finite, say A= {a0, . . . ,an}, where a0, . . . ,an are pairwise distinct, or if A is count-
able, say A = {a0,a1,a2, . . .}, where the ai are pairwise distinct, we can define the
map β : A∗ → N by

β (�) := 1, β (ai0 . . .air) := p0
i0+1 · . . . · pr

ir+1.

Clearly β is injective and thus A∗ is at most countable (cf. 1.1(c)). Since a0, a0a0,
a0a0a0, . . . are all in A∗ it cannot be finite; hence it is countable. �

1.3 Exercise. Let α : N→ R be given. For a,b ∈ R such that a < b show that there
is a point c in the closed interval I = [a,b] such that c /∈ {α(n) | n ∈ N}. Conclude
from this that I, and hence R also, are uncountable. Hint: By induction define a
sequence I = I0 ⊇ I1 ⊇ . . . of closed intervals such that α(n) /∈ In+1 and use the fact
that

⋂
n∈N In �= /0.

1.4 Exercise. (a) Show that if the sets M0,M1, . . . are at most countable, then the
union

⋃
n∈N Mn is also at most countable.

(b) Use (a) to give a different proof of Lemma 1.2.

1.5 Exercise. Let M be a set. Show that there is no surjective (and hence no bi-
jective) map from M onto the power set P(M) := {B | B ⊆ M} of M. Hint: For
α : M → P(M), the set {a ∈ M | a /∈ α(a)} is not in the range of α .

II.2 The Alphabet of a First-Order Language

We wish to construct formal languages in which we can formulate, for example, the
axioms, theorems, and proofs about groups and equivalence relations which we con-
sidered in Chapter I. In that context the connectives, the quantifiers, and the equality
relation played an important role. Therefore, we shall include the following symbols
in the first-order languages: ¬ (for “not”), ∧ (for “and”), ∨ (for “or”), → (for “if-
then”), ↔ (for “if and only if”), ∀ (for “for all”), ∃ (for “there exists”), ≡ (as symbol
for equality). To these we shall add variables (for elements of groups, elements of
equivalence structures, etc.) and, finally, parentheses as auxiliary symbols.

To formulate the axioms for groups we also need certain symbols specific to group
theory, e.g., a binary function symbol, say ◦, to denote the group multiplication, and
a symbol, say e, to denote the identity element. We call e a constant symbol, or

14 II Syntax of First-Order Languages

simply a constant. For the axioms of the theory of equivalence relations we need a
binary relation symbol, say R.

Thus, in addition to the “logical” symbols such as “¬” and “∧”, we need a set S of
relation symbols, function symbols, and constants which varies from theory to the-
ory. Each such set S of symbols determines a first-order language. We summarize:

2.1 Definition. The alphabet of a first-order language contains the following sym-
bols:

(a) v0,v1,v2, . . . (variables);
(b) ¬,∧,∨,→,↔ (not, and, or, if-then, if and only if);
(c) ∀,∃ (for all, there exists);
(d) ≡ (equality symbol);
(e)),((parentheses);
(f) (1) for every n≥1 a (possibly empty) set of n-ary relation symbols;

(2) for every n≥1 a (possibly empty) set of n-ary function symbols;
(3) a (possibly empty) set of constants.

By A we denote the set of symbols listed in (a) through (e). Let S be the (possibly
empty) set of symbols from (f). The symbols listed under (f) must, of course, be
distinct from each other and from the symbols in A.

The set S determines a first-order language (cf. Section 3). We call AS := A∪S the
alphabet of this language and S its symbol set.

We have already become acquainted with some symbol sets: Sgr := {◦,e} for group
theory and Seq := {R} for the theory of equivalence relations. For the theory of
ordered groups we could use {◦,e,R}, where the binary relation symbol R is now
taken to represent the ordering relation. In certain theoretical investigations we shall
use the symbol set S∞, which contains the constants c0,c1,c2, . . ., and for every n≥1
countably many n-ary relation symbols Rn

0,R
n
1,R

n
2, . . . and n-ary function symbols

f n
0 , f n

1 , f n
2 ,

Henceforth we shall use the letters P,Q,R, . . . for relation symbols, f ,g, h, . . . for
function symbols, c,c0,c1, . . . for constants, and x,y,z, . . . for variables.

II.3 Terms and Formulas in First-Order Languages

Given a symbol set S, we call certain strings over AS formulas of the first-order
language determined by S. For example, if S = SGr, we want the strings

e ≡ e, e◦ v1 ≡ v2, ∃v1(e ≡ e∧ v1 ≡ v2)

to be formulas, but not

≡ ∧ e, e∨ e.

II.3 Terms and Formulas in First-Order Languages 15

The formulas e ≡ e and e ◦ v1 ≡ v2 have the form of equations. Mathematicians
call the strings to the left and to the right of the equality symbol terms. Terms are
“meaningful” combinations of function symbols, variables, and constants (together
with commas and parentheses). Clearly, to give a precise definition of formulas and
thus, in particular, of equations, we must first specify more exactly what we mean
by terms.

In mathematics, terms are written in different notation, such as f (x), f x, x + e,
g(x,e), gxe. We choose a parenthesis-free notation, as with f x and gxe.

To define the notion of term we give instructions (or rules) which tell us how to
generate the terms. (Such a system of rules is often called a calculus.)

3.1 Definition. S-terms are precisely those strings in A∗
S which can be obtained by

finitely many applications of the following rules:

(T1) Every variable is an S-term.
(T2) Every constant in S is an S-term.
(T3) If the strings t1, . . . , tn are S-terms and f is an n-ary function symbol in S, then

f t1 . . . tn is also an S-term.

We denote the set of S-terms by T S.

If f is a unary and g a binary function symbol and S = { f ,g,c,R}, then

gv0 f gv4c

is an S-term. First of all, c is an S-term by (T2) and v0 and v4 are S-terms by (T1).
If we apply (T3) to the S-terms v4 and c and to the function symbol g, we see that
gv4c is an S-term. Another application of (T3) to the S-term gv4c and to the function
symbol f shows that f gv4c is an S-term, and a final application of (T3) to the S-
terms v0 and f gv4c and to the function symbol g shows that gv0 f gv4c is an S-term.

We say that one can derive the string gv0 f gv4c in the calculus of terms (correspond-
ing to S). The derivation just described can be given schematically as follows:

1. c (T2)
2. v0 (T1)
3. v4 (T1)
4. gv4c (T3) applied to 3. and 1. using g
5. f gv4c (T3) applied to 4. using f
6. gv0 f gv4c (T3) applied to 2. and 5. using g.

The string directly following the number at the beginning of each line can be ob-
tained in each case by applying a rule of the calculus of terms; applications of (T3)
use terms obtained in preceding lines. The information at the end of each line indi-
cates which rules and preceding terms were used. Clearly, not only the string in the
last line, but all strings in preceding lines can be derived and, hence, are S-terms.

16 II Syntax of First-Order Languages

The reader should show that the strings gxgx f y and gxg f x f y are S-terms for arbi-
trary variables x and y. Here we give a derivation to show that the string ◦x◦ey is an
Sgr-term.

1. x (T1)
2. y (T1)
3. e (T2)
4. ◦ey (T3) applied to 3. and 2. using ◦
5. ◦x◦ey (T3) applied to 1. and 4. using ◦.

Mathematicians usually write the term in line 4 as e ◦ y, and the term in line 5 as
x◦ (e◦ y). For easier reading we shall sometimes write terms in this way as well.

Using the notion of term we are now able to give the definition of formulas.

3.2 Definition. S-formulas are precisely those strings of A∗
S which are obtained by

finitely many applications of the following rules:

(F1) If t1 and t2 are S-terms, then t1 ≡ t2 is an S-formula.
(F2) If t1, . . . , tn are S-terms and R is an n-ary relation symbol in S, then Rt1 . . . tn is

an S-formula.
(F3) If ϕ is an S-formula, then ¬ϕ is also an S-formula.
(F4) If ϕ and ψ are S-formulas, then (ϕ ∧ψ), (ϕ ∨ψ), (ϕ → ψ), and (ϕ ↔ ψ)

are also S-formulas.
(F5) If ϕ is an S-formula and x is a variable, then ∀xϕ and ∃xϕ are also S-formulas.

S-formulas derived using (F1) and (F2) are called atomic formulas because they are
not formed by combining other S-formulas. The formula ¬ϕ is called the negation
of ϕ , and (ϕ ∧ψ), (ϕ ∨ψ), and (ϕ → ψ) are called, respectively, the conjunction,
disjunction, implication, and bi-implication of ϕ and ψ .

By LS we denote the set of S-formulas. This set is called the first-order language
associated with the symbol set S.

Instead of S-terms and S-formulas, we often speak simply of terms and formulas
when the reference to S is either clear or unimportant. For terms we use the letters
t, t0, t1, . . ., and for formulas the letters ϕ,ψ,

We now give some examples. Let S = Seq = {R}. We can express the axioms for the
theory of equivalence relations by the following formulas:

∀v0Rv0v0
∀v0∀v1(Rv0v1 → Rv1v0)

∀v0∀v1∀v2((Rv0v1 ∧Rv1v2)→ Rv0v2).

One can verify that these strings really are formulas by giving appropriate deriva-
tions (as was done above for terms) in the calculus of Seq-formulas. For the first two
formulas we have, for example,

(1) 1. Rv0v0 (F2)
2. ∀v0Rv0v0 (F5) applied to 1. using ∀,v0

II.3 Terms and Formulas in First-Order Languages 17

(2) 1. Rv0v1 (F2)
2. Rv1v0 (F2)
3. (Rv0v1 → Rv1v0) (F4) applied to 1., 2. using →
4. ∀v1(Rv0v1 → Rv1v0) (F5) applied to 3. using ∀,v1
5. ∀v0∀v1(Rv0v1 → Rv1v0) (F5) applied to 4. using ∀,v0.

In a similar way readers should convince themselves that, for unary f , binary g,
unary P, ternary Q, and variables x, y, and z, the following strings are {P,Q, f ,g}-
formulas:

(1) ∀y(Pz → Qxxz)
(2) (Pgx f y →∃x(x ≡ x∧ x ≡ x))
(3) ∀z∀z∃zQxyz.

In spite of its rigor the calculus of formulas has “liberal” aspects: we can quantify
over a variable which does not actually occur in the formula in question (as in (1)),
we can join two identical formulas by means of a conjunction (as in (2)), or we can
quantify several times over the same variable (as in (3)).

For better legibility we shall frequently use an abbreviated or modified notation for
terms and formulas. For example, we shall write the Seq-formula Rv0v1 as v0Rv1
(compare this with the notation 2 < 3). Moreover, we shall often omit parentheses
if they are not essential in order to avoid ambiguity, e.g., the outermost parentheses
surrounding conjunctions, disjunctions, etc. Thus, we may write ϕ ∧ψ for (ϕ ∧ψ).
In the case of iterated conjunctions or disjunctions we shall agree to associate to the
left, e.g., ϕ ∧ψ ∧χ will be understood to mean ((ϕ ∧ψ)∧χ). Finally, ∧ and ∨ shall
bind more strongly than →. Thus ∀x(ϕ ∧ψ → χ) will stand for ∀x((ϕ ∧ψ)→ χ).
The reader should always be aware that expressions in the abbreviated form are
no longer formulas. Once again we emphasize that we need an exact definition of
formulas to have a precise notion of mathematical statement in our analysis of the
notion of proof.

Perhaps the following analogy with programming languages will clarify the situa-
tion. When writing a program one must be meticulous in following the grammatical
rules for the programming language, because a computer can process only a for-
mally correct program. But programmers use an abbreviated notation when devising
or discussing programs in order to express themselves more quickly and clearly.

We have used ≡ for the equality symbol in first-order languages in order to make
statements of the form ϕ = x ≡ y (“ϕ is the formula x ≡ y”) easier to read.

For future use we note the following:

3.3 Lemma. If S is at most countable, then T S and LS are countable.

Proof. If S is at most countable, then so is AS, and hence by Lemma 1.2 the set A∗
S

is countable. Since T S and LS are subsets of A∗
S they are also at most countable. On

the other hand, T S and LS are infinite because T S contains the variables v0,v1,v2, . . .,
and LS contains the formulas v0 ≡ v0, v1 ≡ v1, v2 ≡ v2, . . . (even if S = /0). �

18 II Syntax of First-Order Languages

With the preceding observations the languages LS have become the object of in-
vestigation. In this investigation we use another language, namely everyday English
augmented by some mathematical terminology. In order to emphasize the difference
in the present context, the formal language LS is called the object language (since
it is the object of the investigations); the language English (the language in which
the investigations are carried out) is called the metalanguage. In another context,
for example in linguistic investigations, everyday English could be an object lan-
guage. Similarly, first-order languages can play the role of metalanguages in certain
set-theoretical investigations (cf. Section VII.4.3).

Historical Note. G. Frege [11] developed the first comprehensive formal language.
He used a two-dimensional system of notation which was so complicated that his
language never came into general use. The formal languages used today are based
essentially on those introduced by G. Peano3 [33].

II.4 Induction in the Calculi of Terms and of Formulas

Let S be a set of symbols and let Z ⊆A∗
S be a set of strings over AS. In the case where

Z = T S or Z = LS we described the elements of Z by means of a calculus. Each rule
of such a calculus either says that certain strings belong to Z (e.g., the rules (T1),
(T2), (F1), and (F2)), or else permits the passage from certain strings ζ1, . . . ,ζn to
a new string ζ in the sense that, if ζ1, . . . ,ζn all belong to Z, then ζ also belongs
to Z. The way such rules work is made clear when we write them schematically, as
follows:

ζ1, . . . ,ζn

ζ .

By allowing n = 0, the first sort of rules mentioned above (“premise-free” rules) is
included in this scheme. Now we can write the rules for the calculus of terms as
follows:

(T1)
x

; (T2)
c

if c ∈ S

(T3)
t1, . . . , tn
f t1 . . . tn

if f ∈ S and f is n-ary.

When we define a set Z of strings by means of a calculus C we can then prove
assertions about elements of Z by means of induction over C. This principle of
proof corresponds to induction over the natural numbers. If one wants to show that
all elements of Z have a certain property P, then it is sufficient to show that

3 Guiseppe Peano (1858–1939).

II.4 Induction in the Calculi of Terms and of Formulas 19

(I)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

for every rule

ζ1, . . . ,ζn

ζ

of the calculus C, the following holds: whenever ζ1, . . . ,ζn are
derivable in C and have the property P (“induction hypothe-
sis”), then ζ also has the property P.

Hence in the case n = 0 we must show that ζ has the property P.

This principle of proof is evident: In order to show that all strings derivable in C
have the property P, we show that everything derivable by means of a “premise-
free” rule (i.e., n = 0 in (I)) has the property P, and that P is preserved under the
application of the remaining rules. This method can also be justified using the prin-
ciple of complete induction for natural numbers. For this purpose, one defines, in
an obvious way, the length of a derivation in C (cf. the examples of derivations in
Section 3), and then argues as follows: If the condition (I) is satisfied for P, one
shows by induction on m that every string which has a derivation of length m has the
property P. Since every element of Z has a derivation of some finite length, P must
hold for all elements of Z.

In the special case where C is the calculus of terms or the calculus of formulas, we
call the proof procedure outlined above proof by induction on terms or on formulas,
respectively. In order to show that all S-terms have a certain property P it is sufficient
to show:

(T1)′ Every variable has the property P.
(T2)′ Every constant in S has the property P.
(T3)′ If the S-terms t1, . . . , tn have the property P, and if f ∈ S is n-ary, then

f t1 . . . tn also has the property P.

In the case of the calculus of formulas the corresponding conditions are

(F1)′ Every S-formula of the form t1 ≡ t2 has the property P.
(F2)′ Every S-formula of the form Rt1 . . . tn has the property P.
(F3)′ If the S-formula ϕ has the property P, then ¬ϕ also has the property P.
(F4)′ If the S-formulas ϕ and ψ have the property P, then the formulas (ϕ ∧ψ),

(ϕ ∨ψ), (ϕ → ψ), and (ϕ ↔ ψ) also have the property P.
(F5)′ If the S-formula ϕ has the property P and if x is a variable, then ∀xϕ and

∃xϕ also have the property P.

We now give some applications of this method of proof.

4.1. (a) For all symbol sets S, the empty string � is neither an S-term nor an S-
formula.

(b) (1) ◦ is not an Sgr-term.
(2) ◦◦ v1 is not an Sgr-term.

(c) For all symbol sets S, every S-formula contains the same number of right paren-
theses) as of left parentheses (.

20 II Syntax of First-Order Languages

Proof. (a) Let P be the property on A∗
S which holds for a string ζ iff 4 ζ is nonempty.

We show by induction on terms that every S-term has the property P, and leave the
proof for formulas to the reader.

(T1)′, (T2)′: Terms of the form x or c (with c ∈ S) are nonempty.

(T3)′: Every term formed according to (T3) begins with a function symbol, and
hence is nonempty. (Note that we do not need to use the induction hypothesis.)

(b) We leave (1) to the reader. To prove (2), let P be the property on A∗
Sgr

which
holds for a string ζ over ASgr iff ζ is distinct from ◦◦ v1. We show by induction on
terms that every Sgr-term is distinct from ◦◦ v1. The reader will notice that we start
using a more informal presentation of inductive proofs.

t = x, t = e: Then t is distinct from the string ◦◦v1.

t = ◦t1t2: If ◦ t1t2 = ◦◦v1, then, by (a), we would have t1 = ◦ and t2 = v1. But t1 = ◦
contradicts (1).

(c) First, one shows by induction on terms that no S-term contains a left or right
parenthesis. Then one considers the property P over A∗

S, which holds for a string ζ
over AS iff ζ has the same number of right parentheses as left parentheses, and one
shows by induction on formulas that every S-formula has the property P. We give
some cases here as examples:

ϕ = t1 ≡ t2, where t1 and t2 are S-terms: By the observation above there are no
parentheses in ϕ , thus P holds for ϕ .

ϕ = ¬ψ , where ψ has the property P by induction hypothesis: Since ϕ does not
contain any parentheses except those in ψ , ϕ also has the property P.

ϕ = (ψ ∧χ), where P holds for ψ and χ by induction hypothesis: Since ϕ contains
one left parenthesis and one right parenthesis in addition to the parentheses in ψ
and χ , the property P also holds for ϕ .

ϕ = ∀xψ , where ψ has the property P by induction hypothesis: The proof here is
the same as in the case ϕ = ¬ψ . �
Next, we want to show that terms and formulas have a unique decomposition into
their constituents. We refer to a fixed symbol set S. The following two lemmas
contain some preliminary results needed for this purpose.

4.2 Lemma. (a) For all terms t and t ′, t is not a proper initial segment of t ′ (i.e.,
there is no ζ distinct from � such that tζ = t ′).

(b) For all formulas ϕ and ϕ ′, ϕ is not a proper initial segment of ϕ ′.

We confine ourselves to the proof of (a), and consider the property P, which holds
for a string η iff

(∗) for all terms t ′, t ′ is not a proper initial segment of η and η is not a proper
initial segment of t ′.

4 Throughout “iff” is an abbreviation for “if and only if”.

II.4 Induction in the Calculi of Terms and of Formulas 21

Using induction on terms, we show that all terms t have the property P.

t = x: Let t ′ be an arbitrary term. By 4.1(a), t ′ cannot be a proper initial segment of
x, for then t ′ would have to be the empty string �. On the other hand, one can easily
show by induction on terms that x is the only term which begins with the variable x.
Therefore, t cannot be a proper initial segment of t ′.

t = c: The argument is similar.

t = f t1 . . . tn and (∗) holds for t1, . . . , tn: Let t ′ be an arbitrary fixed term. We show
that t ′ cannot be a proper initial segment of t. Otherwise there would be a ζ such
that

(1) ζ �=� and t = t ′ζ .

Since t ′ begins with f (for t begins with f), t ′ cannot be a variable or a constant,
thus t ′ must have been generated using (T3). Therefore it has the form f t ′1 . . . t

′
n for

suitable terms t ′1, . . . t
′
n. From (1) we have

(2) f t1 . . . tn = f t ′1 . . . t
′
nζ ,

and from this, canceling the symbol f , we obtain

(3) t1 . . . tn = t ′1 . . . t
′
nζ .

Therefore t1 is an initial segment of t ′1 or vice versa. Since t1 satisfies (∗) by induction
hypothesis, neither of these can be a proper initial segment of the other. Thus t1 = t ′1.
Cancelling t1 on both sides of (3) we obtain

(4) t2 . . . tn = t ′2 . . . t
′
nζ .

Repeatedly applying the argument leading from (3) to (4) we finally obtain

�= ζ .

This contradicts (1). Therefore t ′ cannot be a proper initial segment of t. The proof
that t cannot be a proper initial segment of t ′ is analogous. �
Applying Lemma 4.2, in a similar way one obtains

4.3 Lemma. (a) If t1, . . . , tn and t ′1, . . . , t
′
m are terms, and if

t1 . . . tn = t ′1 . . . t
′
m,

then n = m and ti = t ′i for 1≤i≤n.
(b) If ϕ1, . . . ,ϕn and ϕ ′

1, . . . ,ϕ
′
m are formulas, and if

ϕ1 . . .ϕn = ϕ ′
1 . . .ϕ

′
m,

then n = m and ϕi = ϕ ′
i for 1≤i≤n.

Using Lemma 4.2 and Lemma 4.3, one can easily prove

22 II Syntax of First-Order Languages

4.4 Theorem. (a) Every term is either a variable, a constant, or a term of the
form f t1 . . . tn. In the last case the function symbol f and the terms t1, . . . , tn are
uniquely determined.

(b) Every formula is of the form

(1) t1 ≡ t2 or (2) Rt1 . . . tn or (3) ¬ϕ or (4) (ϕ ∧ψ) or (5) (ϕ ∨ψ)

or (6) (ϕ → ψ) or (7) (ϕ ↔ ψ) or (8) ∀xϕ or (9) ∃xϕ ,

where the cases (1)–(9) are mutually exclusive and where the following are
uniquely determined: the terms t1, t2 in case (1), the relation symbol R and the
terms t1, . . . , tn in case (2), the formula ϕ in case (3), the formulas ϕ and ψ in
(4), (5), (6), (7), and the variable x and the formula ϕ in (8) and (9). �

Theorem 4.4 asserts that a term or a formula has a unique decomposition into its
constituents. Thus, as we shall now show, we can give inductive definitions on terms
or formulas. For example, to define a function for all terms it will be sufficient

(T1)′′ to assign a value to each variable;
(T2)′′ to assign a value to each constant;
(T3)′′ for every n-ary f and for all terms t1, . . . , tn to assign a value to the term

f t1 . . . tn assuming that values have already been assigned to the terms
t1, . . . , tn.

Each term is assigned exactly one value by (T1)′′ through (T3)′′ . We show this by
means of induction on terms as follows.

t = x: By Theorem 4.4(a) the term t is not a constant and does not begin with a
function symbol. Therefore, it is assigned a value only by an application of (T1)′′ .
Thus t is assigned exactly one value.

t = c: The argument is analogous to the preceding case.

t = f t1 . . . tn, and each of the terms t1, . . . , tn has been assigned exactly one value:
To assign a value to t we can only use (T3)′′, by Theorem 4.4(a). Since, again by
Theorem 4.4(a), the ti are uniquely determined, t is assigned a unique value.

We now give some examples of inductive definitions.

4.5 Definition. (a) The function var (more precisely, varS), which associates with
each S-term the set of variables occurring in it, can be defined as follows:

var(x) := {x}
var(c) := /0

var(f t1 . . . tn) := var(t1)∪ . . .∪var(tn).

(b) The function SF, which assigns to each formula the set of its subformulas, can
be defined by induction on formulas as follows:

SF(t1 ≡ t2) := {t1 ≡ t2}
SF(Rt1 . . . tn) := {Rt1 . . . tn}

SF(¬ϕ) := {¬ϕ}∪SF(ϕ)

II.5 Free Variables and Sentences 23

SF((ϕ ∗ψ)) := {(ϕ ∗ψ)}∪SF(ϕ)∪SF(ψ) for ∗= ∧,∨,→,↔
SF(∀xϕ) := {∀xϕ}∪SF(ϕ)
SF(∃xϕ) := {∃xϕ}∪SF(ϕ).

In these examples the set-theoretical notation allows a concise formulation. A means
of defining the preceding notions by calculi is indicated in the following exercise.

4.6 Exercise. (a) Let the calculus Cv consist of the following rules:

x x
;

y ti
y f t1 . . . tn

if f ∈ S is n-ary and i ∈ {1, . . . ,n}.

Show that, for all variables x and all S-terms t, xt is derivable in Cv iff x∈ var(t).
(b) Give a result for SF analogous to the result for var in (a).

4.7 Exercise. Alter the calculus of formulas by omitting the delimiting parentheses
in the formulas introduced in (F4) of Definition 3.2, e.g., by writing “ϕ ∧ψ” in-
stead of “(ϕ ∧ψ)”. So, for example, χ := ∃v0Pv0 ∧Qv1 is a {P,Q}-formula in this
new sense. Show that the analogue of Theorem 4.4 no longer holds, and that the
corresponding definition of SF yields both SF(χ) = {χ,Pv0 ∧Qv1, Pv0,Qv1} and
SF(χ) = {χ,∃v0Pv0,Pv0,Qv1}, so that SF is no longer a well-defined function.

4.8 Exercise (Parenthesis-Free, or So-Called Polish Notation for Formulas). Let S
be a symbol set and let A′ be the set of symbols given in Definition 2.1(a)–(d). Let
A′

S := A′ ∪ S. Define S-formulas in Polish notation (S-P-formulas) to be all strings
over A′

S which can be obtained by finitely many applications of the rules (F1), (F2),
(F3), and (F5) from Definition 3.2, and the rule (F4)’:

(F4)’ If ϕ and ψ are S-P-formulas, then ∧ϕψ , ∨ϕψ , →ϕψ , and ↔ϕψ are
also S-P-formulas.

Prove the analogues of Lemma 4.3(b) and Theorem 4.4(b) for S-P-formulas.

4.9 Exercise. Let n ≥ 1 and let t1, . . . , tn ∈ T S. Show that at each place in the word
t1 . . . tn exactly one term starts, i.e., if 1 ≤ i ≤ length of t1 . . . tn, there are uniquely
determined ξ ,η ∈ A∗

S and t ∈ T S such that length of ξ = i−1 and t1 . . . tn = ξ tη .

II.5 Free Variables and Sentences

Let x, y and z be distinct variables. Consider the atomic subformulas of the {R}-
formula

ϕ := ∃x(Ryz∧∀y(¬y ≡ x∨Ryz)).

The occurrences of the variables y and z marked with single underlining are not
quantified, i.e., not in the scope of a corresponding quantifier. Such occurrences are
called free, and, as we shall see later, the variables there act as parameters. The

24 II Syntax of First-Order Languages

occurrences of the variables x and y marked with double underlining shall be called
bound occurrences. (Thus the variable y has both free and bound occurrences in ϕ .)

We give a definition by induction on formulas of the set of free variables in a for-
mula ϕ; we denote this set by free(ϕ). Again, we fix a symbol set S.

5.1 Definition.
free(t1 ≡ t2) := var(t1)∪var(t2)
free(Pt1 . . . tn) := var(t1)∪·· ·∪var(tn)
free(¬ϕ) := free(ϕ)
free((ϕ ∗ψ)) := free(ϕ)∪ free(ψ) for ∗= ∧,∨,→,↔
free(∀xϕ) := free(ϕ)\{x}
free(∃xϕ) := free(ϕ)\{x}.

The reader should use this definition to determine the set of free variables in the
formula ϕ at the beginning of this section (S = {R}). We do this here for a simpler
example. Again, let x, y, and z be distinct variables.

free((Ryx →∀y¬y ≡ z)) = free(Ryx)∪ free(∀y¬y ≡ z)
= {x,y}∪ ({y,z}\{y})
= {x,y,z}.

Formulas without free variables (“parameter-free” formulas) are called sentences.
For example, ∃v0¬v0 ≡ v0 is a sentence.

Finally, we denote by LS
n the set of S-formulas in which the variables occurring free

are among v0, . . . ,vn−1:

LS
n := {ϕ | ϕ is an S-formula and free(ϕ)⊆ {v0, . . . ,vn−1}}.

In particular LS
0 is the set of S-sentences.

5.2 Exercise. Show that the following calculus Cn f permits to derive precisely those
strings of the form xϕ for which ϕ ∈ LS and x does not occur free in ϕ .

x t1 ≡ t2
if t1, t2 ∈ T S and x /∈ var(t1)∪var(t2);

x Rt1 . . . tn
if R ∈ S is n-ary, t1, . . . , tn ∈ T S and x /∈ var(t1)∪·· ·∪var(tn);

x ϕ
x ¬ϕ ;

x ϕ
x ψ
x (ϕ ∗ψ)

for ∗= ∧,∨,→,↔;

x ∀xϕ ;
x ∃xϕ ;

x ϕ
x ∀yϕ if x �= y;

x ϕ
x ∃yϕ if x �= y.

Chapter III
Semantics of First-Order Languages

Let R be a binary relation symbol. The {R}-formula

(1) ∀v0Rv0v0

is, at present, merely a string of symbols to which no meaning is attached. The
situation changes if we specify a domain for the variable v0 and if we interpret the
binary relation symbol R as a binary relation over this domain. There are, of course,
many possible choices for such a domain and relation.

For example, suppose we choose N for the domain, take “∀v0” to mean “for all
n ∈N” and interpret R as the divisibility relation RN on N. Then clearly (1) becomes
the (true) statement

for all n ∈ N, RNnn,

i.e., the statement

every natural number is divisible by itself.

We say that the formula ∀v0Rv0v0 holds in (N,RN).

But if we choose the set Z of integers as the domain and interpret R as the “smaller-
than” relation RZ on Z, then (1) becomes the (false) statement

for all a ∈ Z, RZaa,

i.e., the statement

for every integer a, a < a.

We say that the formula ∀v0Rv0v0 does not hold in (Z,RZ).

If we consider the formula

∃v0(Rv1v0 ∧Rv0v2)

in (Z,RZ), we must also interpret the free variables v1 and v2 as elements of Z. If
we interpret v1 as 5 and v2 as 8 we obtain the (true) statement

there is an integer a such that 5 < a and a < 8.

25© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

https://doi.org/10.1007/978-3-030-73839-6_3
H.-D. Ebbinghaus et al., Mathematical Logic, Graduate Texts in Mathematics 291,

http://crossmark.crossref.org/dialog/?10.1007/978-3-030-73839-6_3&domain=pdf

26 III Semantics of First-Order Languages

If we interpret v1 as 5 and v2 as 6, we get the (false) statement

there is an integer a such that 5 < a and a < 6.

The central aim of this chapter is to give a rigorous formulation of the notion of
interpretation and precisely define when an interpretation yields a true (or false)
statement. This allows us to define in an exact way the consequence relation, which
we mentioned in Chapter I.

The definitions of “term”, “formula”, “free occurrence”, etc., given in Chapter II,
involve only formal (i.e., grammatical) properties of symbol strings. We call these
concepts syntactic. On the other hand, the concepts introduced in this chapter de-
pend on the meaning of symbol strings also (for example, on the meaning in struc-
tures, as in the case above). Such concepts are called semantic concepts.

III.1 Structures and Interpretations

Let A be a set and n ≥ 1. An n-ary function on A is a map whose domain is the set An

of n-tuples of elements from A, and whose values lie in A. By an n-ary relation R
on A we mean a subset of An. Instead of writing (a1, . . . ,an) ∈ R, we shall often
write Ra1 . . .an, and we shall say that the relation R holds for a1, . . . ,an. According
to this definition, the divisibility relation on N is the set

{(n,m) | n,m ∈ N and there is k ∈ N with n · k = m},

and the relation “smaller-than” on Z is the set

{(a,b) | a,b ∈ Z and a < b}.

In the examples given earlier, the structures (N,RN) and (Z,RZ) were determined
by the domains N and Z and by the binary relations RN and RZ as interpretations of
the symbol R. We call (N,RN) and (Z,RZ) {R}-structures, thereby specifying the
set of interpreted symbols, in this case {R}.

Consider once more the symbol set Sgr = {◦,e} of group theory. If we take the real
numbers R as the domain and interpret ◦ as the addition + over R and e as the ele-
ment 0 of R, then we obtain the Sgr-structure (R,+,0). In general an S-structure A
is determined by specifying:

(a) a domain A,
(b) (1) an n-ary relation on A for every n-ary relation symbol in S,

(2) an n-ary function on A for every n-ary function symbol in S,
(3) an element of A for every constant in S.

We combine the separate parts of (b) by a map with domain S and define:

1.1 Definition. An S-structure is a pair A= (A,a) with the following properties:

(a) A is a nonempty set, the domain or universe of A.

III.1 Structures and Interpretations 27

(b) a is a map defined on S satisfying:
(1) for every n-ary relation symbol R in S, a(R) is an n-ary relation on A,
(2) for every n-ary function symbol f in S, a(f) is an n-ary function on A,
(3) for every constant c in S, a(c) is an element of A.

Instead of a(R), a(f), and a(c), we shall frequently write RA, fA, and cA, or sim-
ply RA, f A, and cA. For structures A,B, . . . we shall use A,B, . . . to denote their
domains. Instead of writing an S-structure in the form A = (A,a), we shall often
replace a by a list of its values. For example, we write an {R, f ,g}-structure as
A= (A,RA, fA,gA).

In investigations of arithmetic the symbol sets

Sar := {+, ·,0,1} and S<ar := {+, ·,0,1,<}
play a special role, where + and · are binary function symbols, 0 and 1 are con-
stants, and < is a binary relation symbol. Henceforth, we shall use N to denote
the Sar-structure (N,+N, ·N,0N,1N), where +N and ·N are the usual addition and
multiplication on N and 0N and 1N are the numbers zero and one, respectively.

N< := (N,+N, ·N,0N,1N,<N),

where <N denotes the usual ordering on N, is an example of an S<ar-structure. Simi-
larly we set

R := (R,+R, ·R,0R,1R) and R< := (R,+R, ·R,0R,1R,<R).

We shall often omit the superscripts N,R, . . . from +N,+R, . . . ,<N,<R. It will, how-
ever, be clear from the context whether, for example, + is intended to denote the
function symbol, the addition on N, or the addition on R.

The interpretation of variables is given by a so-called assignment.

1.2 Definition. An assignment in an S-structure A is a map β : {vn | n ∈ N} → A
from the set of variables into the domain A.

Now we can give a precise definition of the notion of interpretation:

1.3 Definition. An S-interpretation I is a pair (A,β) consisting of an S-structure A
and an assignment β in A.

When the particular symbol set S in question is either clear or unimportant, we
shall simply speak of structures and interpretations instead of S-structures and S-
interpretations.

If β is an assignment in A, a ∈ A, and x is a variable, then let β a
x be the assignment

in A which maps x to a and agrees with β on all variables distinct from x:

β a
x (y) :=

{
β (y) if y �= x
a if y = x.

For I= (A,β) let Ia
x := (A,β a

x).

28 III Semantics of First-Order Languages

In the introduction to this chapter we gave some examples showing how an S-
formula can be read in everyday language once an S-interpretation has been given.
It is useful to practice reading formulas under interpretations.

For example, if S = S<ar, and the interpretation I= (A,β) is given by

(∗) A= (N,+, ·,0,1,<) and β (vn) = 2n for n ≥ 0,

then the formula v2 ·(v1+v2)≡ v4 (actually: ·v2+v1v2 ≡ v4) reads “4 ·(2+4) = 8”,
and the formula ∀v0∃v1 v0 < v1 (actually: ∀v0∃v1<v0v1) reads “for every natural
number there is a larger natural number.”

1.4 Exercise. Let I be the interpretation defined above in (∗). How do the following
formulas read with this interpretation?
(a) ∃v0 v0 + v0 ≡ v1
(b) ∃v0 v0 · v0 ≡ v1
(c) ∃v1 v0 ≡ v1

(d) ∀v0∃v1 v0 ≡ v1
(e) ∀v0∀v1∃v2(v0 < v2 ∧ v2 < v1).

1.5 Exercise. Let A be a finite nonempty set and S a finite symbol set. Show that
there are only finitely many S-structures with A as the domain.

1.6 Exercise. For S-structures A= (A,a) and B= (B,b) let A×B, the direct prod-
uct of A and B, be the S-structure with domain

A×B := {(a,b) | a ∈ A,b ∈ B},

which is determined by the following conditions:
for n-ary R in S and (a1,b1), . . . ,(an,bn) ∈ A×B,

RA×B(a1,b1) . . .(an,bn) iff RAa1 . . .an and RBb1 . . .bn;

for n-ary f in S and (a1,b1), . . . ,(an,bn) ∈ A×B,

fA×B((a1,b1), . . . ,(an,bn)) := (fA(a1, . . . ,an), fB(b1, . . . ,bn));

and for c ∈ S,

cA×B := (cA,cB).

Show: (a) If the Sgr-structures A and B are groups, then A×B is also a group.
(b) If A and B are equivalence structures, then A×B is also an equivalence struc-

ture.
(c) If the Sar-structures A and B are fields, then A×B is not a field.

III.2 Standardization of Connectives

When we define the notion of satisfaction in the next section we shall refer to the
meaning of the connectives “not”, “and”, “or”, “if-then”, and “if and only if”. In
ordinary language their meanings vary. For example, “or” is sometimes used in an
inclusive sense and at other times in the exclusive sense “either-or”. However, for

III.2 Standardization of Connectives 29

our purposes it is useful to fix a standard meaning: We shall always use “or” in the
inclusive sense, that is, a compound proposition whose constituents are connected
by “or” is true (has the truth-value T) iff at least one of the constituents is true; it is
false (has the truth-value F) iff both constituents are false. For example, we specify
in Definition 3.2 below that a formula (ϕ ∨ψ) is assigned the truth-value T under
an interpretation I if and only if ϕ is assigned the truth-value T under I or ψ is
assigned the truth-value T under I. Because of our fixed standard meaning we have
that (ϕ ∨ψ) is assigned the truth-value T under I if and only if at least one of the
formulas ϕ , ψ is assigned T under I.

According to our convention, the truth-value of a proposition compounded by “or”
depends only on the truth-value of its constituents. Thus we can use a function

∨̇ : {T,F}×{T,F}→ {T,F}
to capture the meaning of “or”; the table of values (“truth-table”) is as follows:

∨̇
T T T
T F T
F T T
F F F

We proceed in a similar way with the connectives “and”, “if-then”, “if and only if”,
and “not”. The truth-tables for the functions

...∧, →̇, ↔̇, and ¬̇ are:
...∧ →̇ ↔̇

T T T T T
T F F F F
F T F T F
F F F T T

¬̇
T F
F T

These conventions correspond to mathematical practice.

Connectives for which the truth-value of compound propositions depends only on
the truth-values of the constituents are called extensional. Thus we use the con-
nectives “not”, “and”, “or”, “if-then”, and “if and only if” extensionally. In collo-
quial speech, however, these connectives are often not used extensionally. Consider,
for example, the statements “John fell ill and the doctor gave him a prescription,”
and “The doctor gave John a prescription and he fell ill.” By contrast with the ex-
tensional case, the truth-values of these compound statements also depend on the
temporal relation expressed by the order of the two components (we speak of an
intensional usage).

When we restrict ourselves to using the connectives extensionally, we sacrifice cer-
tain expressive possibilities of informal language. Experience shows, however, that
this restriction is unimportant as far as the formalization of mathematical assertions
is concerned. Furthermore, we will show in Section XI.4 that all other extensional
connectives can be defined from the connectives we have chosen.

30 III Semantics of First-Order Languages

2.1 Exercise. Show for arbitrary x,y ∈ {T,F}:

(a) →̇(x,y) = ∨̇(¬̇(x),y);
(b)

...∧ (x,y) = ¬̇(∨̇(¬̇(x), ¬̇(y)));
(c) ↔̇(x,y) =

...∧(→̇(x,y),→̇(y,x)).

III.3 The Satisfaction Relation

The satisfaction relation makes precise the notion of a formula being true under an
interpretation. Again we fix a symbol set S. By “term”, “formula”, or “interpreta-
tion” we always mean “S-term”, “S-formula”, or “S-interpretation”. As a prelim-
inary step we associate with every interpretation I = (A,β) and every term t an
element I(t) from the domain A. We define I(t) by induction on terms.

3.1 Definition. (a) For a variable x let I(x) := β (x).
(b) For a constant c ∈ S let I(c) := cA.
(c) For an n-ary function symbol f ∈ S and terms t1, . . . , tn let

I(f t1 . . . tn) := fA(I(t1), . . . ,I(tn)).

As an illustration, if S = Sgr and I = (A,β) with A = (R,+,0) and β (v0) = 2,
β (v2) = 6, then I(v0 ◦ (e◦ v2)) = I(v0)+I(e◦ v2) = 2+(0+6) = 8.

Now, using induction on formulas ϕ , we give a definition of the relation I is a model
of ϕ , where I is an arbitrary interpretation. If I is a model of ϕ , we also say that I
satisfies ϕ or that ϕ holds in I, and we write I |= ϕ .

3.2 Definition of the Satisfaction Relation. For all interpretations I= (A,β) we
define

I |= t1 ≡ t2 :iff 1 I(t1) = I(t2)
I |= Rt1 . . . tn :iff RAI(t1) . . .I(tn) (i.e., RA holds for I(t1), . . . ,I(tn))
I |= ¬ϕ :iff not I |= ϕ
I |= (ϕ ∧ψ) :iff I |= ϕ and I |= ψ
I |= (ϕ ∨ψ) :iff I |= ϕ or I |= ψ
I |= (ϕ → ψ) :iff if I |= ϕ , then I |= ψ
I |= (ϕ ↔ ψ) :iff I |= ϕ if and only if I |= ψ
I |= ∀xϕ :iff for all a ∈ A, Ia

x |= ϕ
I |= ∃xϕ :iff there is an a ∈ A such that Ia

x |= ϕ .

For the definition of Ia
x see Section 1.

Given a set Φ of S-formulas, we say that I is a model of Φ and write I |= Φ if
I |= ϕ for all ϕ ∈ Φ .

1 For “iff” see the footnote on p. 20; a colon in front of “iff” indicates that the left-hand side is
defined by the right-hand side.

III.4 The Consequence Relation 31

By going through the individual steps of Definition 3.2 readers should convince
themselves that I |= ϕ if and only if ϕ becomes a true statement under the inter-
pretation I. The steps in the definition involving quantifiers are illustrated by the fol-
lowing example. Again, let S = Sgr and I= (A,β) with A= (R,+,0) and β (x) = 9
for all x. Then we have

I |= ∀v0 v0 ◦ e ≡ v0 iff for all r ∈ R: I r
v0

|= v0 ◦ e ≡ v0

iff for all r ∈ R: r+0 = r.

3.3 Exercise. Let P be a unary relation symbol and f be a binary function symbol.
For each of the formulas

∀v1 f v0v1 ≡ v0, ∃v0∀v1 f v0v1 ≡ v1, ∃v0(Pv0 ∧∀v1P f v0v1)

find an interpretation which satisfies the formula and one which does not satisfy it.

3.4 Exercise. A formula which does not contain ¬,→, or ↔ is called positive.
Show that for every positive S-formula there is an S-interpretation which satisfies it.
Hint: One can, for example, use a domain consisting of one element.

III.4 The Consequence Relation

Using the notion of satisfaction we can state exactly when a formula is a conse-
quence of a set of formulas. Again, we assume a symbol set S is given.

4.1 Definition of the Consequence Relation. Let Φ be a set of formulas and ϕ a
formula. We say that

ϕ is a consequence of Φ (written: Φ |= ϕ) iff
every interpretation which is a model of Φ is also a model of ϕ .2

Instead of “{ψ} |= ϕ” we shall also write “ψ |= ϕ”.

We have already sketched some examples of the consequence relation in Chapter I.
Now we can formulate Theorem I.1.1 (existence of a left inverse in groups) as

Φgr |= ∀v0∃v1 v1 ◦ v0 ≡ e,

where

Φgr := {∀v0∀v1∀v2 (v0 ◦ v1)◦ v2 ≡ v0 ◦ (v1 ◦ v2),

∀v0 v0 ◦ e ≡ v0, ∀v0∃v1 v0 ◦ v1 ≡ e}.

2 We use the symbol |= for both the satisfaction relation (I |= ϕ) and for the consequence relation
(Φ |=ϕ). The symbol preceding “|=” (either for an interpretation, such as I, or for a set of formulas,
such as Φ) determines the meaning.

32 III Semantics of First-Order Languages

To show that a formula ϕ is not a consequence of a set of formulas Φ , it is sufficient
to give an interpretation which satisfies every formula in Φ but fails to satisfy ϕ .
For example, one shows

(1) not Φgr |= ∀v0∀v1 v0 ◦ v1 ≡ v1 ◦ v0

by giving as an interpretation a nonabelian group G with an arbitrary assignment of
variables to elements of G. Analogously, one can use an abelian group to show

(2) not Φgr |= ¬∀v0∀v1v0 ◦ v1 ≡ v1 ◦ v0.

With (1) and (2) we see that
not Φ |= ϕ

does not necessarily imply
Φ |= ¬ϕ .

In Chapter I it became clear, both by examples and in an informal way, that when ϕ
can be proved from a system of axioms Φ then ϕ is a consequence of Φ . There we
raised the question as to what extent the consequences of a system of axioms can be
obtained by mathematical proofs. The precise definitions of concepts given in this
and the next chapter lay the foundation for a rigorous discussion of this question. In
Chapter V we obtain the fundamental result that the consequence relation Φ |= ϕ
can always be established by means of a mathematical proof. We shall see that such
a proof consists of elementary steps which, moreover, can be described in a purely
formal way (that is, syntactically).

Using the notion of consequence we are now able to define the notions of validity,
satisfiability, and logical equivalence.

4.2 Definition. A formula ϕ is valid (written: |= ϕ) iff /0 |= ϕ .

Thus a formula is valid if and only if it holds under all interpretations. For example,
all formulas of the form (ϕ ∨¬ϕ) or ∃xx ≡ x are valid.

4.3 Definition. A formula ϕ is satisfiable (written: Sat ϕ) iff there is an interpreta-
tion which is a model of ϕ . A set of formulas Φ is satisfiable (written: Sat Φ) iff
there is an interpretation which is a model of all the formulas in Φ .

4.4 Lemma. For all Φ and all ϕ ,

Φ |= ϕ iff not Sat Φ ∪{¬ϕ}.

In particular, ϕ is valid iff ¬ϕ is not satisfiable.

Proof. Φ |= ϕ
iff every interpretation which is a model of Φ is also a model of ϕ
iff there is no interpretation which is a model of Φ but not a model of ϕ
iff there is no interpretation which is a model of Φ ∪{¬ϕ}
iff not Sat Φ ∪{¬ϕ}. �

III.4 The Consequence Relation 33

4.5 Definition. The formulas ϕ and ψ are said to be logically equivalent (written:
ϕ =||= ψ) iff ϕ |= ψ and ψ |= ϕ .

Thus the formulas ϕ and ψ are logically equivalent iff they are valid under the same
interpretations, that is, iff |= ϕ ↔ ψ .

It is immediately evident from the definition of the notion of satisfaction, together
with the truth-tables for connectives, that the following formulas are logically equiv-
alent:

(+)

ϕ ∧ψ and ¬(¬ϕ ∨¬ψ)
ϕ → ψ and ¬ϕ ∨ψ
ϕ ↔ ψ and ¬(ϕ ∨ψ)∨¬(¬ϕ ∨¬ψ)
∀xϕ and ¬∃x¬ϕ.

Therefore, we can dispense with the connectives ∧, →, and ↔, and the quantifier ∀.
More precisely, we define a map ∗ by induction on formulas, which associates with
every formula ϕ a formula ϕ∗ such that ϕ∗ is logically equivalent to ϕ and does not
contain ∧,→,↔, or ∀:

ϕ∗ := ϕ if ϕ is atomic
(¬ϕ)∗ := ¬ϕ∗

(ϕ ∨ψ)∗ := ϕ∗ ∨ψ∗

(ϕ ∧ψ)∗ := ¬(¬ϕ∗ ∨¬ψ∗)
(ϕ → ψ)∗ := ¬ϕ∗ ∨ψ∗

(ϕ ↔ ψ)∗ := ¬(ϕ∗ ∨ψ∗)∨¬(¬ϕ∗ ∨¬ψ∗)
(∃xϕ)∗ := ∃xϕ∗

(∀xϕ)∗ := ¬∃x¬ϕ∗.

Using (+) one can easily prove that ∗ has the desired properties.

In general, a formula ϕ is easier to read than the corresponding ϕ∗, as is clear
from (+). But because of the logical equivalence of ϕ and ϕ∗ we do not lose ex-
pressive power when we exclude the symbols ∧,→,↔, and ∀ from our first-order
languages. This simplifies our investigations of the languages; in particular, proofs
by induction on formulas will be shorter. Thus we make the following conventions:

(1) In the sequel we restrict ourselves to formulas in which only the connectives ¬
and ∨ and the quantifier ∃ occur; i.e., in the common alphabet A (cf. Defini-
tion II.2.1) of the first-order languages we omit the symbols ∧,→,↔, and ∀. In
Definition II.3.2 we restrict the cases (F4) and (F5) to the introduction of formulas
of the form (ϕ ∨ψ) and ∃xϕ , respectively. Finally, in the definition of the notion of
satisfaction we eliminate the cases corresponding to ∧,→,↔, and ∀.

(2) Nevertheless we shall sometimes retain the symbols ∧,→,↔,∀ when writing
formulas. Such “formulas ϕ in the old style” should now be understood as abbre-
viations for ϕ∗; for example, ∀x(Px∧Qx) should be understood as an abbreviation
for ¬∃x¬¬(¬Px ∨¬Qx).

34 III Semantics of First-Order Languages

We close this section with a lemma which gives an exact formulation of the – in-
tuitively clear – fact that the satisfaction relation between an S-formula ϕ and an
S-interpretation I depends only on the interpretation of the symbols of S occurring
in ϕ , and on the variables occurring free in ϕ .

4.6 Coincidence Lemma. Let I1 = (A1,β1) be an S1-interpretation and I2 =
(A2,β2) be an S2-interpretation, both with the same domain, i.e., A1 = A2. Put
S := S1 ∩S2.

(a) Let t be an S-term. If I1 and I2 agree3on the S-symbols occurring in t and on
the variables occurring in t, then I1(t) = I2(t).

(b) Let ϕ be an S-formula. If I1 and I2 agree on the S-symbols and on the variables
occurring free in ϕ , then (I1 |= ϕ iff I2 |= ϕ).

Proof. (a) We use induction on S-terms.

t = x: By hypothesis, β1(x) = β2(x) and therefore I1(x) = β1(x) = β2(x) = I2(x).

t = c: Similarly.

t = f t1 . . . tn (f ∈ S n-ary and t1, . . . , tn ∈ T S):

I1(f t1 . . . tn) = fA1(I1(t1), . . . ,I1(tn))

= fA1(I2(t1), . . . ,I2(tn)) (by induction hypothesis)
= fA2(I2(t1), . . . ,I2(tn)) (by hypothesis, fA1 = fA2)
= I2(f t1 . . . tn).

(b) We use induction on S-formulas and treat the cases ϕ = Rt1 . . . tn (R ∈ S n-ary,
t1, . . . , tn ∈ T S), ϕ = ¬ψ , and ϕ = ∃xψ .

I1 |= Rt1 . . . tn iff RA1I1(t1) . . .I1(tn)

iff RA1I2(t1) . . .I2(tn) (by (a))
iff RA2I2(t1) . . .I2(tn) (by hypothesis, RA1 = RA2)
iff I2 |= Rt1 . . . tn.

I1 |= ¬ψ iff not I1 |= ψ
iff not I2 |= ψ (by induction hypothesis)
iff I2 |= ¬ψ.

I1 |= ∃xψ iff there is an a ∈ A1 such that I1
a
x |= ψ

iff there is an a ∈ A2 (= A1) such that I2
a
x |= ψ

iff I2 |= ∃xψ.

To show the equivalence between the first and the second line, apply the induction
hypothesis to ψ , I1

a
x , and I2

a
x ; note that, because free(ψ) ⊆ free(ϕ)∪ {x}, the

3 I1 and I2 agree on k ∈ S or on x if kA1 = kA2 or β1(x) = β2(x), respectively.

III.4 The Consequence Relation 35

interpretations I1
a
x and I2

a
x agree on all symbols occurring in ψ and all variables

occurring free in ψ . �
In particular, the Coincidence Lemma says that, for an S-formula ϕ and an S-
interpretation I= (A,β), the validity of ϕ under I depends only on the assignments
for the finitely many variables occurring free in ϕ (and, of course, on the interpre-
tation of the symbols of S in A). If these variables are among v0, . . . ,vn−1, i.e., if
ϕ ∈ LS

n, it is, at most, the β -values ai = β (vi) for i = 0, . . . ,n−1 which are signifi-
cant. Thus, instead of (A,β) |= ϕ , we shall often use the more suggestive notation

A |= ϕ[a0, . . . ,an−1].

Similarly, for an S-term t such that var(t)⊆ {v0, . . . ,vn−1} we write tA[a0, . . . ,an−1]
instead of I(t).

If ϕ is a sentence, i.e., if ϕ ∈ LS
0, we can choose n = 0 and write

A |= ϕ ,

without even mentioning an assignment. In that case we say that A is a model of ϕ .
For a set of sentences Φ , A |= Φ means that A |= ϕ for every ϕ ∈ Φ .

4.7 Definition. Let S and S′ be symbol sets such that S ⊆ S′; let A = (A,a) be an
S-structure, and A′ = (A′,a′) be an S′-structure. We call A a reduct (more precisely:
the S-reduct) of A′ and write A = A′|S iff A = A′ and a and a′ agree on S. We say
that A′ is an expansion of A iff A is a reduct of A′.

The ordered field R< of real numbers as an S<ar-structure is an expansion of the
field R of real numbers as Sar-structure: R=R<|Sar .

If A=A′|S, then it follows from the Coincidence Lemma that for every S-formula ϕ
whose free variables are among v0, . . . ,vn−1, and for all a0, . . . ,an−1 ∈ A,

A |= ϕ[a0, . . . ,an−1] iff A′ |= ϕ[a0, . . . ,an−1].

To see that this holds we choose β : {vm | m ∈ N} → A so that β (vi) = ai for i < n,
and we apply the Coincidence Lemma for I1 = (A,β) and I2 = (A′,β); I1 and I2
agree on the symbols occurring in ϕ and on the variables occurring free in ϕ .

The definitions of interpretation, consequence, and satisfiability refer to a fixed sym-
bol set S. Using the Coincidence Lemma we can remove this reference to S. Let us
consider, for example, the notion of satisfiability. If Φ is a set of S-formulas and
S′ ⊇ S, then Φ is also a set of S′-formulas. As a set of S-formulas, Φ is satisfi-
able if there is an S-interpretation which satisfies it, and as a set of S′-formulas it is
satisfiable if there is an S′-interpretation which satisfies it. We have

4.8. Φ is satisfiable with respect to S iff Φ is satisfiable with respect to S′.

Proof. If I′ = (A′,β ′) is an S′-interpretation such that I′ |= Φ , then by the Coin-
cidence Lemma the S-interpretation (A′|S,β ′) is a model of Φ . On the other hand,
if I = (A,β) is an S-interpretation which satisfies Φ , we choose an S′-structure A′

36 III Semantics of First-Order Languages

such that A′|S = A. (The symbols in S′ \ S can be interpreted arbitrarily.) Again by
the Coincidence Lemma, the S′-interpretation (A′,β) is then a model of Φ . �
4.9 Exercise. For arbitrary formulas ϕ,ψ and χ show:
(a) (ϕ ∨ψ) |= χ iff ϕ |= χ and ψ |= χ .
(b) |= (ϕ → ψ) iff ϕ |= ψ .

4.10 Exercise. (a) Show: ∃x∀yϕ |= ∀y∃xϕ .
(b) Show that ∀y∃xRxy |= ∃x∀yRxy does not hold.

4.11 Exercise. Prove: (a) ∀x(ϕ ∧ψ) =||= (∀xϕ ∧∀xψ).
(b) ∃x(ϕ ∨ψ) =||= (∃xϕ ∨∃xψ).
(c) ∀x(ϕ ∨ψ) =||= (ϕ ∨∀xψ), if x /∈ free(ϕ).
(d) ∃x(ϕ ∧ψ) =||= (ϕ ∧∃xψ), if x /∈ free(ϕ).
(e) Show that one cannot do without the assumption “x /∈ free(ϕ)” in (c) and (d).

4.12 Exercise. Let ϕ and ψ be formulas such that ϕ =||= ψ . Let χ ′ be any formula
obtained from the formula χ by replacing no, some, or all subformulas of the form ϕ
by ψ . Show that χ =||= χ ′.

4.13 Exercise. Prove the analogue of 4.8 for the consequence relation.

4.14 Exercise. A set Φ of sentences is called independent if there is no ϕ ∈ Φ such
that Φ \{ϕ} |= ϕ . Show that the set Φgr of group axioms and the set of axioms for
equivalence relations (cf. p. 16) are independent.

4.15 Exercise (cf. Exercise 1.6). Let I be a nonempty set. For every i ∈ I, let Ai be
an S-structure. We write ∏i∈I Ai for the direct product of the structures Ai, that is,
the S-structure A with domain

∏i∈I Ai := {g | g : I →⋃
i∈I Ai, and for all i ∈ I: g(i) ∈ Ai},

which is determined by the following conditions (where for g ∈ ∏i∈I Ai we also
write 〈g(i) | i ∈ I〉):
For n-ary R ∈ S and g1, . . . ,gn ∈ ∏i∈I Ai,

RAg1 . . .gn :iff RAig1(i) . . .gn(i) for all i ∈ I;

for n-ary f ∈ S and g1, . . . ,gn ∈ ∏i∈I Ai,

fA(g1, . . . ,gn) := 〈 fAi(g1(i), . . . ,gn(i)) | i ∈ I〉;
and cA := 〈cAi | i ∈ I〉 for c ∈ S.

Show: If t is an S-term with var(t) ⊆ {v0, . . . ,vn−1} and if g0, . . . ,gn−1 ∈ ∏i∈I Ai,
then the following holds:

tA[g0, . . . ,gn−1] = 〈tAi [g0(i), . . . ,gn−1(i)] | i ∈ I〉.
4.16 Exercise. Formulas which are derivable in the following calculus are called
Horn formulas (after the logician A. Horn):

III.5 Two Lemmas on the Satisfaction Relation 37

(1)
(¬ϕ1 ∨ . . .∨¬ϕn ∨ϕ) if n ∈ N and ϕ1, . . . ,ϕn,ϕ are atomic;

(2) ¬ϕ0 ∨ . . .∨¬ϕn
if n ∈ N and ϕ0, . . . ,ϕn are atomic;

(3)
ϕ,ψ

(ϕ ∧ψ)
; (4)

ϕ
∀xϕ ; (5)

ϕ
∃xϕ .

Horn formulas without free variables are called Horn sentences.
Show: If ϕ is a Horn sentence and if Ai is a model of ϕ for i ∈ I, then ∏i∈I Ai |= ϕ .
Hint: State and prove the corresponding result for Horn formulas.

Historical Note. The precise version of semantics as given here is essentially due to
A. Tarski [38]. The notion of logical consequence was already present in work of
B. Bolzano [6].4

III.5 Two Lemmas on the Satisfaction Relation

Now we come to results about isomorphic structures and substructures.

5.1 Definition. Let A and B be S-structures.

(a) A map π : A → B is called an isomorphism of A onto B (written: π : A ∼=B)
iff (1) π is a bijection of A onto B.

(2) For n-ary R ∈ S and a1, . . . ,an ∈ A,

RAa1, . . . ,an iff RBπ(a1) . . .π(an).

(3) For n-ary f ∈ S and a1, . . . ,an ∈ A,

π(fA(a1, . . . ,an)) = fB(π(a1), . . . ,π(an)).

(4) For c ∈ S, π(cA) = cB.
(b) Structures A and B are said to be isomorphic (written: A ∼=B) iff there is an

isomorphism π : A∼=B.

For example, the Sgr-structure (N,+,0) is isomorphic to the Sgr-structure (G,+G,0)
consisting of the even natural numbers with ordinary addition +G. In fact, the map
π : N→ G with π(n) = 2n is an isomorphism of (N,+,0) onto (G,+G,0).

The following lemma shows that isomorphic structures cannot be distinguished by
means of first-order sentences.

5.2 Isomorphism Lemma. For isomorphic S-structures A and B and every S-
sentence ϕ ,

A |= ϕ iff B |= ϕ .

4 Alfred Tarski (1901–1983), Bernard Bolzano (1781–1848).

38 III Semantics of First-Order Languages

Proof. Let π : A ∼=B. For the intended proof by induction it is convenient to show
not only that the same S-sentences hold in A and B, but also that the same S-
formulas hold if one uses corresponding assignments: With every assignment β
in A we associate the assignment β π := π ◦β in B, and for the corresponding in-
terpretations I= (A,β) and Iπ := (B,β π) we shall show:

(i) For every S-term t: π(I(t)) = Iπ(t).
(ii) For every S-formula ϕ: I |= ϕ iff Iπ |= ϕ .

This will complete the proof.

(i) can easily be proved by induction on terms. (ii) is proved by induction on formu-
las ϕ simultaneously for all assignments β in A. We only treat the case of atomic
formulas and the steps involving ¬ and ∃.

I |= t1 ≡ t2 iff I(t1) = I(t2)

iff π(I(t1)) = π(I(t2)) (since π : A → B is injective)
iff Iπ(t1) = Iπ(t2) (by (i))
iff Iπ |= t1 ≡ t2.

I |= Rt1 . . . tn iff RAI(t1) . . .I(tn)

iff RBπ(I(t1)) . . .π(I(tn)) (because π : A∼=B)
iff RBIπ(t1) . . .Iπ(tn) (by (i))
iff Iπ |= Rt1 . . . tn.

I |= ¬ψ iff not I |= ψ
iff not Iπ |= ψ (by induction hypothesis)
iff Iπ |= ¬ψ.

I |= ∃xψ iff there is an a ∈ A such that Ia
x |= ψ

iff there is an a ∈ A such that
(
Ia

x
)π |= ψ (by induction hypothesis)

iff there is an a ∈ A such that Iπ π(a)
x |= ψ (as

(
Ia

x
)π

= Iπ π(a)
x)

iff there is b ∈ B such that Iπ b
x |= ψ (as π : A → B is surjective)

iff Iπ |= ∃xψ. �

From this proof we infer

5.3 Corollary. If π : A∼=B, then for ϕ ∈ LS
n and a0, . . . ,an−1 ∈ A,

A |= ϕ[a0, . . . ,an−1] iff B |= ϕ[π(a0), . . . ,π(an−1)]. �
Isomorphic structures cannot be distinguished in LS

0. Conversely, one could ask
whether S-structures in which the same S-sentences are satisfied are isomorphic.
In Chapter VI we shall see that this is not always the case. For example, there are

III.5 Two Lemmas on the Satisfaction Relation 39

structures not isomorphic to the Sar-structure N of natural numbers in which the
same first-order sentences hold.

In the rational numbers every number is divisible by 2. Therefore we have, with Q
the set of rational numbers,

(Q,+,0) |= ∀v0∃v1 v1 + v1 ≡ v0.

In the integers this is no longer true:

not (Z,+,0) |= ∀v0∃v1 v1 + v1 ≡ v0.

So sentences might no longer hold when passing to substructures. We finish this sec-
tion by introducing the notion of substructure, and we shall give a class of sentences
which are preserved by substructures.

5.4 Definition. Let A and B be S-structures. Then A is called a substructure of B
(written: A⊆B) iff
(a) A ⊆ B;
(b) (1) for n-ary R ∈ S, RA = RB∩An

(that is, for all a1, . . . ,an ∈ A, RAa1 . . .an iff RBa1 . . .an);
(2) for n-ary f ∈ S, fA is the restriction of fB to An;
(3) for c ∈ S, cA = cB.

For example, (Z,+,0) is a substructure of (Q,+,0), and (N,+,0) is a substructure
of (Z,+,0) (although (N,+,0) is not a subgroup of (Z,+,0)).

If A ⊆ B, then A is S-closed (in B), that is, A is not empty, for n-ary f ∈ S,
a1, . . . ,an ∈ A implies that fB(a1, . . . ,an) ∈ A, and cB ∈ A for c ∈ S.

Conversely, every subset X of B which is S-closed in B is the domain of exactly one
substructure of B: In fact, the conditions in 5.4(b) determine exactly one structure
with domain X . We denote this substructure by [X]B and call it the substructure
generated by X in B.

For example, the set {2n | n ∈ N} of the even, non-negative integers is Sgr-closed in
(Z,+,0), but the set {2n+1 | n ∈ N} is not Sgr-closed (3+3 is even!).

A formula which does not contain any quantifiers is called quantifier-free.

5.5 Lemma. Let A and B be S-structures with A⊆B and let β : {vn | n ∈N}→ A
be an assignment in A. Then the following holds for every S-term t:

(A,β)(t) = (B,β)(t);

and for every quantifier-free S-formula ϕ:

(A,β) |= ϕ iff (B,β) |= ϕ .

The easy proof is left to the reader. It follows, for example, from the proof of the
Isomorphism Lemma by leaving out the parts referring to the existential quantifier,
and by choosing the identity for the map π : A → B, i.e., the map with π(a) = a for
all a ∈ A.

40 III Semantics of First-Order Languages

If B is a group and A a substructure of B, the associative law

ϕ := ∀v0∀v1∀v2 (v0 ◦ v1)◦ v2 ≡ v0 ◦ (v1 ◦ v2)

holds also in A, since (a ◦B b) ◦B c = a ◦B (b ◦B c) holds even for all elements
a,b,c ∈ B (and ◦B on A agrees with ◦A). The sentence ϕ is universal in the sense
of the following definition.

5.6 Definition. The formulas which are derivable by means of the following calcu-
lus are called universal formulas:

(i) ϕ if ϕ is quantifier-free; (ii)
ϕ,ψ
(ϕ∗ψ)

for ∗= ∧,∨;

(iii)
ϕ

∀xϕ .

From the proof of Theorem VIII.4.4 one can see that every universal formula is
logically equivalent to a formula of the form ∀x1 . . .∀xnψ with quantifier-free ψ .

5.7 Substructure Lemma. Let A and B be S-structures with A⊆B and let ϕ ∈ LS
n

be universal. Then the following holds for all a0, . . . ,an−1 ∈ A:

If B |= ϕ[a0, . . . ,an−1], then A |= ϕ[a0, . . . ,an−1].

Proof. Let A ⊆B. We show by induction on universal formulas that for all assign-
ments β in A,

(∗) If (B,β) |= ϕ , then (A,β) |= ϕ .

Then the lemma follows immediately if, for given a0, . . . ,an−1 ∈ A, we choose an
assignment β in A with β (vi) = ai for i < n.

For quantifier-free ϕ , (∗) holds by Lemma 5.5. For ϕ = (ψ ∧χ) and for ϕ = (ψ ∨χ)
the claim follows immediately from the induction hypothesis. Now let ϕ = ∀xψ , and
let (∗) hold for ψ . If (B,β) |= ∀xψ , we get successively:

for all b ∈ B, (B,β b
x) |= ψ;

for all a ∈ A, (B,β a
x) |= ψ (since A ⊆ B);

for all a ∈ A, (A,β a
x) |= ψ (by induction hypothesis);

(A,β) |= ∀xψ (by definition of the satisfaction relation). �
5.8 Corollary. If A is a substructure of B, then the following holds for every uni-
versal sentence ϕ:

If B |= ϕ , then A |= ϕ . �
The substructure (N,+,0) of the group (Z,+,0) is itself not a group. Therefore
the corollary shows that there cannot be a system of axioms for group theory in
LSgr consisting only of universal sentences. If however, we add a unary function
symbol −1 to Sgr for the inverse map and put Sgrp := {◦,−1,e}, then the system of
axioms

III.6 Some Simple Formalizations 41

Φgrp := {∀v0∀v1∀v2 (v0 ◦ v1)◦ v2 ≡ v0 ◦ (v1 ◦ v2),

∀v0 v0 ◦ e ≡ v0, ∀v0 v0 ◦ v0
−1 ≡ e}

consists only of universal sentences. Hence, for groups as Sgrp-structures, substruc-
tures and subgroups coincide.

5.9 Exercise. Let S be a finite symbol set and let A be a finite S-structure. Show
that there is an S-sentence ϕA, the models of which are precisely the S-structures
isomorphic to A.

5.10 Exercise. Show: (a) The relation < (“less-than”) is elementarily definable in
(R,+, ·,0), i.e., there is a formula ϕ ∈ L{+,·,0}

2 such that for all a,b ∈ R,

(R,+, ·,0) |= ϕ[a,b] iff a < b.

(b) The relation < is not elementarily definable in (R,+,0). Hint: Work with
a suitable automorphism of (R,+,0), i.e., with a suitable isomorphism of
(R,+,0) onto itself.

5.11 Exercise. The formulas which are derivable by means of the following calcu-
lus are called existential formulas:

(i) ϕ if ϕ is quantifier-free; (ii)
ϕ,ψ
(ϕ∗ψ)

for ∗= ∧,∨; (iii)
ϕ

∃xϕ .

Show: (a) The negation of a universal sentence is logically equivalent to an existen-
tial sentence, and the negation of an existential sentence is logically equivalent
to a universal sentence.

(b) If A⊆B and ϕ is an existential sentence, then A |= ϕ implies B |= ϕ .

III.6 Some Simple Formalizations

As we already saw in Section 4, the axioms for group theory can be formulated, or as
we often say, formalized, in first-order language. Another example of formalization
is the cancellation law for group theory:

ϕ := ∀v0∀v1∀v2(v0 ◦ v2 ≡ v1 ◦ v2 → v0 ≡ v1).

To say that the cancellation law holds in a group G means that G |= ϕ , and to say
that it holds in all groups means that Φgr |= ϕ .

The statement “there is no element of order two” can be formalized as

ψ := ¬∃v0(¬v0 ≡ e∧ v0 ◦ v0 ≡ e).

The observation that there is no element of order two in (Z,+,0) thus means that
(Z,+,0) is a model of ψ .

42 III Semantics of First-Order Languages

For applications of our results it is helpful to have a certain proficiency in formal-
ization. The following examples should serve this purpose. As the exact choice of
variables is unimportant (for example, instead of using the formula ϕ above we
could have used

∀v17∀v8∀v1(v17 ◦ v1 ≡ v8 ◦ v1 → v17 ≡ v8)

to formalize the cancellation law) we shall denote the variables simply by x,y,z . . .,
where distinct letters stand for distinct variables.

6.1 Equivalence Relations. The three defining properties of an equivalence rela-
tion can be formalized with the aid of a single binary relation symbol R as follows:

∀xRxx,
∀x∀y(Rxy → Ryx),

∀x∀y∀z((Rxy∧Ryz)→ Rxz).

The theorem mentioned in Section I.2,

If x and y are both equivalent to a third element, then they are equivalent
to the same elements,

can be reformulated as

For all x,y, if there is an element u such that x is equivalent to u and y is
equivalent to u, then for all z, x is equivalent to z iff y is equivalent to z,

and then formalized as

∀x∀y(∃u(Rxu∧Ryu)→∀z(Rxz ↔ Ryz)).

6.2 Continuity. Let ρ be a unary function on R and let Δ be the binary distance
function on R, that is, Δ(r0,r1) = |r0 − r1| for r0,r1 ∈ R. Using the function sym-
bols f (for ρ) and d (for Δ) we can treat (R,+, ·,0,1,<,ρ,Δ) as an S<ar ∪{ f ,d}-
structure. The continuity of ρ on R can be stated as follows:

(∗) For all x and for all ε > 0 there is a δ > 0 such that for all y, if Δ(x,y) < δ ,
then Δ(ρ(x),ρ(y))< ε .

Concerning the “restricted” quantifiers “for all ε > 0” and “there is a δ > 0” that
appear in (∗) it is useful to observe that a statement of the form

for all x such that . . ., we have − − −

can be formalized as

∀x(. . .→ − − −),

and a statement of the type

there is an x with . . . such that − − −

can be formalized as

∃x(. . .∧− − −).

III.6 Some Simple Formalizations 43

Thus, using the variables u and v for ε and δ we can give the following formalization
of (∗):

∀x∀u(0 < u →∃v(0 < v∧∀y(dxy < v → d f x f y < u))).

6.3 Cardinality Statements. The sentence

ϕ≥2 := ∃v0∃v1¬v0 ≡ v1

is a formalization of “there are at least two elements.” More precisely, for all S and
all S-structures A,

A |= ϕ≥2 iff A contains at least two elements.

In a similar way, for n ≥ 3, the sentence

ϕ≥n := ∃v0 . . .∃vn−1(¬v0 ≡ v1 ∧ . . .∧¬v0 ≡ vn−1 ∧ . . .∧¬vn−2 ≡ vn−1)

states that there are at least n elements, and the sentences ¬ϕ≥n and ϕ≥n ∧¬ϕ≥n+1
say that there are fewer than n elements and exactly n elements, respectively. If we
now put

Φ∞ := {ϕ≥n | n ≥ 2},

then the models of Φ∞ are precisely the infinite structures, that is, for all S and all
S-structures A,

A |= Φ∞ iff A contains infinitely many elements.

For later use, we state some further systems of axioms for different theories.

6.4 The Theory of Orderings. A structure A = (A,<A) is called an ordering if it
is a model of the following sentences:

Φord

⎧⎪⎨⎪⎩
∀x¬x < x
∀x∀y∀z((x < y∧ y < z)→ x < z)
∀x∀y(x < y∨ x ≡ y∨ y < x).

(R,<R) and (N,<N) are examples of orderings. If C denotes the set of complex
numbers and <C is defined by

z1 <
C z2 :iff z1,z2 ∈ R and z1 <

R z2,

then (C,<C) is not an ordering because the third axiom in Φord is violated. If for a
structure A= (A,<A) we set

field <A :={a ∈ A | for some b ∈ A, a <A b or b <A a},5

then, for (C,<C), field <C= R and (field <C,<C) is an ordering. We say that
A = (A,<A) is a partially defined ordering (also: partial ordering 6) on A if
(field <A, <A) is an ordering. So the partial orderings are exactly the models of

5 Of course not to be confused with the notion of field as introduced in 6.5.
6 In the literature partial ordering sometimes has a different meaning.

44 III Semantics of First-Order Languages

Φpord

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∃x∃y x < y
∀x¬x < x
∀x∀y∀z((x < y∧ y < z)→ x < z)
∀x∀y((∃u(x < u∨u < x)∧∃v(y < v∨ v < y))

→ (x < y∨ x ≡ y∨ y < x)).

6.5 The Theory of Fields. We take Sar = {+, ·,0,1} to be the underlying symbol
set. An Sar-structure is a field if it satisfies the following sentences:

Φfd

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∀x∀y∀z(x+ y)+ z ≡ x+(y+ z)
∀x∀y∀z(x · y) · z ≡ x · (y · z)
∀x∃y x+ y ≡ 0
∀x∀y x+ y ≡ y+ x
¬ 0 ≡ 1
∀x∀y∀z x · (y+ z)≡ (x · y)+(x · z).

∀x x+0 ≡ x
∀x x ·1 ≡ x
∀x(¬x ≡ 0 →∃yx · y ≡ 1)
∀x∀y x · y ≡ y · x

Ordered fields are S<ar-structures which satisfy the following sentences:

Φofd

⎧⎪⎨⎪⎩
the sentences in Φfd and Φord

∀x∀y∀z(x < y → x+ z < y+ z)
∀x∀y∀z((x < y∧0 < z)→ x · z < y · z).

6.6 The Theory of Graphs. Let S = {R} with a binary relation symbol R. An
S-structure G= (G,RG) which is a model of

Φdgph:= {∀x¬Rxx} and
Φgph := {∀x¬Rxx,∀x∀y(Rxy ↔ Ryx)}

is called a directed graph and a graph, respectively. One can visualize a (directed)
graph G= (G,RG) by thinking of two different points a,b of G with RGab as being
connected by a line (an arrow) going from a to b. Such a pair of points (a,b) is
called a (directed) edge of G and the elements of G are called vertices of G.

6.7 Exercise. Formalize the following statements using the symbol set of 6.2:
(a) Every positive real number has a positive square root.
(b) If ρ is strictly monotone, then ρ is injective.
(c) ρ is uniformly continuous on R.
(d) For all x, if ρ is differentiable at x, then ρ is continuous at x.

6.8 Exercise. Let Seq = {R}. Formalize:
(a) R is an equivalence relation with at least two equivalence classes.
(b) R is an equivalence relation with an equivalence class containing more than

one element.

6.9 Exercise. Use Exercise 4.16 to show:
(a) If, for every i ∈ I, the structure Ai is a group, then ∏i∈I Ai is a group.
(b) Neither the theory of orderings nor the theory of fields can be axiomatized by

Horn sentences.

III.7 Some Remarks on Formalizability 45

6.10 Exercise. A set M of natural numbers is called a spectrum if there is a symbol
set S and an S-sentence ϕ such that

M = {n ∈ N | ϕ has a model containing exactly n elements}.

Show: (a) Every finite subset of {1,2,3, . . .} is a spectrum.
(b) For every m ≥ 1, the set of numbers > 0 which are divisible by m is a spectrum.
(c) The set of squares > 0 is a spectrum.
(d) The set of nonprime numbers > 0 is a spectrum.
(e) The set of prime numbers is a spectrum.

III.7 Some Remarks on Formalizability

In the preceding section we had a number of examples showing how mathematical
statements can be formalized by first-order formulas. However, the process of for-
malization is not always as simple as it was in those cases. In this section we discuss
some typical difficulties which can arise.

7.1 Partial Functions. When we defined the notion of structure we stipulated that
function symbols be interpreted by total functions, i.e., in the case of an n-ary func-
tion symbol, by a function which is defined on all n-tuples of elements of the do-
main. If, for example, in the field of real numbers, we regard division on R as a
function, then we do not have a structure in our sense (because a quotient is unde-
fined if its divisor is zero). The following are possible solutions to this difficulty:

(1) The division function can be extended to a total function. For example, one
can define r

0 := 0 for all r ∈ R and take this into consideration when formulating
statements about the division function.

(2) Instead of the division function, one can consider its graph, that is, the ternary
relation {(a,b,c) ∈ R | b �= 0 and a

b = c}7. In Section VIII.1 we shall describe how
statements about functions can be translated into statements about their graphs. The
remarks made there for total functions can easily be modified to cover the case of
partial functions.

(3) One can introduce first-order languages which also include partial functions.
However, this approach leads to a more complicated logical system without yielding
anything essentially new, as we see from (1) and (2).

7.2 Many-Sorted Structures. The structures we have hitherto considered have
only one domain and, in this sense, consist of elements of only one sort. On the
other hand, some important structures in mathematics contain elements of different
sorts. Planes in affine spaces consist of points and lines, and vector spaces consist of
vectors and scalars. Taking vector spaces as an example, we give two possibilities
for treating many-sorted structures.

7 Note that this notion of graph is different from the one in 6.6; there graphs are special structures.

46 III Semantics of First-Order Languages

(1) Many-Sorted Languages. We regard a vector space V as a “structure with two
domains” (a so-called two-sorted structure):

V= (F,V,+F , ·F ,0F ,1F ,◦V ,eV ,∗F,V),

where F is the set of scalars, (F,+F , ·F ,0F ,1F) is the field of scalars, V is the set of
vectors, (V,◦V ,eV) is the additive group of vectors, and ∗F,V is the multiplication of
scalars and vectors defined on F ×V .

In order to describe such two-sorted structures we introduce a two-sorted language,
that is, a language built up in the same way as the languages we have used so far, but
having two sorts of variables, namely u0,u1,u2, . . . (for elements of the first domain,
in the case above, scalars) and w0,w1,w2, . . . (for elements of the second domain, in
the case above, vectors). A quantified variable always ranges over the corresponding
domain. To illustrate this we formalize some of the axioms for vector spaces.

(α) Associativity of scalar addition:
∀u0∀u1∀u2 (u0 +u1)+u2 ≡ u0 +(u1 +u2).

(β) Associativity of vector addition:
∀w0∀w1∀w2 (w0 ◦w1)◦w2 ≡ w0 ◦ (w1 ◦w2).

(γ) Associativity of scalar multiplication of vectors:
∀u0∀u1∀w0(u0 ·u1)∗w0 ≡ u0 ∗ (u1 ∗w0).

(2) Sort Reduction. It is also possible to use our one-sorted first-order languages to
treat many-sorted structures, namely, by a so-called sort reduction. We demonstrate
this method briefly for the case of vector spaces. Let F and V be two new unary
relation symbols. We regard a vector space as a {F ,V ,+, ·, 0,1,◦,e,∗}-structure

V= (F ∪V,FV,VV,+V, ·V,0V,1V,◦V,eV,∗V)

with FV := F , VV := V , where the functions +V, ·V,◦V,∗V are arbitrary exten-
sions of +F , ·F ,◦V ,∗F,V to (F ∪V)× (F ∪V). The introduction of the “sort sym-
bols” F and V enables us to speak of scalars and vectors. We exemplify this by
reformulating the many-sorted vector axioms given above:

(α) ∀x∀y∀z((Fx∧Fy∧Fz)→ (x+ y)+ z ≡ x+(y+ z)).
(β) ∀x∀y∀z((V x∧V y∧V z)→ (x◦ y)◦ z ≡ x◦ (y◦ z)).
(γ) ∀x∀y∀z((Fx∧Fy∧V z)→ (x · y)∗ z ≡ x∗ (y∗ z)).

Since in (α), for example, all quantifiers are “relativized” to F , it makes no differ-
ence how the extension +V of +F is chosen.

7.3 Limits of Formalizability. The question of the limits of formalizability, which
is ultimately the question of the expressive power of first-order languages, will be
treated in detail in Chapter VI and in Section VII.2. Here we discuss two examples.

(1) Torsion Groups. A group G is called a torsion group if every element of G has
finite order, i.e., if for every a ∈ G there is an n ≥ 1 such that an = eG. An ad hoc
formalization of this property would be

III.7 Some Remarks on Formalizability 47

∀x(x ≡ e∨ x◦ x ≡ e∨ (x◦ x)◦ x ≡ e∨ . . .).

However, in first-order logic we may not form infinitely long disjunctions. Indeed,
we shall later show that there is no set of first-order formulas whose models are
precisely the torsion groups.

(2) Peano’s Axioms. We consider the question of whether there is a set of Sar-
sentences the models of which are the structures isomorphic to

N= (N,+, ·,0,1).
For simplicity we start our discussion with the structure Nσ = (N,σ ,0), where σ
is the successor function on N (σ(n) = n+ 1 for n ∈ N). Nσ is a {σσ ,0}-structure,
with σ (“successor”) a unary function symbol. The results can easily be extended
to N, cf. Exercise 7.5.

Nσ satisfies the so-called Peano axiom system:

(α) 0 is not a value of the successor function σ .
(β) σ is injective.
(γ) For every subset X of N: if 0 ∈ X and if σ(n) ∈ X whenever n ∈ X , then X =N

(the so-called induction axiom).

Axioms (α) and (β) may be easily formalized in L{σ ,0} by

(P1) ∀x¬σ x ≡ 0;
(P2) ∀x∀y(σ x ≡ σ y → x ≡ y).

The induction axiom (γ) is a statement about arbitrary subsets of N. For an “ad hoc”
formalization of this axiom we would need to quantify over variables for subsets of
the domain. In such a language, (γ) could be formalized as follows:

(P3) ∀X((X0∧∀x(Xx → Xσ x))→∀yXy).

(P3) is a so-called second-order formula (cf. Section IX.1). The following theorem
shows that (P1)–(P3) characterize the structure Nσ up to isomorphism, i.e., Nσ is,
up to isomorphism, the only model of (P1)–(P3).

7.4 Dedekind’s Theorem8. Every structure A = (A,σ A,0A) which satisfies (P1)–
(P3) is isomorphic to Nσ .

In Section VI.4 we shall show that no set of first-order {σ ,0}-sentences has (up to
isomorphism) just Nσ as a model. Thus the induction axiom cannot be formalized
in the first-order language L{σ ,0}.

The proof of Dedekind’s Theorem depends essentially on the fact that in structures A
which satisfy (P3), the following kind of proofs by induction in A can be given: In
order to show that every element of the domain A has a certain property P, one
verifies that 0A has the property P and that if an element a has the property P, then
σ A(a) does also.

8 Richard Dedekind (1831–1916).

48 III Semantics of First-Order Languages

Suppose A= (A,σσ A,0A) is a structure which satisfies (P1)–(P3). The isomorphism
π : Nσ ∼= A we need must have the following properties:

(i) π(0N) = 0A

(ii) π(σN(n)) = σ A(π(n)) for all n ∈ N,

that is

(i)′ π(0) = 0A

(ii)′ π(n+1) = σ A(π(n)) for all n ∈ N.

We define π by induction on n, taking (i)′ and (ii)′ to be the defining clauses. Then
the compatibility conditions for an isomorphism are trivially satisfied and we only
have to show that π is a bijective map from N onto A.

Surjectivity of π: By induction in A (A satisfies (P3)) we prove that every element
of A lies in the range of π . By (i)′, 0A is in the range of π . Further, if a is in the range
of π , say a = π(n), then σ A(a) = σ A(π(n)). Hence, by (ii)′, σ A(a) = π(n+1), and
it follows that σA(a) is also in the range of π .

Injectivity of π: By induction on n we prove

(∗) For all m ∈ N, if m �= n, then π(m) �= π(n).

n = 0: If m �= 0, say m = k + 1, then π(m) = π(k + 1) = σ A(π(k)), and since A
satisfies the axiom (P1), σ A(π(k)) �= 0A. Hence, by (i)′, π(m) �= π(0).

Induction step: Suppose that (∗) has been proved for n and suppose m �= n+ 1. If
m = 0, we argue as in the case n = 0 that π(m) = 0A �= π(n+ 1). If m �= 0, say
m = k+1, then k �= n and so, by induction hypothesis, π(k) �= π(n). By injectivity
of σ A (A satisfies (P2)!) it follows that σ A(π(k)) �= σ A(π(n)); hence from (ii)′ we
have π(k+1) �= π(n+1), i.e., π(m) �= π(n+1). �
7.5 Exercise. Let Π be the following set of second-order Sar-sentences:

∀x ¬x+1 ≡ 0
∀x∀y(x+1 ≡ y+1 → x ≡ y)
∀X((X0∧∀x(Xx → Xx+1))→∀yXy)
∀x x+0 ≡ x
∀x∀y x+(y+1)≡ (x+ y)+1
∀x x ·0 ≡ 0
∀x∀y x · (y+1)≡ (x · y)+ x.

Show: (a) If the structure A= (A,+A, ·A,0A,1A) is a model of Π and if σ A : A → A
is given by σ A(a) = a+A 1A, then (A,σ A,0A) satisfies the axioms (P1)–(P3).

(b) N= (N,+, ·,0,1) is characterized by Π up to isomorphism.

III.8 Substitution 49

III.8 Substitution

In this section we define how to substitute a term t for a variable x in a formula ϕ
at the places where x occurs free, thus obtaining a formula ψ . We wish to define the
substitution so that ψ expresses the same about t as ϕ does about x. We start with an
example to illustrate our objective and to show why a certain care is necessary. Let

ϕ := ∃zz+ z ≡ x.

In N the formula ϕ says that x is even; more precisely:

(N,β) |= ϕ iff β (x) is even.

If we replace the variable x by y in ϕ , we obtain the formula ∃zz+ z ≡ y, which
states that y is even. But if we replace the variable x by z, we obtain the formula
∃zz+ z ≡ z, which no longer says that z is even; in fact, this formula is valid in N
regardless of the assignment for z (because 0+ 0 = 0). In this case the meaning is
altered because at the place where x occurred free, the variable z gets bound. On the
other hand, we obtain a formula which expresses the same about z as ϕ does about x
if we proceed as follows: First, we introduce a new bound variable u in ϕ , and then
in the formula ∃uu+u ≡ x thus obtained we replace x by z. It is immaterial which
variable u (distinct from x and z) we choose. However, for certain technical purposes
it is useful to make a fixed choice.

In the preceding example we replaced only one variable, but in our exact defini-
tion we specify the procedure for simultaneously replacing several variables: With a
given formula ϕ , pairwise distinct variables x0, . . . ,xr and arbitrary terms t0, . . . , tr,
we associate a formula ϕ t0 . . . tr

x0 . . .xr
, which is said to be obtained from ϕ by simulta-

neously substituting t0, . . . , tr for x0, . . . ,xr. The reader should note that xi has to be
replaced by ti only if

xi ∈ free(ϕ) and xi �= ti.

In the following inductive definition this is explicitly taken into account in the quan-
tifier step; in the other steps it follows immediately.

It will become apparent that it is convenient to first introduce a simultaneous substi-
tution for terms. Let S be a fixed symbol set.

8.1 Definition.

(a) x t0 . . . tr
x0 . . .xr

:=

{
x if x �= x0, . . . ,x �= xr

ti if x = xi

(b) c t0 . . . tr
x0 . . .xr

:= c

(c) [f t ′1 . . . t
′
n]

t0 . . . tr
x0 . . .xr

:= f t ′1
t0 . . . tr
x0 . . .xr

. . . t ′n
t0 . . . tr
x0 . . .xr

.

For easier reading we use square brackets here and in what follows.

50 III Semantics of First-Order Languages

8.2 Definition.

(a) [t ′1 ≡ t ′2]
t0 . . . tr
x0 . . .xr

:= t ′1
t0 . . . tr
x0 . . .xr

≡ t ′2
t0 . . . tr
x0 . . .xr

(b) [Rt ′1 . . . t
′
n]

t0 . . . tr
x0 . . .xr

:= Rt ′1
t0 . . . tr
x0 . . .xr

. . . t ′n
t0 . . . tr
x0 . . .xr

(c) [¬ϕ] t0 . . . tr
x0 . . .xr

:= ¬[ϕ t0 . . . tr
x0 . . .xr

]

(d) (ϕ ∨ψ) t0 . . . tr
x0 . . .xr

:=
(

ϕ t0 . . . tr
x0 . . .xr

∨ψ t0 . . . tr
x0 . . .xr

)
(e) Suppose xi1 , . . . ,xis (i1 < .. . < is) are exactly the variables xi among the

x0, . . . ,xr, such that

xi ∈ free(∃xϕ) and xi �= ti.

In particular, x �= xi1 , . . . ,x �= xis . Then set

[∃xϕ] t0 . . . tr
x0 . . .xr

:= ∃u
[
ϕ ti1 . . . tis u

xi1 . . .xis x
]
,

where u is the variable x if x does not occur in ti1 , . . . , tis ; otherwise u is the first
variable in the list v0,v1,v2, . . . which does not occur in ϕ, ti1 , . . . , tis .

By introducing the variable u we ensure that no variable occurring in ti1 , . . . , tis falls
within the scope of a quantifier. In case there is no xi such that xi ∈ free(∃xϕ) and
xi �= ti, we have s = 0, and from (e) we obtain

[∃xϕ] t0 . . . tr
x0 . . .xr

= ∃x
[
ϕ x

x
]

which is ∃xϕ , as we shall see in Lemma 8.4(b).

Examples. For binary P and f we have

(1) [Pv0 f v1v2]
v2v0v1
v1v2v3

= Pv0 f v2v0.

(2) [∃v0Pv0 f v1v2]
v4 f v1v1
v0 v2

= ∃v0

[
Pv0 f v1v2

f v1v1 v0
v2 v0

]
= ∃v0Pv0 f v1 f v1v1.

(3) [∃v0Pv0 f v1v2]
v0v2v4
v1v2v0

= ∃v3

[
Pv0 f v1v2

v0v3
v1v0

]
= ∃v3Pv3 f v0v2.

At the places where xi occurred free in ϕ , we now find in ϕ t0 . . . tr
x0 . . .xr

the term ti.

Hence, if free(ϕ) ⊆ {x0, . . . ,xr}, then we expect that ϕ t0 . . . tr
x0 . . .xr

will hold for an
interpretation I= (A,β) iff ϕ holds in A, provided we use the assignments I(t0) for
x0, . . . , I(tr) for xr. An exact formulation of this property is given in the following
“Substitution Lemma” 8.3. Later we shall frequently refer to this lemma, whereas
we shall rarely return to the technical details of Definition 8.2.9

Before stating the lemma we generalize the definition of Ia
x : Let x0, . . . ,xr be pair-

wise distinct and suppose I= (A,β) is an interpretation, and a0, . . . ,ar ∈ A; then let
β a0 . . .ar

x0 . . .xr
be the assignment in A with

9 Like the Substitution Lemma, the subsequent results of this section are intuitively clear. The
proofs are straightforward but lengthy, and may be skipped by a reader already familiar with proofs
by induction on terms and formulas.

III.8 Substitution 51

β a0 . . .ar
x0 . . .xr

(y) :=

{
β (y) if y �= x0, . . . ,y �= xr

ai if y = xi

and

Ia0 . . .ar
x0 . . .xr

:=
(
A,β a0 . . .ar

x0 . . .xr

)
.

8.3 Substitution Lemma. (a) For every term t,

I
(

t t0 . . . tr
x0 . . .xr

)
= I

I(t0) . . .I(tr)
x0 . . .xr

(t).

(b) For every formula ϕ ,

I |= ϕ t0 . . . tr
x0 . . .xr

iff I
I(t0) . . .I(tr)

x0 . . .xr
|= ϕ .

Proof. We proceed by induction on terms and formulas in accordance with the defi-
nitions 8.1 and 8.2. We treat some typical cases.

t = x: If x �= x0, . . . ,x �= xr, then, by Definition 8.1(a), x t0 . . . tr
x0 . . .xr

= x and therefore,

I
(

x t0 . . . tr
x0 . . .xr

)
= I(x) = I

I(t0) . . .I(tr)
x0 . . .xr

(x).

If x = xi, then x t0 . . . tr
x0 . . .xr

= ti and hence,

I
(

x t0 . . . tr
x0 . . .xr

)
= I(ti) = I

I(t0) . . .I(tr)
x0 . . .xr

(xi) = I
I(t0) . . .I(tr)

x0 . . .xr
(x).

ϕ = Rt ′1 . . . t
′
n : I |= [Rt ′1 . . . t

′
n]

t0 . . . tr
x0 . . .xr

iff I(R) holds for I
(

t ′1
t0 . . . tr
x0 . . .xr

)
, . . . (by Definition 8.2(b))

iff I(R) holds for II(t0) . . .I(tr)x0 . . .xr
(t ′1), . . . (by (a))

iff I
I(t0) . . .I(tr)

x0 . . .xr
(R) holds for II(t0) . . .I(tr)x0 . . .xr

(t ′1), . . .

iff I
I(t0) . . .I(tr)

x0 . . .xr
|= Rt ′1 . . . t

′
n.

ϕ = ∃xψ: As in part (e) of Definition 8.2, let xi1 , . . . ,xis be exactly those variables xi
for which xi ∈ free(∃xψ) and xi �= ti. Then, for u chosen as in that part,

I |= [∃xψ] t0 . . . tr
x0 . . .xr

iff I |= ∃u
[
ψ ti1 . . . tis u

xi1 . . .xis x
]

iff there is an a ∈ A such that Ia
u |= ψ ti1 . . . tis u

xi1 . . .xis x

52 III Semantics of First-Order Languages

iff there is an a ∈ A such that
[
Ia

u
] Ia

u (ti1) . . .I
a
u (tis) I

a
u (u)

xi1 . . .xis x |= ψ
(by induction hypothesis)

iff there is an a ∈ A such that
[
Ia

u
] I(ti1) . . .I(tis) a

xi1 . . .xis x |= ψ
(by the Coincidence Lemma, since u does not occur in ti1 , . . . , tis)

iff there is an a ∈ A such that II(ti1) . . .I(tis) a
xi1 . . .xis x |= ψ

(since u = x or u does not occur in ψ (Coincidence Lemma!))

iff there is an a ∈ A such that
[
II(ti1) . . .I(tis)xi1 . . .xis

]
a
x |= ψ

(note that x �= xi1 , . . . ,x �= xis)

iff II(ti1) . . .I(tis)xi1 . . .xis
|= ∃xψ

iff II(t0) . . .I(tr)x0 . . .xr
|= ∃xψ

(since for i �= i1, . . . , i �= is, xi /∈ free(∃xψ) or xi = ti) �

In the following lemmas we collect several “syntactic” properties of substitution.

8.4 Lemma. (a) For every permutation π of the numbers 0, . . . ,r,

ϕ t0 . . . tr
x0 . . .xr

= ϕ
tπ(0) . . . tπ(r)
xπ(0) . . .xπ(r)

.

(b) If 0 ≤ i ≤ r and xi = ti, then ϕ t0 . . . tr
x0 . . .xr

= ϕ t0 . . . ti−1 ti+1 . . . tr
x0 . . .xi−1 xi+1 . . .xr

.

In particular, ϕ x
x = ϕ .

(c) For every variable y,

(i) if y ∈ var
(

t t0 . . . tr
x0 . . .xr

)
, then y ∈ var(t0)∪ . . .∪var(tr) or

(y ∈ var(t) and y �= x0, . . . ,y �= xr);

(ii) if y ∈ free
(

ϕ t0 . . . tr
x0 . . .xr

)
, then y ∈ var(t0)∪ . . .∪var(tr) or

(y ∈ free(ϕ) and y �= x0, . . . ,y �= xr).

Proof. By induction, using the definitions 8.1 and 8.2. We give two cases of (c).

t = x: In case x �= x0, . . . ,x �= xr we have x t0 . . . tr
x0 . . .xr

= x. Suppose y ∈ var
(

x t0 . . . tr
x0 . . .xr

)
,

then y = x and so (y ∈ var(x) and y �= x0, . . . , y �= xr). In case x = xi we have
xi

t0 . . . tr
x0 . . .xr

= ti. Suppose y ∈ var
(

xi
t0 . . . tr
x0 . . .xr

)
, then y ∈ var(ti), therefore y ∈ var(t0)∪

. . .∪var(tr).

ϕ = ∃xψ: Let s, i1, . . . , is and u be as in Definition 8.2(e) and let

y ∈ free
(
[∃xψ] t0 . . . tr

x0 . . .xr

)
= free

(
∃u
[
ψ ti1 . . . tis u

xi1 . . .xis x
])

.

III.8 Substitution 53

Then y �= u and

y ∈ free
(

ψ ti1 . . . tis u
xi1 . . .xis x

)
;

thus, by induction hypothesis, y �= u and (y ∈ var(ti1)∪ . . .∪ var(tis)∪ {u} or y ∈
free(ψ), y �= xi1 , . . . ,y �= xis ,y �= x). Since for i �= i1, . . . , i �= is we have xi /∈ free(ψ) or
xi = ti, it follows that y ∈ var(t0)∪ . . .∪var(tr) or y ∈ free(∃xψ),y �= x0, . . . ,y �= xr.�
8.5 Corollary. Suppose free(ϕ) ⊆ {x0, . . . ,xr}, where we continue to assume that
x0, . . . ,xr are distinct. Then, for terms t0, . . . , tr such that var(ti)⊆{v0, . . . ,vn−1}, the
formula ϕ t0 . . . tr

x0 . . .xr
is in LS

n. In particular, ϕ c0 . . .cr
x0 . . .xr

is a sentence. �
We call the number of connectives and quantifiers occurring in a formula ϕ the rank
of ϕ , written rk(ϕ). More precisely:

8.6 Definition.
rk(ϕ) := 0 if ϕ is atomic

rk(¬ϕ) := rk(ϕ)+1
rk(ϕ ∨ψ) := rk(ϕ)+ rk(ψ)+1

rk(∃xϕ) := rk(ϕ)+1.

From the definition of substitution one immediately obtains:

8.7 Lemma. rk
(

ϕ t0 . . . tr
x0 . . .xr

)
= rk(ϕ). �

The quantifier “there exists exactly one” can be conveniently formulated with the
use of substitution. Let ϕ be a formula, x a variable, and y the first variable which
is different from x and does not occur free in ϕ . Then we write ∃=1xϕ (“there is
exactly one x such that ϕ”) for ∃x(ϕ ∧∀y(ϕ y

x → x ≡ y)). It can easily be shown that
for every interpretation I= (A,β),

I |= ∃=1xϕ iff there is exactly one a ∈ A such that Ia
x |= ϕ .

8.8 Exercise. For n ≥ 1 give a similar definition of the quantifiers “there exist at
most n” and “there exist exactly n.”

8.9 Exercise. Let P and f be binary and set x = v0, y = v1, u = v2, v = v3, and
w = v4. Show, using Definition 8.2, that
(a) ∃x∃y(Pxu∧Pyv)u u u

x y v = ∃x∃y(Pxu∧Pyu),

(b) ∃x∃y(Pxu∧Pyv) v f uv
u v = ∃x∃y(Pxv∧Py f uv),

(c) ∃x∃y(Pxu∧Pyv)u x f uv
x u v = ∃w∃y(Pwx∧Py f uv),

(d) [∀x∃y(Pxy∧Pxu)∨∃u f uu ≡ x]x f xy
x u = ∀v∃w(Pvw∧Pv f xy)∨∃u f uu ≡ x.

8.10 Exercise. Show that if x0, . . . ,xr /∈ var(t0)∪ . . .∪var(tr), then

ϕ t0 . . . tr
x0 . . .xr

=||= ∀x0 . . .∀xr(x0 ≡ t0 ∧ . . .∧ xr ≡ tr → ϕ).

54 III Semantics of First-Order Languages

8.11 Exercise. Give a calculus for which the derivable strings are exactly those of
the form t x0 . . .xr t0 . . . tr t t0 . . . tr

x0 . . .xr
or ϕ x0 . . .xr t0 . . . tr ϕ t0 . . . tr

x0 . . .xr
.

Hint: For (a) and (c) in Definition 8.1 one can choose the following rules:

x x0 . . .xr t0 . . . tr x
if x �= x0, . . . ,x �= xr;

x x0 . . .xr t0 . . . tr ti
if x = xi;

t ′1 x0 . . .xr t0 . . . tr s′1
...

...
...

...
t ′n x0 . . .xr t0 . . . tr s′n

f t ′1 . . . t
′
n x0 . . .xr t0 . . . tr f s′1 . . .s

′
n

if f ∈ S and f is n-ary.

Chapter IV
A Sequent Calculus

In Chapter I we discussed the way mathematicians proceed to develop a particular
mathematical theory: In order to obtain an overview of the theory, they try to find out
which propositions follow from its axioms. To show that a proposition follows from
the axioms, they supply a proof. Now that we have an exact definition of the notion
of consequence, we are sufficiently equipped to give a more thorough discussion
of the goals and methods in mathematics. If S is a symbol set and Φ is a set of
S-sentences, we let Φ |= be the set of S-sentences which are consequences of Φ . A
mathematical proof of an S-sentence ϕ from the axioms in Φ shows that ϕ belongs
to Φ |=. For example, consider the set Φgr of axioms for groups, where S = Sgr. The
proof of Theorem I.1.1 then shows us that the Sgr-sentence ∀x∃yy ◦ x ≡ e belongs
to Φ |=

gr . However, in view of the goals of mathematicians and the scope of their
methods, a central question is whether every sentence in Φ |= can be proved from the
axioms in Φ . In order to answer it we must analyze the notion of proof. But even
if we limit ourselves to statements which can be formulated in first-order logic, we
encounter difficulties at the very outset of such an attempt. The difficulties arise from
the fact that mathematicians do not have an exact notion of proof. They do not learn
what a proof is from a list of permissible inferences; rather they get acquainted with
this notion by doing concrete proofs in the course of their mathematical education.
Furthermore, the collection of commonly accepted methods of proof is continually
being expanded by the addition of new variants. Last, but not least, the development
of new theories often includes the invention of new proof techniques.

In view of this situation we shall not attempt to give an exact description of the whole
spectrum of mathematical arguments. Rather we shall look at some concrete proofs
and try to abstract from them certain basic constituents. From these constituents
we shall build up a precise notion of proof. It will turn out that they are sufficient
to reconstruct all types of mathematical arguments. Thus, we proceed as we did
when we introduced the precise notion of mathematical statement, where instead of
trying to give an exact description we used the first-order languages to give a clearly
defined framework. In the case of first-order languages we shall merely be able to
make it plausible that, in spite of their limited expressive power, these languages

55© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

https://doi.org/10.1007/978-3-030-73839-6_4
H.-D. Ebbinghaus et al., Mathematical Logic, Graduate Texts in Mathematics 291,

http://crossmark.crossref.org/dialog/?10.1007/978-3-030-73839-6_4&domain=pdf

56 IV A Sequent Calculus

are in principle sufficient for the purpose of mathematics (cf. Section VII.2). By
contrast, we can really prove that every sentence in Φ |= is provable from sentences
in Φ in the precise sense.

How can we single out basic constituents of mathematical deductions? If we ana-
lyze the proofs in Chapter I, for example, we see that those steps which are directly
related to the meaning of connectives, the quantifiers, and the equality symbol seem
very elementary. We mention three examples. In a proof one can proceed from state-
ments ϕ and ψ , which have already been obtained, to the conjunction (ϕ ∧ ψ);
similarly one can proceed from Pt to ∃xPx, and from Px and x ≡ t to Pt. We can
represent these rules by the following schemes:

(∗)
ϕ,ψ

(ϕ ∧ψ)
,

Pt
∃xPx

,
Px, x ≡ t

Pt
.

Written in this way, these constituents of proofs can be regarded as syntactic opera-
tions on strings of symbols. Adhering consistently to this point of view, we shall set
up a list of deduction rules (in Sections 2 and 4), in this way obtaining a calculus S.
We shall motivate its form in Section 1. In Section 6 (with a preview in Section 1)
we shall give the fundamental definition for the notion of a formula ϕ being for-
mally provable from a set Φ of formulas. This definition will be based on the notion
of derivability in S. Formal provability is the syntactic counterpart of the semantic
notion of consequence.

Throughout this chapter we fix a symbol set S.

IV.1 Sequent Rules

A mathematical proof proceeds from one statement to the next until it finally arrives
at the assertion of the theorem in question. The individual statements depend on
certain hypotheses. These can either be hypotheses of the theorem or additional hy-
potheses temporarily assumed in the course of the proof. For example, if one wants
to prove an intermediate claim ϕ by contradiction, one adds ¬ϕ to the hypotheses;
if a contradiction results, then ϕ has been proved, and the additional assumption ¬ϕ
is dropped.

This observation leads us to describe a stage in a proof by listing the correspond-
ing assumptions and the respective claim. If we call a nonempty list (sequence)
of formulas a sequent, then we can use sequents to describe “stages in a proof”.
For instance, the “stage” with assumptions ϕ1, . . . ,ϕn and claim ϕ is rendered by
the sequent ϕ1 . . .ϕn ϕ . The sequence ϕ1 . . .ϕn is called the antecedent and ϕ the
succedent of the sequent ϕ1 . . .ϕn ϕ . From Lemma II.4.3 it follows that the formu-
las which constitute a sequent are uniquely determined. In particular, the antecedent
and the succedent are well-defined.

IV.1 Sequent Rules 57

In terms of sequents, the indirect proof sketched above can be represented schemat-
ically as follows:

(+)

ϕ1 . . .ϕn ¬ϕ ψ
ϕ1 . . .ϕn ¬ϕ ¬ψ
ϕ1 . . .ϕn ϕ

Thus (+) describes the following argument: If under the assumptions ϕ1, . . . ,ϕn and
(the additional assumption) ¬ϕ one can obtain both the formula ψ and its nega-
tion ¬ψ (that is, a contradiction), then from the assumptions ϕ1, . . . ,ϕn one can
infer ϕ .

In the following we shall use the letters Γ ,Δ , . . . to denote (possibly empty)
sequences of formulas. Then we can write sequents as Γ ϕψ , Δψ ,. . . and the
scheme (+) in the form

(++)

Γ ¬ϕ ψ
Γ ¬ϕ ¬ψ
Γ ϕ

As in (+), we use spaces between elements in a sequent merely for easier reading.

According to the framework we have developed so far, each step in a proof leads
from certain “stages” already attained to a new one and hence, from sequents to a
new sequent. Thus it seems natural to represent deduction rules such as (++) as rules
of a calculus S, which operates on sequents (sequent calculus). Our conception of S
is based upon [18]. For comparison the reader can find calculi of a different nature
in [36].

Before listing the rules of S in the next section, we introduce some further concepts.

If, in the calculus S, there is a derivation of the sequent Γ ϕ , then we write � Γ ϕ
and say that Γ ϕ is derivable.

1.1 Definition. A formula ϕ is formally provable or derivable from a set Φ of for-
mulas (written: Φ � ϕ) if and only if there are finitely many formulas ϕ1, . . . ,ϕn
in Φ such that � ϕ1 . . .ϕn ϕ .

A sequent Γ ϕ is called correct if Γ |= ϕ , more precisely, if {ψ | ψ is a member of
Γ } |= ϕ . Since the rules of S are modeled after usual mathematical inferences, it
will turn out that they are correct, i.e., when a rule is applied to correct sequents it
yields a correct sequent. As a result, every formula which is derivable from Φ also
follows from Φ . We convince ourselves of the correctness of each rule as soon as
we introduce it.

58 IV A Sequent Calculus

IV.2 Structural Rules and Connective Rules

We divide the rules of the sequent calculus S into the following categories: struc-
tural rules (2.1, 2.2), connective rules (2.3, 2.4, 2.5, 2.6), quantifier rules (4.1, 4.2),
and equality rules (4.3, 4.4). We start with the two structural rules.

2.1 Antecedent Rule (Ant).

Γ ϕ
Γ ′ ϕ if every member of Γ is also a member of Γ ′ (briefly: if Γ ⊆ Γ ′).

Note that a formula which occurs more than once in Γ need only occur once in Γ ′.

2.2 Assumption Rule (Assm).

Γ ϕ if ϕ is a member of Γ .

Correctness. (Ant): If a sequent Γ ϕ is correct and Γ ⊆ Γ ′, then since Γ |= ϕ , also
Γ ′ |= ϕ .
(Assm) is correct since Φ |= ϕ always holds for ϕ ∈ Φ . �
(Assm) reflects the trivial fact that one can conclude ϕ from a set of assumptions
which includes ϕ . (Ant) expresses the fact that one can re-order or add to assump-
tions.

Now we state the connective rules. (Remember that we restricted ourselves to the
connectives ¬ and ∨; cf. (1) on page 33.) The first rule is concerned with nega-
tion and incorporates the commonly used method of proof by cases. In order to
conclude ϕ from Γ one first considers the case where a condition ψ holds and then
treats the case where ¬ψ holds. That is, one first has ψ and then ¬ψ as an additional
assumption. We can translate this argument into a rule for sequents as follows:

2.3 Proof by Cases Rule (PC).

Γ ψ ϕ
Γ ¬ψ ϕ
Γ ϕ

Correctness. Suppose Γ ψ |= ϕ and Γ¬ψ |= ϕ hold. We must show that Γ |= ϕ .
Let I be any interpretation such that I |= Γ , i.e., I |= χ for every member χ of Γ .
Either I |= ψ or I |= ¬ψ . If I |= ψ then, since Γ ψ |= ϕ , it follows that I |= ϕ . If
I |= ¬ψ , one obtains the same result because Γ¬ψ |= ϕ . �
As the second rule concerning negation we take the schema (++) given in Section 1:

2.4 Contradiction Rule (Ctr).

Γ ¬ϕ ψ
Γ ¬ϕ ¬ψ
Γ ϕ

IV.3 Derivable Connective Rules 59

Correctness. Let Γ¬ϕ |= ψ and Γ¬ϕ |=¬ψ . Then there is no interpretation satisfy-
ing Γ¬ϕ; hence any interpretation satisfying Γ must satisfy ϕ , i.e., Γ ϕ is correct.�
2.5 ∨-Rule for the Antecedent (∨A).

Γ ϕ χ
Γ ψ χ
Γ (ϕ ∨ψ) χ

The proof that this rule is correct is similar to that for (PC).

2.6 ∨-Rules for the Succedent (∨S).

(a)
Γ ϕ
Γ (ϕ ∨ψ)

(b)
Γ ϕ
Γ (ψ ∨ϕ)

Correctness. Suppose Γ |=ϕ and let I |=Γ . Then I |=ϕ and hence both I |=(ϕ∨ψ)
and I |= (ψ ∨ϕ). �
2.7 Exercise. Decide whether the following rules are correct:

(a)

Γ ϕ1 ψ1
Γ ϕ2 ψ2

Γ (ϕ1 ∨ϕ2) (ψ1 ∨ψ2)
(b)

Γ ϕ1 ψ1
Γ ϕ2 ψ2

Γ (ϕ1 ∨ϕ2) (ψ1 ∧ψ2)

IV.3 Derivable Connective Rules

Using the rules of S which we have formulated so far, we can derive a number
of sequents. In our first example we show that all sequents of the form (ϕ ∨¬ϕ)
are derivable. Our notation is similar to that used for derivations in previous calculi
(cf. Section II.3).

(∗)

1. ϕ ϕ (Assm)
2. ϕ (ϕ ∨¬ϕ) (∨S) applied to 1.
3. ¬ϕ ¬ϕ (Assm)
4. ¬ϕ (ϕ ∨¬ϕ) (∨S) applied to 3.
5. (ϕ ∨¬ϕ) (PC) applied to 2. and 4.

Let us consider the rule (TND) (“tertium non datur”)

(ϕ ∨¬ϕ) ,

which is not a rule of S. If we add (TND) to S, we do not enlarge the set of derivable
sequents. For if we are given a derivation of a sequent which uses rules of S together
with (TND), we can insert lines 1.–4. of (∗) directly before every sequent (ϕ ∨¬ϕ),
which originally was introduced by (TND). In this way we obtain a derivation in S.

60 IV A Sequent Calculus

Rules for sequents, whose use in a derivation can be eliminated by a derivation
schema like (∗), and which, therefore, do not enlarge the set of derivable sequents,
will be called derivable rules. Thus (TND) is a derivable rule. The use of such deriv-
able rules contributes to the transparency of derivations in the sequent calculus. In
the remainder of this section we give some useful examples, also including derivable
rules with premises.

3.1 Second Contradiction Rule (Ctr’).

Γ ψ
Γ ¬ψ
Γ ϕ

Justification. (The justification shows that the rule is derivable. In the present case
we have to show how one can use rules of S to obtain the sequent Γ ϕ from the
“premises” Γ ψ and Γ¬ψ .)

1. Γ ψ premise
2. Γ ¬ψ premise
3. Γ ¬ϕ ψ (Ant) applied to 1.
4. Γ ¬ϕ ¬ψ (Ant) applied to 2.
5. Γ ϕ (Ctr) applied to 3. and 4.

3.2 Chain Rule (Ch).

Γ ϕ
Γ ϕ ψ
Γ ψ

Justification.

1. Γ ϕ premise
2. Γ ϕ ψ premise
3. Γ ¬ϕ ϕ (Ant) applied to 1.
4. Γ ¬ϕ ¬ϕ (Assm)
5. Γ ¬ϕ ψ applied to 3. and 4.
6. Γ ψ (PC) applied to 2. and 5.

3.3 Contrapositon Rules (Cp).

(a)
Γ ϕ ψ
Γ ¬ψ ¬ϕ (b)

Γ ¬ϕ ¬ψ
Γ ψ ϕ

(c)
Γ ¬ϕ ψ
Γ ¬ψ ϕ (d)

Γ ϕ ¬ψ
Γ ψ ¬ϕ

Justification of (a).

1. Γ ϕ ψ premise
2. Γ ¬ψ ϕ ψ (Ant) applied to 1.

IV.4 Quantifier and Equality Rules 61

3. Γ ¬ψ ϕ ¬ψ (Assm)
4. Γ ¬ψ ϕ ¬ϕ (Ctr′) applied to 2. and 3.
5. Γ ¬ψ ¬ϕ ¬ϕ (Assm)
6. Γ ¬ψ ¬ϕ (PC) applied to 4. and 5.

3.4.
Γ (ϕ ∨ψ)
Γ ¬ϕ
Γ ψ

Justification.

1. Γ (ϕ ∨ψ) premise
2. Γ ¬ϕ premise
3. Γ ϕ ¬ϕ (Ant) applied to 2.
4. Γ ϕ ϕ (Assm)
5. Γ ϕ ψ (Ctr′) applied to 4. and 3.
6. Γ ψ ψ (Assm)
7. Γ (ϕ ∨ψ) ψ (∨A) applied to 5. and 6.
8. Γ ψ (Ch) applied to 1. and 7.

3.5 “Modus ponens”.

Γ (ϕ → ψ)
Γ ϕ
Γ ψ , that is,

Γ (¬ϕ ∨ψ)
Γ ϕ
Γ ψ

The justification is analogous to the one given for 3.4.

3.6 Exercise. Show that the following rules are derivable.

(a1)
Γ ϕ
Γ ¬¬ϕ (a2)

Γ ¬¬ϕ
Γ ϕ

(b)

Γ ϕ
Γ ψ
Γ (ϕ ∧ψ)

(c)
Γ ϕ ψ
Γ (ϕ → ψ)

(d1)
Γ (ϕ ∧ψ)

Γ ϕ (d2)
Γ (ϕ ∧ψ)

Γ ψ

IV.4 Quantifier and Equality Rules

Now we give two sequent rules of S which involve the existential quantifier. The
first is a generalization of a scheme already mentioned in the introduction to this
chapter.

62 IV A Sequent Calculus

4.1 Rule for ∃-Introduction in the Succedent (∃S).

Γ ϕ t
x

Γ ∃xϕ

(∃S) says that we can conclude ∃xϕ from Γ if we have already obtained the “wit-
ness” t for this existence claim.

Correctness. Suppose Γ |= ϕ t
x . Let I be an interpretation such that I |= Γ . By

assumption, we have I |= ϕ t
x . Therefore, by the Substitution Lemma, II(t)x |= ϕ

and hence I |= ∃xϕ . �
The second ∃-rule is more complicated, but it incorporates a method of argu-
ment that is frequently used. The aim is to prove a claim ψ from assumptions
ϕ1, . . . ,ϕn,∃xϕ , on our formal level: to achieve a derivation of the sequent

(∗) ϕ1 . . .ϕn ∃xϕ ψ

in the sequent calculus. According to the hypothesis ∃xϕ , one assumes one has an
example – denoted by a new variable y – which “satisfies ϕ” and uses it to prove ψ .1

In the sequent calculus this corresponds to a derivation of

(∗∗) ϕ1 . . .ϕn ϕ y
x ψ ,

where y is not free in (∗). Then one regards ψ as having been proved from
ϕ1, . . . ,ϕn,∃xϕ . We can reproduce this argument in the sequent calculus by a rule
which allows us to proceed from (∗∗) to (∗):

4.2 Rule for ∃-Introduction in the Antecedent (∃A).

Γ ϕ y
x ψ

Γ ∃xϕ ψ if y is not free in Γ ∃xϕ ψ .

Correctness. Suppose Γ ϕ y
x |=ψ and y is not free in Γ ∃xϕ ψ . Let the interpretation

I= (A,β) be a model of Γ ∃xϕ . We must show that I |= ψ . First, there is an a ∈ A
such that Ia

x |= ϕ . Using the Coincidence Lemma we can conclude (Ia
y)

a
x |= ϕ (for

x = y this is clear; for x �= y note that y /∈ free(ϕ) since otherwise y ∈ free(∃xϕ) con-

trary to the assumption). Because Ia
y (y) = a we have (Ia

y)
Ia

y (y)
x |=ϕ and hence by

the Substitution Lemma, Ia
y |= ϕ y

x . From I |= Γ and y /∈ free(Γ) we get Ia
y |= Γ ,

again by the Coincidence Lemma; since Γ ϕ y
x |=ψ we obtain Ia

y |=ψ and therefore
I |= ψ because y /∈ free(ψ). �
The condition on y made in (∃A) is essential. We give an example: The sequent
[x ≡ f y]yx y ≡ f y is correct; however, the sequent ∃xx ≡ f y y ≡ f y, which we could
obtain by applying (∃A) while ignoring this condition, is no longer correct. This

1 Cf. the proof of Theorem I.1.1 with the use of y in line (1).

IV.5 Further Derivable Rules 63

can be verified, say, by an interpretation with domain N, which interprets f as the
successor function n �→ n+1 and y as 0.

From a formula ϕ t
x it is not, in general, possible to recover either ϕ or t. For in-

stance, the formula R f y can be written as Rx f y
x or as R f xy

x . Therefore, in applica-
tions of the rules (∃S) and (∃A), we shall explicitly mention ϕ and t or ϕ and y if
they are not clear from the notation.

The last two rules of S arise from two basic properties of the equality relation.

4.3 Reflexivity Rule for Equality (≡).

t ≡ t

4.4 Substitution Rule for Equality (Sub).

Γ ϕ t
x

Γ t ≡ t ′ ϕ t ′
x

Correctness. (≡): Trivial. (Sub): Suppose Γ |= ϕ t
x and suppose I satisfies Γ t ≡ t ′.

Then I |= ϕ t
x and hence, by the Substitution Lemma, II(t)x |= ϕ; therefore since

I(t) = I(t ′) we have I
I(t ′)

x |= ϕ . A further application of the Substitution Lemma

yields finally that I |= ϕ t ′
x . �

4.5 Exercise. Decide whether the following rules are correct:

ϕ ψ
∃xϕ ∃xψ ;

Γ ϕ ψ
Γ ∀xϕ ∃xψ ;

Γ ϕ f y
x

Γ ∀xϕ if f is unary and does not occur in Γ ∀xϕ .

IV.5 Further Derivable Rules

Since ϕ x
x = ϕ , we obtain from 4.1 and 4.2 (for t = x and y = x) the following

derivable rules:

5.1.

(a)
Γ ϕ
Γ ∃xϕ (b)

Γ ϕ ψ
Γ ∃xϕ ψ if x is not free in Γ ψ .

64 IV A Sequent Calculus

A corresponding special case of (Sub) is

5.2.
Γ ϕ
Γ x ≡ t ϕ t

x

We conclude with some derivable rules dealing with the symmetry and the transitiv-
ity of the equality relation and its compatibility with functions and relations.

5.3.

(a)
Γ t1 ≡ t2
Γ t2 ≡ t1

(b)

Γ t1 ≡ t2
Γ t2 ≡ t3
Γ t1 ≡ t3

5.4. (a) For n-ary R ∈ S:
Γ Rt1 . . . tn
Γ t1 ≡ t ′1

...
Γ tn ≡ t ′n
Γ Rt ′1 . . . t

′
n

(b) For n-ary f ∈ S:
Γ t1 ≡ t ′1

...
Γ tn ≡ t ′n
Γ f t1 . . . tn ≡ f t ′1 . . . t

′
n

Justification of 5.3 and 5.4. Let x be a variable occurring neither in any of the terms
nor in Γ .

5.3(a):

1. Γ t1 ≡ t2 premise
2. Γ t1 ≡ t1 (≡) and (Ant)
3. Γ t1 ≡ t2 t2 ≡ t1 (Sub) applied to 2. with t1 ≡ t1 = [x ≡ t1]

t1
x

4. Γ t2 ≡ t1 (Ch) applied to 1. and 3.

5.3(b):

1. Γ t1 ≡ t2 premise
2. Γ t2 ≡ t3 premise
3. Γ t2 ≡ t3 t1 ≡ t3 (Sub) applied to 1. with t1 ≡ t2 = [t1 ≡ x] t2x
4. Γ t1 ≡ t3 (Ch) applied to 2. and 3.

5.4(a) (The justification for 5.4(b) is similar): W.l.o.g. let n = 2.

1. Γ Rt1t2 premise
2. Γ t1 ≡ t ′1 premise
3. Γ t2 ≡ t ′2 premise
4. Γ t1 ≡ t ′1 Rt ′1t2 (Sub) applied to 1. with Rt1t2 = [Rxt2]

t1
x

5. Γ Rt ′1t2 (Ch) applied to 2. and 4.
6. Γ t2 ≡ t ′2 Rt ′1t ′2 (Sub) applied to 5. with Rt ′1t2 = [Rt ′1x] t2x
7. Γ Rt ′1t ′2 (Ch) applied to 3. and 6.

IV.6 Summary and Example 65

5.5 Exercise. Show that the following rules are derivable:

(a1)
Γ ∀xϕ
Γ ϕ t

x
, that is,

Γ ¬∃x¬ϕ
Γ ϕ t

x
(a2)

Γ ∀xϕ
Γ ϕ

(b1)
Γ ϕ t

x ψ
Γ ∀xϕ ψ (b2)

Γ ϕ y
x

Γ ∀xϕ if y is not free in Γ ∀xϕ

(b3)
Γ ϕ ψ
Γ ∀xϕ ψ (b4)

Γ ϕ
Γ ∀xϕ if x is not free in Γ .

IV.6 Summary and Example

For the reader’s convenience, we list all the rules of S together.

(Assm) Γ ϕ if ϕ ∈ Γ (Ant)
Γ ϕ

Γ ′ ϕ if Γ ⊆ Γ ′

(PC)

Γ ψ ϕ
Γ ¬ψ ϕ
Γ ϕ (Ctr)

Γ ¬ϕ ψ
Γ ¬ϕ ¬ψ
Γ ϕ

(∨A)

Γ ϕ χ
Γ ψ χ
Γ (ϕ ∨ψ) χ (∨S)

Γ ϕ
Γ (ϕ ∨ψ)

,
Γ ϕ
Γ (ψ ∨ϕ)

(∃A)
Γ ϕ y

x ψ
Γ ∃xϕ ψ if y is not free in Γ ∃xϕ ψ

(∃S)
Γ ϕ t

x
Γ ∃xϕ

(≡)
t ≡ t

(Sub)
Γ ϕ t

x

Γ t ≡ t ′ ϕ t ′
x

According to Definition 1.1 a formula ϕ is derivable (formally provable) from a
set Φ of formulas (written: Φ � ϕ) if there are an n and formulas ϕ1, . . . ,ϕn in Φ
such that � ϕ1 . . .ϕn ϕ . From this definition we immediately obtain:

6.1 Lemma. For all Φ and ϕ: Φ � ϕ if and only if there is a finite subset Φ0 of Φ
such that Φ0 � ϕ . �
We have already more or less proved the correctness of S:

6.2 Theorem on the Correctness of S. For all Φ and ϕ , if Φ � ϕ , then Φ |= ϕ .

Proof. Suppose Φ � ϕ . Then for a suitable Γ from Φ (that is, a Γ whose mem-
bers are formulas from Φ) we have � Γ ϕ . As we have shown, every rule without
premises yields only correct sequents, and the other rules of S always lead from

66 IV A Sequent Calculus

correct sequents to correct sequents. Thus, by induction over S, we see that every
derivable sequent is correct, hence also Γ ϕ . Therefore Γ |= ϕ and so Φ |= ϕ . �
We shall prove the converse of Theorem 6.2, namely “if Φ |= ϕ then Φ � ϕ”, in
the next chapter. In particular, it will follow that if ϕ is mathematically provable
from Φ , and hence Φ |= ϕ , then ϕ is also formally provable from Φ . However,
because of the elementary character of the rules for sequents, a formal proof is
in general considerably longer than the corresponding mathematical proof. As an
example we give here a formal proof of the theorem

∀x∃yy◦ x ≡ e

(existence of a left inverse) from the group axioms

ϕ0 := ∀x∀y∀z(x◦ y)◦ z ≡ x◦ (y◦ z),
ϕ1 := ∀x x◦ e ≡ x,
ϕ2 := ∀x∃y x◦ y ≡ e.

The reader should compare the formal proof below with the mathematical proof of
Theorem I.1.1. The “chain of equations” given there corresponds to the underlined
formulas in the derivation up to line 23. For simplicity we shall write “xy” instead
of “x ◦ y” and we put Γ := ϕ0 ϕ1 ϕ2. The variables u,v,w are chosen according to
the definition of substitution.

1. Γ ∀xxe ≡ x (Assm)
2. Γ (yx)e ≡ yx 5.5(a1) applied to 1.

with t = yx
3. Γ yx ≡ (yx)e 5.3(a) applied to 2.
4. Γ e ≡ yz yx ≡ (yx)(yz) (Sub) applied to 3.
5. Γ yz ≡ e e ≡ yz 5.3(a) and (Ant)
6. Γ yz ≡ e yx ≡ (yx)(yz) (Ant) and (Ch)

applied to 5. and 4.
7. Γ yz ≡ e ∀x∀y∀z(xy)z ≡ x(yz) (Assm)
8. Γ yz ≡ e ∀u∀v(yu)v ≡ y(uv) 5.5(a1) applied to 7.

with t = y
9. Γ yz ≡ e ∀w(yx)w ≡ y(xw) 5.5(a1) applied to 8.

with t = x
10. Γ yz ≡ e (yx)(yz)≡ y(x(yz)) 5.5(a1) applied to 9.

with t = yz
11. Γ yz ≡ e yx ≡ y(x(yz)) 5.3(b) applied to 6.

and 10.
12. Γ yz ≡ e x(yz)≡ (xy)z yx ≡ y((xy)z) (Sub) applied to 11.
13. Γ yz ≡ e (xy)z ≡ x(yz) 5.5(a2) applied

three times to 7.
14. Γ yz ≡ e x(yz)≡ (xy)z 5.3(a) applied to 13.
15. Γ yz ≡ e yx ≡ y((xy)z) (Ch) applied to 14.

and 12.
16. Γ yz ≡ e xy ≡ e yx ≡ y(ez) (Sub) applied to 15.

IV.7 Consistency 67

17. Γ yz ≡ e xy ≡ e (ye)z ≡ y(ez) with 5.5(a1) from
ϕ0 as for 10.

18. Γ yz ≡ e xy ≡ e y(ez)≡ (ye)z 5.3(a) applied to 17.
19. Γ yz ≡ e xy ≡ e yx ≡ (ye)z 5.3(b) applied to 16.

and 18.
20. Γ yz ≡ e xy ≡ e ye ≡ y yx ≡ yz (Sub) applied to 19.
21. Γ yz ≡ e xy ≡ e ye ≡ y 5.5(a1) applied to 1.

with t = y and (Ant)
22. Γ yz ≡ e xy ≡ e yx ≡ yz (Ch) applied to 21.

and 20.
23. Γ xy ≡ e yz ≡ e yx ≡ e (Sub) and (Ant) ap-

plied to 22.
24. Γ xy ≡ e yz ≡ e ∃yyx ≡ e (∃S) applied to 23.
25. Γ xy ≡ e ∃zyz ≡ e ∃yyx ≡ e (∃A) applied to 24.
26. Γ xy ≡ e ∀y∃zyz ≡ e ∃yyx ≡ e 5.5(b3) appl. to 25.
27. xy ≡ e xy ≡ e (Assm)
28. xy ≡ e ∃zxz ≡ e (∃S) applied to 27.
29. ∃yxy ≡ e ∃zxz ≡ e (∃A) applied to 28.
30. ∀x∃yxy ≡ e ∃zxz ≡ e 5.5(b3) appl. to 29.
31. ϕ2 ∀y∃zyz ≡ e 5.5(b2) appl. to 30.
32. Γ xy ≡ e ∃yyx ≡ e (Ant), (Ch) applied

to 31. and 26.
33. Γ ∀x∃yxy ≡ e ∃yyx ≡ e (∃A) and 5.5(b3)

applied to 32.
34. Γ ∀x∃yyx ≡ e (Ant) and 5.5(b4)

applied to 33.

IV.7 Consistency

The semantic consequence relation |= corresponds to the syntactic concept of deriv-
ability �. As a syntactic counterpart to satisfiability we define the concept of con-
sistency.

7.1 Definition. (a) Φ is consistent (written: Con Φ) if and only if there is no for-
mula ϕ such that Φ � ϕ and Φ � ¬ϕ .

(b) Φ is inconsistent (written: Inc Φ) if and only if Φ is not consistent, that is, if
and only if there is a formula ϕ such that Φ � ϕ and Φ � ¬ϕ).

7.2 Lemma. For a set of formulas Φ the following are equivalent:

(a) Inc Φ .
(b) For all ϕ: Φ � ϕ .

68 IV A Sequent Calculus

Proof. (a) follows immediately from (b). Suppose, on the other hand, that Inc Φ
holds, i.e., Φ � ψ and Φ � ¬ψ for some formula ψ . Let ϕ be an arbitrary formula.
We show Φ � ϕ .

There exist Γ1 and Γ2, which consist of formulas from Φ , and derivations

...
Γ1 ψ and Γ2 ¬ψ .

By using these, we obtain the following derivation:

...
m. Γ1 ψ

n. Γ2 ¬ψ
(n+1). Γ1 Γ2 ψ (Ant) applied to m.
(n+2). Γ1 Γ2 ¬ψ (Ant) applied to n.
(n+3). Γ1 Γ2 ϕ (Ctr′) applied to (n+1).,(n+2).

Thus we see that Φ � ϕ . �
7.3 Corollary. For a set of formulas Φ the following are equivalent:

(a) Con Φ .
(b) There is a formula ϕ which is not derivable from Φ . �

Since Φ � ϕ if and only if Φ0 � ϕ for a suitable finite subset Φ0 of Φ , we obtain:

7.4 Lemma. For all Φ , Con Φ iff Con Φ0 for all finite subsets Φ0 of Φ . �
7.5 Lemma. Every satisfiable set of formulas is consistent.

Proof. Suppose Inc Φ . Then for a suitable ϕ both Φ � ϕ and Φ � ¬ϕ; hence, by
the theorem on the correctness of S, Φ |= ϕ and Φ |= ¬ϕ . But then Φ cannot be
satisfiable. �
Later we shall need:

7.6 Lemma. For all Φ and ϕ the following holds:

(a) Φ � ϕ iff Inc Φ ∪{¬ϕ}.
(b) Φ � ¬ϕ iff Inc Φ ∪{ϕ}.
(c) If Con Φ , then Con Φ ∪{ϕ} or Con Φ ∪{¬ϕ}.

Proof. (a): If Φ � ϕ then Φ ∪{¬ϕ} � ϕ; since Φ ∪{¬ϕ} � ¬ϕ , Φ ∪{¬ϕ} is incon-
sistent. Conversely, let Φ ∪{¬ϕ} be inconsistent. Then for a suitable Γ consisting
of formulas from Φ , there is a derivation of the sequent Γ ¬ϕ ϕ . From this we
obtain the following derivation:

IV.7 Consistency 69

...
Γ ¬ϕ ϕ
Γ ϕ ϕ (Assm)
Γ ϕ (PC).

This shows that Φ � ϕ .

(b): In the proof of (a) interchange the roles of ϕ and ¬ϕ .

(c): If neither Con Φ ∪ {ϕ} nor Con Φ ∪ {¬ϕ}, that is, if Inc Φ ∪ {ϕ} and
Inc Φ ∪{¬ϕ}, then (by (b) and (a)) Φ � ¬ϕ and Φ � ϕ . Hence Φ is inconsistent, a
contradiction to the assumption Con Φ . �
In this chapter we have referred to a fixed symbol set S. Thus, when we spoke of
formulas we understood them to be S-formulas, and when discussing the sequent
calculus S we actually referred to the particular calculus SS corresponding to the
symbol set S. In some cases it is necessary to treat several symbol sets simultane-
ously. Then we insert subscripts for the sake of clarity. To be specific, we use the
more precise notation Φ �S ϕ to indicate that there is a derivation in SS (consisting
of S-formulas) whose last sequent is of the form Γ ϕ , where Γ consists of formulas
from Φ . Similarly, we write ConS Φ if there is no S-formula ϕ such that Φ �S ϕ
and Φ �S ¬ϕ .2

In the next chapter we shall need:

7.7 Lemma. For n ∈ N, let Sn be symbol sets such that

S0 ⊆ S1 ⊆ S2 ⊆ . . .,

and let Φn be sets of Sn-formulas such that ConSn
Φn and

Φ0 ⊆ Φ1 ⊆ Φ2 ⊆

Let S =
⋃

n∈N Sn and Φ =
⋃

n∈N Φn. Then ConS Φ .

Proof. Assume the hypotheses of the theorem, and suppose IncS Φ . Then, by
Lemma 7.4, IncS Ψ must hold for a suitable finite subset Ψ of Φ . There is a k such
that Ψ ⊆ Φk and hence IncS Φk; in particular, Φk �S v0 ≡ v0 and Φk �S ¬v0 ≡ v0.
Suppose we are given S-derivations for these two formulas. Since they contain only
a finite number of symbols, all the formulas occurring there are actually contained in
some LSm . We may assume that m ≥ k. Then both derivations are derivations in the
Sm-sequent calculus, and therefore IncSm

Φk. Since Φk ⊆ Φm we obtain IncSm
Φm,

which contradicts the hypotheses of the theorem. �

2 The reader should note that for two symbol sets S and S′ with S ⊂ S′, and for Φ ⊆ LS and ϕ ∈ LS,
it is conceivable that Φ �S′ ϕ but not Φ �S ϕ , for it could be that formulas from LS′ \LS are used
in every derivation of ϕ from Φ in SS′ , and that (later on in the proof) these formulas are then
eliminated from the sequents, say by application of the rules (Ctr), (PC), or (∃S). We shall show
that this cannot happen.

70 IV A Sequent Calculus

7.8 Exercise. Define (∃∀) to be the rule

Γ ∃xϕ ∀xϕ .

(a) Determine whether (∃∀) is a derivable rule.
(b) Let S′ be obtained from the calculus of sequents S by adding the rule (∃∀). Is

every sequent derivable in S′?

Chapter V
The Completeness Theorem

The subject of this chapter is a proof of the completeness of the sequent calculus,
i.e., the statement

(∗) For all Φ and ϕ: If Φ |= ϕ then Φ � ϕ .

In order to verify (∗) we show:

(∗∗) Every consistent set of formulas is satisfiable.

From this, (∗) can be proved as follows: We assume for Φ and ϕ that Φ |= ϕ , but
not Φ � ϕ . Then Φ ∪{¬ϕ} is consistent (as not Φ � ϕ and by Lemma IV.7.6(a))
but not satisfiable (as Φ |= ϕ and by Lemma III.4.4), a contradiction to (∗∗).

To establish (∗∗) we have to find a model for any consistent set Φ of formulas. In
Section 1 we shall see that there is a natural way to do this if Φ is negation complete
and if it contains witnesses. Then we reduce the general case to this one: in Section 2
for at most countable symbol sets, and in Section 3 for arbitrary symbol sets. Unless
stated otherwise, we refer to a fixed symbol set S.

V.1 Henkin’s Theorem

Let Φ be a consistent set of formulas. In order to find an interpretation I = (A,β)
satisfying Φ , we have at our disposal only the “syntactical” information given by
the consistency of Φ . Hence, we shall try to obtain a model using syntactical objects
as far as possible. A first idea is to take as domain A the set T S of all S-terms, to
define β by

β (vi) := vi for i ∈ N

and to interpret, for instance, a unary function symbol f by

fA(t) := f t for t ∈ A

71© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

https://doi.org/10.1007/978-3-030-73839-6_5
H.-D. Ebbinghaus et al., Mathematical Logic, Graduate Texts in Mathematics 291,

http://crossmark.crossref.org/dialog/?10.1007/978-3-030-73839-6_5&domain=pdf

72 V The Completeness Theorem

and a unary relation symbol R by

RA := {t ∈ A | Φ � Rt}.

Then, for a variable x we have I(f x) = fA(β (x)) = f x. Here a first difficulty arises
concerning the equality symbol: If y is a variable different from x, then f x �= f y,
hence I(f x) �= I(f y). If we choose Φ such that Φ � f x ≡ f y (e.g., Φ = { f x ≡ f y}),
then I is not a model of Φ . Namely, by the Correctness Theorem IV.6.2 it follows
that Φ |= f x ≡ f y, and with I |= Φ we would have I(f x) = I(f y).

We overcome this difficulty by defining an equivalence relation on terms and then
using the equivalence classes rather than the individual terms as elements of the
domain of I.

Let Φ be a set of formulas. We define an interpretation IΦ = (TΦ ,β Φ). For this
purpose we first introduce a binary relation ∼ on the set T S of S-terms by

1.1. t1 ∼ t2 :iff Φ � t1 ≡ t2.

1.2 Lemma. (a) ∼ is an equivalence relation.
(b) ∼ is compatible with the symbols in S in the following sense:

If t1 ∼ t ′1, . . . , tn ∼ t ′n, then for n-ary f ∈ S

f t1 . . . tn ∼ f t ′1 . . . t
′
n

and for n-ary R ∈ S

Φ � Rt1 . . . tn iff Φ � Rt ′1 . . . t
′
n.

The proof uses the rule (≡) and IV.5.3, 5.4. We give two cases as examples:

(1) ∼ is symmetric: Suppose t1 ∼ t2, that is, Φ � t1 ≡ t2. By IV.5.3(a) we obtain
Φ � t2 ≡ t1, i.e., t2 ∼ t1.

(2) Let f be an n-ary function symbol from S, and assume t1 ∼ t ′1, . . . , tn ∼ t ′n,
i.e., Φ � t1 ≡ t ′1, . . . ,Φ � tn ≡ t ′n. Then by IV.5.4(b), Φ � f t1 . . . tn ≡ f t ′1 . . . t

′
n, i.e.,

f t1 . . . tn ∼ f t ′1 . . . t
′
n. �

Let t be the equivalence class of t:

t := {t ′ ∈ T S | t ∼ t ′},

and let T Φ (more precisely: T Φ ,S) be the set of equivalence classes:

T Φ := {t | t ∈ T S}.

The set T Φ is not empty. We define the S-structure TΦ over T Φ , the so-called term
structure corresponding to Φ , by the following clauses:

1.3. For n-ary R ∈ S,

RTΦ
t1 . . . tn :iff Φ � Rt1 . . . tn.

1.4. For n-ary f ∈ S,

fT
Φ
(t1, . . . , tn) := f t1 . . . tn.

V.1 Henkin’s Theorem 73

1.5. For c ∈ S, cT
Φ

:= c .

By Lemma 1.2(b) the conditions in 1.3 and 1.4 are independent of the choice of the
representatives t1, . . . , tn of t1, . . . , tn, hence RTΦ

and fT
Φ

are well-defined.

Finally, we fix an assignment β Φ by

1.6. β Φ(x) := x.

We call IΦ :=
(
TΦ ,β Φ) the term interpretation associated with Φ .

1.7 Lemma. (a) For all t, IΦ(t) = t .
(b) For every atomic formula ϕ ,

IΦ |= ϕ iff Φ � ϕ .

(c) For every formula ϕ and pairwise distinct variables x1, . . . ,xn,

(i) IΦ |= ∃x1 . . .∃xnϕ iff there are t1, . . . , tn ∈ T S with IΦ |= ϕ t1 . . . tn
x1 . . .xn

.

(ii) IΦ |= ∀x1 . . .∀xnϕ iff for all terms t1, . . . , tn ∈ T S, IΦ |= ϕ t1 . . . tn
x1 . . .xn

.

Proof. (a) By induction on terms. The assertion holds for t = x by 1.6 and for t = c
by 1.5. If t = f t1 . . . tn, then

IΦ(f t1 . . . tn) = fT
Φ (

IΦ(t1), . . . ,IΦ(tn)
)

= fT
Φ
(t1, . . . , tn) (by induction hypothesis)

= f t1 . . . tn (by 1.4).

(b) IΦ |= t1 ≡ t2 iff IΦ(t1) = IΦ(t2)
iff t1 = t2 (by (a))
iff t1 ∼ t2
iff Φ � t1 ≡ t2.

IΦ |= Rt1 . . . tn iff RTΦ
t1 . . . tn

iff Φ � Rt1 . . . tn (by 1.3).

(c) (i) IΦ |= ∃x1 . . .∃xnϕ
iff there are a1, . . . ,an ∈ T Φ with IΦ a1 . . .an

x1 . . .xn
|= ϕ

iff there are t1, . . . , tn ∈ T S with IΦ t1 . . . tn
x1 . . .xn

|= ϕ (as T Φ = {t | t ∈ T S})

iff there are t1, . . . , tn ∈ T S with IΦ IΦ(t1) . . .IΦ(tn)
x1 . . .xn

|= ϕ (by (a))

iff there are t1, . . . , tn ∈ T S with IΦ |= ϕ t1 . . . tn
x1 . . .xn

(by Lemma III.8.3).

(ii) follows easily from (i). �

74 V The Completeness Theorem

By part (b) of the previous lemma, IΦ is a model of the atomic formulas in Φ , but
not in general of all formulas in Φ : If, for instance, S = {R} and Φ = {∃xRx}, then,
by part (c) of the lemma, if IΦ |= Φ , there should be a term t such that ∃xRx � Rt; so
in our case there should be a variable y such that ∃xRx � Ry, and this can easily be
refuted (cf. also Exercise 1.12(a)). We will be able to show that IΦ is a model of Φ
only if Φ satisfies certain closure conditions, as pointed out for ∃ in the example
just given. These conditions are made precise in the following definition.

1.8 Definition. (a) Φ is negation complete iff for every formula ϕ ,

Φ � ϕ or Φ � ¬ϕ .

(b) Φ contains witnesses iff for every formula of the form ∃xϕ there exists a term
t such that Φ � (∃xϕ → ϕ t

x).

The following lemma shows that for a consistent set Φ which is negation complete
and contains witnesses, there is a parallelism between the property of being deriv-
able from Φ and the inductive definition of the satisfaction relation. This will allow
us to show that the term interpretation IΦ is a model of Φ .

1.9 Lemma. Suppose that Φ is consistent and negation complete and that it con-
tains witnesses. Then the following holds for all ϕ and ψ:

(a) Φ � ¬ϕ iff not Φ � ϕ .
(b) Φ � (ϕ ∨ψ) iff Φ � ϕ or Φ � ψ .
(c) Φ � ∃xϕ iff there is a term t with Φ � ϕ t

x .

Proof. (a) Since Φ is negation complete, we have Φ � ϕ or Φ � ¬ϕ; and since Φ is
consistent, Φ � ¬ϕ iff not Φ � ϕ .

(b) First let Φ � (ϕ ∨ψ). If not Φ � ϕ , then Φ � ¬ϕ (since Φ is negation complete),
and IV.3.4 gives Φ � ψ . The other direction follows immediately by the ∨-rules
(∨S) for the succedent.

(c) Assume Φ � ∃xϕ . Since Φ contains witnesses, there is a term t with Φ �
(∃xϕ → ϕ t

x); using Modus ponens, IV.3.5, we get Φ � ϕ t
x . Conversely, let Φ � ϕ t

x
for a term t. Then the rule (∃S) of the ∃-introduction in the succedent gives
Φ � ∃xϕ . �
1.10 Henkin’s Theorem. Let Φ be a consistent set of formulas which is negation
complete and contains witnesses. Then for all ϕ ,

(∗) IΦ |= ϕ iff Φ � ϕ .

Proof. We show (∗) by induction on the number of connectives and quantifiers in ϕ ,
in other words, by induction on rk(ϕ) (cf. Definition III.8.6). If rk(ϕ) = 0, then ϕ is
atomic, and Lemma 1.7(b) shows that (∗) holds. The induction step splits into three
separate cases.

V.2 Satisfiability of Consistent Sets of Formulas (the Countable Case) 75

(1) ϕ = ¬ψ: IΦ |= ¬ψ iff not IΦ |= ψ
iff not Φ � ψ (by induction hypothesis)
iff Φ � ¬ψ (by Lemma 1.9(a)).

(2) ϕ = (ψ ∨χ): IΦ |= (ψ ∨χ)
iff IΦ |= ψ or IΦ |= χ
iff Φ � ψ or Φ � χ (by induction hypothesis)
iff Φ � (ψ ∨χ) (by Lemma 1.9(b)).

(3) ϕ = ∃xψ: IΦ |= ∃xψ
iff there is a t with IΦ |= ψ t

x (by Lemma 1.7(c)(i))
iff there is a t with Φ � ψ t

x (by induction hypothesis,
as rk(ψ t

x) = rk(ψ)< rk(ϕ); cf. Lemma III.8.7)
iff Φ � ∃xψ (by Lemma 1.9(c)). �

1.11 Corollary. If Φ is a consistent set which is negation complete and contains
witnesses, then IΦ |= Φ (and hence Φ is satisfiable). �
1.12 Exercise. (a) Let S := {R} with unary R and let Φ := {∃xRx}∪ {¬Ry | y is a

variable}. Show:
– Φ is satisfiable and therefore consistent.
– For no term t ∈ T S, Φ � Rt.
– If I= (A,β) is a model of Φ , then A\{I(t) | t ∈ T S} is nonempty.

(b) Again, let S = {R} with unary R and let x and y be distinct variables. For
Φ = {Rx∨Ry} show:

– Not Φ � Rx and not Φ � ¬Rx, i.e., Φ is not negation complete.
– Not IΦ |= Φ .

1.13 Exercise. Fix a symbol set S. Consider IΦ for an inconsistent set Φ . Does IΦ

depend on the inconsistent set Φ?

V.2 Satisfiability of Consistent Sets of Formulas
(the Countable Case)

By Corollary 1.11, every consistent set of formulas which is negation complete and
contains witnesses, is satisfiable. We now prove that any consistent set of formulas
is satisfiable, by showing how to extend it to a consistent set of formulas which
is negation complete and contains witnesses. In this section we settle the case of
symbol sets which are at most countable.

In the following let S be at most countable. First we treat the case where only finitely
many variables occur free in the consistent set Φ of formulas, i.e., where free(Φ) :=⋃

ϕ∈Φ free(ϕ) is finite. We need two lemmas.

76 V The Completeness Theorem

2.1 Lemma. Let Φ ⊆ LS be consistent and let free(Φ) be finite. Then there is a
consistent set Ψ such that Φ ⊆Ψ ⊆ LS and Ψ contains witnesses.

2.2 Lemma. Let Ψ ⊆ LS be consistent. Then there is a consistent, negation com-
plete set Θ with Ψ ⊆Θ ⊆ LS.

Lemma 2.1 and Lemma 2.2 enable us to extend a consistent set Φ of formulas with
finitely many free variables in two stages to a consistent set of formulas which is
negation complete and contains witnesses. First of all, we extend Φ to Ψ according
to Lemma 2.1, and then Ψ to Θ according to Lemma 2.2. The set Θ is consistent and
negation complete; it contains witnesses because Ψ does already. Hence by Corol-
lary 1.11, Θ is satisfiable, and since Φ ⊆Θ , Φ is also satisfiable. We summarize:

2.3 Corollary. Let Φ be consistent, and let free(Φ) be finite. Then Φ is satisfiable.�
Proof of Lemma 2.1. By Lemma II.3.3, LS is countable. Let ∃x0ϕ0, ∃x1ϕ1,. . . be
a list of all formulas in LS which begin with an existential quantifier. Inductively
we define formulas ψ0,ψ1, . . . , which we add to Φ . For each n, ψn is a “witness
formula” for ∃xnϕn.

Suppose ψm is already defined for m < n. Since free(Φ) is finite, only finitely many
variables occur free in Φ ∪ {ψm | m < n} ∪ {∃xnϕn}. Let yn be the variable with
smallest index distinct from these. We set

ψn := (∃xnϕn → ϕn
yn
xn
).

Now let
Ψ := Φ ∪{ψ0,ψ1, . . .}.

Then Φ ⊆ Ψ and Ψ clearly contains witnesses. It remains to be shown that Ψ is
consistent. For this purpose let

Φn := Φ ∪{ψm | m < n}.

Then Φ0 ⊆ Φ1 ⊆ Φ2 ⊆ . . . and Ψ =
⋃

n∈N Φn. By Lemma IV.7.7 (for the symbol
sets S = S0 = S1 = . . .) the proof will be complete if we can show that each Φn is
consistent. We proceed by induction on n.

As Φ0 = Φ , we have Con Φ0 by hypothesis. For the induction step assume that Φn
is consistent. Suppose, for a contradiction, that Φn+1 = Φn ∪{ψn} is inconsistent.
Then for every ϕ there exists Γ over Φn such that � Γ ψn ϕ , i.e.,

� Γ (¬∃xnϕn ∨ϕn
yn
xn
) ϕ .

Thus, there is a derivation

...
m. Γ (¬∃xnϕn ∨ϕn

yn
xn
) ϕ.

If ϕ is a sentence, we can extend this derivation as follows:

V.2 Satisfiability of Consistent Sets of Formulas (the Countable Case) 77

(m+1). Γ ¬∃xnϕn ¬∃xnϕn (Assm)

(m+2). Γ ¬∃xnϕn
(¬∃xnϕn ∨ϕn

yn
xn

)
(∨S) applied to (m+1).

(m+3). Γ ¬∃xnϕn ϕ (Ch) applied to (m+2).
and m. (with (Ant))

...

�. Γ ϕn
yn
xn

ϕ (analogously)

(�+1). Γ ∃xnϕn ϕ (∃A) applied to �. (yn does not occur
free in Γ ∃xnϕn ϕ)

(�+2). Γ ϕ (PC) applied to (�+1). and (m+3).

For ϕ = ∃v0 v0 ≡ v0 and for ϕ = ¬∃v0 v0 ≡ v0, this gives Φn � ∃v0 v0 ≡ v0 and
Φn � ¬∃v0 v0 ≡ v0, respectively. Hence Inc Φn which contradicts the induction
hypothesis. �
Proof of Lemma 2.2. Suppose Ψ is consistent and let ϕ0,ϕ1,ϕ2, . . . be an enumera-
tion of LS. We define sets of formulas Θn inductively as follows:

Θ0 :=Ψ
and

Θn+1 :=

{
Θn ∪{ϕn} if Con Θn ∪{ϕn},
Θn otherwise,

and we set

Θ :=
⋃

n∈NΘn.

First of all, Ψ ⊆Θ . Clearly all Θn are consistent, and hence by Lemma IV.7.7, Θ is
consistent as well. Finally, Θ is negation complete. For if ϕ ∈ LS, say ϕ = ϕn, and
not Θ � ¬ϕ , then Con Θ ∪{ϕ} (by Lemma IV.7.6(b)) and therefore Con Θn ∪{ϕ}.
So Θn+1 =Θn ∪{ϕ}, hence ϕ ∈Θ and therefore Θ � ϕ . �
Now we drop the assumption that free(Φ) is finite.

2.4 Theorem. If S is at most countable and Φ ⊆ LS is consistent, then Φ is satisfi-
able.

Proof. We reduce this theorem to Corollary 2.3 by replacing the free variables by
new constants. Let c0,c1, . . . be distinct constants which do not belong to S, and set

S′ := S∪{c0,c1, . . .}.

For ϕ ∈ LS denote by n(ϕ) the smallest n with free(ϕ)⊆ {v0, . . . ,vn−1}. Let

ϕ ′ := ϕ
c0 . . .cn(ϕ)−1
v0 . . .vn(ϕ)−1

and Φ ′ := {ϕ ′ | ϕ ∈ Φ}.

First (by Corollary III.8.5), free(Φ ′) = /0, i.e.,

78 V The Completeness Theorem

(1) Φ ′ is a set of S′-sentences.

Now it will suffice to show that

(2) ConS′ Φ ′,

for then we know from the special case proved in Corollary 2.3 that Φ ′ is satisfiable,
say by the interpretation I′ = (A′,β ′). Since Φ ′ is a set of sentences (cf. (1)), we can
(by the Coincidence Lemma) choose β ′ such that β ′(vn) = cA

′
n , i.e., I′(vn) = I′(cn)

for all n ∈N. Then (using the Substitution Lemma) for ϕ ∈ Φ we have I′ |= ϕ , since
I′ |= ϕ

c0 . . .cn(ϕ)−1
v0 . . .vn(ϕ)−1

. Hence I′ is a model of Φ , i.e., Φ is satisfiable.

We prove (2) by showing that every finite subset Φ ′
0 of Φ ′ is satisfiable, and thus,

by Lemma IV.7.5, consistent (with respect to S′). Let Φ ′
0 = {ϕ ′

1, . . . ,ϕ
′
n}, where

ϕ1, . . . ,ϕn ∈ Φ . Since {ϕ1, . . . ,ϕn} is a subset of Φ , it is consistent (with respect
to S), and since only finitely many variables occur free therein, it is satisfiable
(cf. Corollary 2.3). Choose an S-interpretation I= (A,β) such that

(∗) I |= {ϕ1, . . . ,ϕn}
and expand A to an S′-structure A′ with cA

′
i = I(vi) for i ∈ N. For this new S′-

interpretation I′ = (A′,β) the Substitution Lemma yields for ϕ ∈ LS:

I |= ϕ iff I′ |= ϕ
c0 . . .cn(ϕ)−1
v0 . . .vn(ϕ)−1

.

By (∗), I′ is a model of Φ ′
0. �

The following exercise shows that the assumption “free(Φ) is finite” in Lemma 2.1
is necessary.

2.5 Exercise. Let S be arbitrary and let Φ = {v0 ≡ t | t ∈ T S}∪{∃v0∃v1¬v0 ≡ v1}.
Show that Con Φ holds and that there is no consistent set in LS which includes Φ
and contains witnesses.

V.3 Satisfiability of Consistent Sets of Formulas
(the General Case)

In this section we no longer assume that S is countable. In Section 2 the set Φ we
started with was consistent and free(Φ) was finite. We extended Φ to a consistent
set containing witnesses by adding a formula (∃xϕ → ϕ y

x) with a “new” variable y
for each formula of the form ∃xϕ . If Φ is uncountable, we run out of variables. We
solve this problem by adding constants to the symbol set which will take over the
role of the variables. The claims corresponding to Lemma 2.1 and Lemma 2.2 are:

3.1 Lemma. Assume Φ ⊆ LS with ConS Φ . Then there is an S′ ⊇ S and a set Ψ
such that Φ ⊆Ψ ⊆ LS′ and ConS′ Ψ , and Ψ contains witnesses with respect to S′

V.3 Satisfiability of Consistent Sets of Formulas (the General Case) 79

(that is, for every formula of the form ∃xϕ ∈ LS′ there is a term t ∈ T S′ such that
Ψ � (∃xϕ → ϕ t

x)).

3.2 Lemma. Assume Ψ ⊆ LS with ConS Ψ . Then there is a set Θ such that Ψ ⊆
Θ ⊆ LS and Θ is consistent and negation complete with respect to S.

As we obtained Corollary 2.3 from Lemma 2.1 and Lemma 2.2, we likewise have
from Lemma 3.1 and Lemma 3.2:

3.3 Corollary. If Φ ⊆ LS and Φ is consistent, then Φ is satisfiable. �
The following argument will lead to a proof of Lemma 3.1.

Let S be an arbitrary symbol set. Associate with every ϕ ∈ LS a constant cϕ which
is not in S. For ϕ �= ψ let cϕ �= cψ . We set

S∗ := S∪{c∃xϕ | ∃xϕ ∈ LS}
and

W (S) :=
{
(∃xϕ → ϕ c∃xϕ

x) | ∃xϕ ∈ LS
}

.

3.4. For Φ ⊆ LS, if ConS Φ then ConS∗ Φ ∪W (S).

Proof. Suppose ConS Φ holds. We show that every finite subset Φ∗
0 of Φ ∪W (S) is

consistent with respect to S∗ by proving that it is satisfiable. Let

Φ∗
0 = Φ0 ∪

{
(∃x1ϕ1 → ϕ1

c1
x1
), . . . ,(∃xnϕn → ϕn

cn
xn
)
}

,

where Φ0 = Φ∗
0 ∩Φ and ∃x1ϕ1, . . . ,∃xnϕn ∈ LS. Here ci stands for c∃xiϕi .

First, using Corollary 2.3, we show that Φ0 is satisfiable. Then, from a model I
of Φ0 we get a model of Φ∗

0 by a suitable interpretation of the constants.

We choose a finite (and hence at most countable) subset S0 ⊆ S such that Φ0 ∪
{∃x1ϕ1, . . . ,∃xnϕn} ⊆ LS0 . Since ConS Φ holds, so does ConS Φ0, and hence also
ConS0

Φ0. Because free(Φ0) is finite, it follows from Corollary 2.3 that Φ0 is satis-
fiable.

Let I = (A,β) be an S-interpretation which satisfies Φ0 and fix an element a in A.
For 1 ≤ i ≤ n we choose ai ∈ A so that

(∗) Iai
xi

|= ϕi if I |= ∃xiϕi,

and ai = a otherwise. We extend A to an S∗-structure A∗ as follows: For 1 ≤ i ≤ n
let

cA
∗

i := ai,

and interpret the remaining constants of the form c∃xϕ by a. Let I∗ = (A∗,β). Since
no constant c∃xϕ occurs in Φ0, it follows from I |= Φ0 that I∗ |= Φ0. Furthermore,

I∗ |= ∃xiϕi → ϕi
ci
xi

80 V The Completeness Theorem

(and this shows that Φ∗
0 is satisfiable). In fact, if I∗ |= ∃xiϕi then I∗ ai

xi
|= ϕi by (∗).

Since ai = I∗(ci) it follows by the Substitution Lemma that I∗ |= ϕi
ci
xi

. �
Proof of Lemma 3.1. Let Φ ⊆ LS and suppose ConS Φ . We define a symbol set S′

and Ψ ⊆ LS′ with the following properties:

(a) S ⊆ S′ and Φ ⊆Ψ .
(b) ConS′ Ψ .
(c) Ψ contains witnesses.

For this purpose we define symbol sets Sn and sets Φn of formulas by induction
on n:

S0 := S and Sn+1 := (Sn)
∗,

Φ0 := Φ and Φn+1 := Φn ∪W (Sn).

(For the definitions of (Sn)
∗ and W (Sn) see the definitions before 3.4.)

From the construction it follows that
S = S0 ⊆ S1 ⊆ S2 ⊆ . . . ,
Φn ⊆ LSn for n ∈ N,
Φ = Φ0 ⊆ Φ1 ⊆ Φ2 ⊆

We set S′ :=
⋃

n∈N Sn and Ψ :=
⋃

n∈N Φn. Then (a) holds. Using 3.4 one can easily
show ConSn

Φn by induction on n, and hence, by Lemma IV.7.7, that ConS′ Ψ .
Therefore, (b) also holds. Finally, Ψ contains witnesses. In fact, let ∃xϕ ∈ LS′ .
Then, ∃xϕ ∈ LSn for a suitable n. Thus for some constant c ∈ Sn+1, the formula(∃xϕ → ϕ c

x
)

is an element of W (Sn) and, hence, an element of Ψ . �
Proof of Lemma 3.2. In the proof of Lemma 2.2 we made essential use of the count-
ability of LS. For arbitrary S we no longer have this property at our disposal. We
resort to Zorn’s Lemma, which we now state in a form suited for our purposes. The
reader can find a proof of this lemma in books on set theory, e.g., in [26, 27].

Let M be a set and let U be a nonempty set of subsets of M. V is called a chain in U
if V ⊆ U, V �= /0, and if for V1,V2 ∈ V we have V1 ⊆ V2 or V2 ⊆ V1. Then Zorn’s
Lemma says:

3.5. If for every chain V in U the union
⋃

V∈VV belongs to U, then there is at least
one maximal element in U, i.e., an element U0 for which there is no U1 ∈ U such that
U0 ⊂U1.1

Now, let Ψ ⊆ LS and ConS Ψ . Set M := LS and

U := {Φ |Ψ ⊆ Φ ⊆ LS and ConS Φ}.

Clearly, Ψ ∈ U and so U is not empty. Let V be a chain in U. The set Θ1 :=
⋃

Φ∈V Φ
is an element of U, since Ψ ⊆Θ1 ⊆ LS and ConS Θ1. The consistency of Θ1 can be
proved as follows: If Θ0 is a finite subset of Θ1, say Θ0 = {ϕ1, . . . ,ϕn}, then there

1 We write U0 ⊂U1 if U0 ⊆U1 and U0 �=U1.

V.4 The Completeness Theorem 81

are Φ1, . . . ,Φn ∈V with ϕi ∈ Φi for 1 ≤ i ≤ n. Since V is a chain, we can number
the Φi such that Φ1 ⊆ Φ2 ⊆ . . . ⊆ Φn. Thus Θ0 ⊆ Φn, and by ConS Φn we have
ConS Θ0.

Now we can apply Zorn’s Lemma (3.5) to U, thereby obtaining a maximal ele-
ment Θ in U. From the definition of U we know that Ψ ⊆Θ ⊆ LS and ConS Θ . On
the other hand Θ is also negation complete. For if ϕ ∈ LS, then by Lemma IV.7.6(c),
ConS Θ ∪{ϕ} or ConS Θ ∪{¬ϕ}; by maximality of Θ we have Θ = Θ ∪{ϕ} or
Θ =Θ ∪{¬ϕ}. Therefore Θ � ϕ or Θ � ¬ϕ . �

V.4 The Completeness Theorem

As already mentioned in the introduction of this chapter, we can obtain the com-
pleteness of the sequent calculus from Theorem 2.4 (for at most countable S) and
from Corollary 3.3 (for arbitrary S):

4.1 Completeness Theorem. For Φ ⊆ LS and ϕ ∈ LS:

If Φ |= ϕ then Φ �S ϕ . �
From it, together with the Theorem on Correctness IV.6.2, we have:

For Φ ⊆ LS and ϕ ∈ LS, Φ |= ϕ iff Φ �S ϕ ,

and from Corollary 3.3 and Lemma IV.7.5 we obtain:

For Φ ⊆ LS, Sat Φ iff ConS Φ .

In Section III.4 we saw that the concepts of consequence and satisfiability are actu-
ally independent of the particular choice of S. It follows from the results above that
the concepts of derivability and consistency are also independent of S (cf. the foot-
note on page 69). Thus we can simply write “�” and “Con”, omitting the subscript.

4.2 Theorem on the Adequacy of the Sequent Calculus.

(a) Φ |= ϕ iff Φ � ϕ .
(b) Sat Φ iff Con Φ . �

Historical Note. The program of setting up a calculus of reasoning was first for-
mulated and pursued by Leibniz, although traces of it may be found in the works
of earlier philosophers (e.g., Aristotle and Llull2). At the beginning of last century,
Russell and Whitehead developed a calculus, and within it, gave formal proofs for a
large number of mathematical theorems. In 1928, Gödel [13] proved the Complete-
ness Theorem. The method of proof used in this section is due to Henkin [15].

2 Ramon Llull, latinized Raimundus Lullus (1232–1316).

Chapter VI
The Löwenheim–Skolem Theorem
and the Compactness Theorem

The equivalences of � and |= and of Con and Sat, respectively, form a bridge be-
tween syntax and semantics which allows us to transfer properties of � to |= and of
Con to Sat and vice versa. When proving the independence of � and Con from the
underlying symbol set at the end of the previous chapter, we transferred properties
of semantic notions to syntactic ones. In Section 2 we make use of this connection in
the other direction and get several important results for |= and Sat. Together with the
theorems in Section 1 they will provide us with a deeper insight into the expressive
power of first-order languages.

VI.1 The Löwenheim–Skolem Theorem

The domain of the model IΦ defined in Section V.1 consists of equivalence classes
of terms. We use this fact to obtain the following theorem:

1.1 Löwenheim–Skolem Theorem.1 Every at most countable and satisfiable set
of formulas is satisfiable over a domain which is at most countable (i.e., it has a
model whose domain is at most countable).

Proof. First, let Φ be an at most countable set of S-sentences which is satisfiable and
hence consistent. Since each S-formula contains only finitely many S-symbols, there
are at most countably many S-symbols in Φ . Therefore we may assume without loss
of generality, that S itself is at most countable. Since Φ is satisfiable, Φ is consistent,
and the proofs in Section V.1 and Section V.2 show that there is an interpretation
which satisfies Φ and whose domain A consists of classes t of terms, where t ranges
over T S. Because T S is countable (cf. Lemma II.3.3), A is at most countable.

This argument can easily be transferred from sets of sentences to sets of formulas;
for, if Φ is a set of S-formulas and

1 Leopold Löwenheim (1878–1957), Thoralf Skolem (1887–1963).

83© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

https://doi.org/10.1007/978-3-030-73839-6_6
H.-D. Ebbinghaus et al., Mathematical Logic, Graduate Texts in Mathematics 291,

http://crossmark.crossref.org/dialog/?10.1007/978-3-030-73839-6_6&domain=pdf

84 VI The Löwenheim–Skolem and the Compactness Theorem

Φ ′ :=
{

ψ c0 . . .cn−1
v0 . . .vn−1

∣∣∣n ∈ N, ψ ∈ LS
n ∩Φ

}
,

where c0,c1, . . . are new constants, then Φ and Φ ′ are satisfiable over the same
domains (cf. the proof of Theorem V.2.4). �
The sentence ∀x∀yx ≡ y has only finite models. For a unary function symbol f , the
sentence ∀x∀y(f x ≡ f y → x ≡ y)∧¬∀x∃y f y ≡ x has only infinite models, since
there is no function on a finite set which is injective but not surjective.

If one re-examines the proof of the Completeness Theorem for the case of uncount-
able symbol sets, one obtains the following generalization of Theorem 1.1, which
we formulate for readers who are familiar with the concept of cardinality:

1.2 Downward Löwenheim–Skolem Theorem. If a set Φ ⊆ LS is satisfiable, then
it is satisfiable over a domain of cardinality not greater than the cardinality of LS.�
In the Löwenheim–Skolem Theorems a certain weakness of first-order languages is
already apparent. In the case of the symbol set S<ar, for example, there cannot exist
a set Φ of sentences which characterizes the ordered field R< = (R,+, ·,0,1,<) of
the real numbers up to isomorphism (in the sense that exactly R< and the structures
isomorphic to R< are the models of Φ). Any such set Φ of S<ar-sentences would be
at most countable and satisfiable (since R< |= Φ must hold); then by Theorem 1.1
there would be an at most countable structure A such that A |= Φ . But this could
not be isomorphic to R< since the domain of R< is uncountable.

In analysis, R< is characterized up to isomorphism, say, by the axioms for ordered
fields and the so-called completeness axiom (“Every nonempty set which is bounded
above has a supremum”). Since the axioms for ordered fields can be formulated as
S<ar-formulas, we see that the completeness axiom cannot be phrased in terms of
S<ar-formulas.

1.3 Exercise. Show that every at most countable set of formulas which is satisfiable
over an infinite domain is satisfiable over a countable domain.

VI.2 The Compactness Theorem

From the definition of � and Con we obtained directly (cf. Lemma IV.6.1 and
Lemma IV.7.4):

(a) Φ � ϕ iff there is a finite Φ0 ⊆ Φ such that Φ0 � ϕ .
(b) Con Φ iff for all finite Φ0 ⊆ Φ , Con Φ0.

Using the Adequacy Theorem V.4.2 we rephrase these results for the corresponding
semantic concepts:

2.1 Compactness Theorem. (a) (for the consequence relation)

Φ |= ϕ iff there is a finite Φ0 ⊆ Φ such that Φ0 |= ϕ .

VI.2 The Compactness Theorem 85

(b) (for satisfiability)

Sat Φ iff for all finite Φ0 ⊆ Φ , Sat Φ0.

The Compactness Theorem is so called because, in a suitable topological reformu-
lation, it says that a certain topology is compact (cf. Exercise 2.5).

The Löwenheim–Skolem Theorem and the Compactness Theorem play a dominant
role in the semantics of first-order languages and in applying them to mathematical
structures. In Chapter XIII we shall show that, in a certain way, they even character-
ize the first-order languages.

We now use the Compactness Theorem to obtain variants of the Löwenheim–
Skolem Theorem.

2.2 Theorem. Let Φ be a set of formulas which is satisfiable over arbitrarily large
finite domains (i.e., for every n ∈ N there is an interpretation satisfying Φ over a
finite domain which contains at least n elements). Then Φ is also satisfiable over an
infinite domain.

Proof. Let
Ψ := Φ ∪{ϕ≥n | 2 ≤ n}

(ϕ≥n was introduced in III.6.3). Every interpretation which satisfies Ψ is a model
of Φ and has an infinite domain. Therefore we need only prove that Ψ is satisfiable.
By the Compactness Theorem it is sufficient to show that every finite subset Ψ0 of Ψ
is satisfiable. For each such Ψ0 there is an n0 ∈ N such that

(∗) Ψ0 ⊆ Φ ∪{ϕ≥n | 2 ≤ n ≤ n0}.

According to the hypothesis of the theorem there is an interpretation I satisfying Φ ,
whose domain contains at least n0 elements. By (∗), I is also a model of Ψ0. �
2.3 Upward Löwenheim–Skolem Theorem. Let Φ be a set of formulas which is
satisfiable over an infinite domain. Then for every set A there is a model of Φ which
contains at least as many elements as A. (We say that M has at least as many ele-
ments as A if there exists an injective map from A into M.)

Proof. Let Φ ⊆ LS. For each a ∈ A let ca be a new constant (i.e., ca /∈ S) such that
ca �= cb for distinct a,b ∈ A. First, we show that the set

Ψ := Φ ∪{¬ca ≡ cb | a,b ∈ A, a �= b}
of S∪{ca | a ∈ A}-formulas is satisfiable.

Because of the Compactness Theorem we can restrict ourselves to showing, for
every finite n-tuple of distinct elements a1, . . . ,an ∈ A, that

(+) Φ ∪{¬cai ≡ ca j | 1 ≤ i, j ≤ n, i �= j}
is satisfiable (cf. the argument in the previous proof). By hypothesis, there is an S-
interpretation I= (B,β) which satisfies Φ and whose domain B is infinite. There-
fore there are n distinct elements b1, . . . ,bn ∈ B. We let cBai

:= bi for 1 ≤ i ≤ n. Then

86 VI The Löwenheim–Skolem and the Compactness Theorem

the interpretation
((
B,cBa1

, . . . ,cBan

)
,β
)

satisfies the set (+). Since every finite subset
of Ψ is satisfiable, there is an interpretation I′ which satisfies Ψ and hence also sat-
isfies Φ . Let D be the domain of I′. For a,b ∈ A with a �= b we have I′ |= ¬ca ≡ cb.
Hence I′(ca) and I′(cb) are distinct elements of D. Therefore the map π : A → D,
where π(a) = I′(ca), is injective. Thus D has at least as many elements as A. �
For example, let Φ = Φgr be the set of group axioms. Since there are infinite groups,
Theorem 2.3 proves the existence of arbitrarily large groups. Similarly, one can
show that there are arbitrarily large orderings and arbitrarily large fields. For each
of those theories this fact can easily be shown using algebraic methods specific to the
theory. However, first-order logic provides us with a framework and with methods to
state and prove such results in a general form. Investigations of this kind on (classes
of) algebraic structures belong to the field of model theory. For further reading we
refer to [8, 21, 41].

The idea of the previous proof is used in the proof of the following theorem, which
we state here for readers familiar with the notion of cardinal number.

2.4 Theorem of Löwenheim, Skolem, and Tarski. Let Φ be a set of formulas
which is satisfiable over an infinite domain and let κ be an infinite cardinal greater
than or equal to the cardinality of Φ . Then Φ has a model of cardinality κ .

Proof. Let Φ and κ be given as in the statement of the theorem. Let A be a set of
cardinality κ . We may assume that Φ ⊆ LS for a symbol set S of cardinality ≤ κ .
Then the symbol set S∪{ca | a ∈ A} given in the proof of the Upward Löwenheim–
Skolem Theorem 2.3 has cardinality κ , as does the set of S∪{ca | a ∈ A}-formulas.
Again, let Ψ := Φ ∪{¬ca ≡ cb | a,b ∈ A, a �= b}. By the Downward Löwenheim–
Skolem Theorem 1.2 there is a model I′ of Ψ (and hence of Φ) whose domain D
has cardinality ≤ κ . On the other hand, since ¬ca ≡ cb ∈Ψ for distinct a,b ∈ A, the
set D has cardinality ≥ κ; hence its cardinality is exactly κ . �
2.5 Exercise. Let S be a symbol set. For every satisfiable set Φ of S-sentences
let AΦ be an S-structure such that AΦ |= Φ . Furthermore, write Σ := {AΦ | Φ ⊆
LS

0, Sat Φ}, and for every S-sentence ϕ define Xϕ := {A ∈ Σ | A |= ϕ}.
(a) Show that the system {Xϕ | ϕ ∈ LS

0} is a basis for a topology on Σ .
(b) Show that every set Xϕ is closed.
(c) Use the Compactness Theorem to show that every open covering of Σ has a

finite subcovering, so that Σ is (quasi-)compact.

VI.3 Elementary Classes

For a set Φ of S-sentences we call

ModSΦ := {A | A is an S-structure and A |= Φ}
the class of models of Φ . Instead of ModS{ϕ} we sometimes write ModSϕ .

VI.3 Elementary Classes 87

3.1 Definition. Let K be a class of S-structures.

(a) K is called elementary if there is an S-sentence ϕ such that K= ModSϕ .
(b) K is called Δ -elementary if there is a set Φ of S-sentences such that K =

ModS Φ .

Every elementary class is Δ -elementary. Conversely, because

ModSΦ =
⋂

ϕ∈Φ ModSϕ ,

every Δ -elementary class is the intersection of elementary classes.

From an algebraic point of view we can formulate the question of the expressive
power of first-order languages as follows: Which classes of structures are elemen-
tary or Δ -elementary, i.e., which classes can be axiomatized by a first-order sen-
tence ϕ or by a set Φ of first-order sentences?

Let us give some examples.

3.2. The class of fields (as Sar-structures) and the class of ordered fields (as S<ar-
structures) are elementary. For example, the first class can be represented in the
form ModSarϕF , where ϕF is the conjunction of the field axioms in III.6.5. Similarly,
the class of groups, the class of equivalence structures, the class of partially defined
orderings (cf. III.6.4), and the class of (directed) graphs are elementary.

Let p be a prime. A field F has characteristicp if 1F+ . . .+1F︸ ︷︷ ︸
p times

= 0F, that is, if F sat-

isfies the sentence χp := 1+ . . .+1︸ ︷︷ ︸
p times

≡ 0. If there is no prime p for which F has char-

acteristic p, then F is said to have characteristic 0. For every prime p the field Z/(p)
of the integers modulo p has characteristic p. The field R of real numbers has char-
acteristic 0. The class of fields of characteristic p coincides with ModSar(ϕF ∧ χp)
and, hence, is elementary. The class of fields of characteristic 0 is Δ -elementary; it
can be represented as ModSar({ϕF}∪{¬χp | p is prime}). The following consider-
ations will show that it is not elementary.

Let ϕ be an Sar-sentence that is valid in all fields of characteristic 0, i.e.,

{ϕF}∪{¬χp | p is prime} |= ϕ .

By the Compactness Theorem there is an n0 (depending on ϕ) such that

{ϕF}∪{¬χp | p is prime, p < n0} |= ϕ .

Hence, ϕ is valid in all fields of characteristic ≥ n0. Thus we have proved:

3.3 Theorem. An Sar-sentence which is valid in all fields of characteristic 0 is valid
in all fields whose characteristic is sufficiently large. �
We conclude from this that the class of fields of characteristic 0 is not elementary,
for otherwise, there would have to be an Sar-sentence ϕ which is valid precisely in
the fields of characteristic 0.

88 VI The Löwenheim–Skolem and the Compactness Theorem

As an instance of Theorem 3.3 one obtains the well-known algebraic result that two
polynomials ρ(x) and σ(x), whose coefficients are integral multiples of the unit
element, and which are relatively prime over all fields of characteristic 0, are also
relatively prime over all fields of sufficiently large characteristic. To verify this, one
rewrites the statement that ρ(x) and σ(x) are relatively prime as an Sar-sentence ϕ .
In the case ρ(x) := 3x2 +1 and σ(x) := x3 −1 one can take for ϕ the sentence

¬∃u0∃u1∃w0∃w1∃z0∃z1∃z2∀x((u0 +u1 · x) · (w0 +w1 · x)≡ (1+1+1) · x · x+1
∧ (u0 +u1 · x) · (z0 + z1 · x+ z2 · x · x)≡ x · x · x−1)

∧ ¬∃u0∃u1∀x(u0 +u1 · x) · ((1+1+1) · x · x+1)≡ x · x · x−1.2

Here “. . . ≡ x · x · x− 1” stands for “. . .+ 1 ≡ x · x · x”. (The symbol “−” does not
belong to Sar!)

3.4. The class of finite S-structures (for a fixed S), the class of finite groups, and the
class of finite fields are not Δ -elementary. The proof is simple: If, for example, the
class of finite fields were of the form ModSar Φ , then Φ would be a set of sentences
having arbitrarily large finite models (e.g., the fields of the form Z/(p)) but no
infinite model. That would contradict Theorem 2.2. �
On the other hand, Exercise 3.7 below shows that the corresponding classes of infi-
nite S-structures (groups, fields) are Δ -elementary.

3.5. The class of torsion groups is not Δ -elementary. We give an indirect proof,
assuming for a suitable set Φ of Sgr-sentences ModSgrΦ to be the class of torsion
groups. Let

Ψ := Φ ∪{¬x◦ . . .◦ x︸ ︷︷ ︸
n times

≡ e | n ≥ 1}.

Every finite subset Ψ0 of Ψ has a model: Choose an n0 such that Ψ0 ⊆ Φ ∪
{¬x◦ . . .◦ x︸ ︷︷ ︸

n times

≡ e | 1 ≤ n < n0}. Then every cyclic group of order n0 is a model

of Ψ0 if x is interpreted by a generating element. Now let (G,β) be a model of Ψ .
Then β (x) does not have finite order, showing that G is a model of Φ but not a
torsion group, a contradiction. �
3.6. The class of connected graphs is not Δ -elementary. Here, a graph (G,RG)
is said to be connected if, for arbitrary a,b ∈ G with a �= b, there are n ≥ 2 and
a1, . . . ,an ∈ G with

a1 = a, an = b and RGaiai+1 for i = 1, . . . ,n−1

(i.e., if for any two distinct elements in G there is a path connecting them). For
n > 0, the (n+ 1)-cycle Gn with the vertices 0, . . . ,n is a connected graph. More
precisely, Gn is the structure (Gn,RGn) with Gn := {0, . . . ,n} and

2 Note that a polynomial of the kind in question is uniquely determined by its values as a function
if the underlying field is large enough.

VI.3 Elementary Classes 89

RGn := {(i, i+1) | i < n}∪{(i, i−1) | 1 ≤ i ≤ n}∪{(0,n),(n,0)}.

To give an indirect proof of 3.6, we assume that, for a suitable set Φ of {R}-
sentences, Mod{R}Φ is the class of connected graphs. For n ≥ 2 we set

ψn := ¬x ≡ y∧¬∃x1 . . .∃xn(x1 ≡ x∧ xn ≡ y∧Rx1x2 ∧ . . .∧Rxn−1xn)

and
Ψ := Φ ∪{ψn | n ≥ 2}.

Then every finite subsetΨ0 ofΨ has a model: ForΨ0 choose an n0 > 0 such thatΨ0 ⊆
Φ∪{ψn | 2≤ n≤ n0}; then G2n0 is a model ofΨ0, if x is interpreted by 0 and y by n0.
If (A,β) is a model of Ψ , there is no path connecting β (x) and β (y). Therefore A is
a model of Φ , but not a connected graph. This contradicts the assumption on Φ . �
3.7 Exercise. Let K be a Δ -elementary class of structures. Show that the class K∞

of structures in K with infinite domain is also Δ -elementary.

3.8 Exercise. If K is a class of S-structures, Φ ⊆ LS
0 and K = ModS Φ , then Φ is

said to be a system of axioms for K. Show:
(a) K is elementary if and only if there is a finite system of axioms for K.
(b) If K is elementary and K= ModSΦ , then there is a finite subset Φ0 of Φ such

that K= ModSΦ0.

3.9 Exercise. Let K and K1 be classes of S-structures such that K1 ⊆ K. Let K2 be
the class of S-structures which are in K but not in K1, that is K2 = K \K1. Further-
more, let K be elementary and K1 be Δ -elementary. Show:
(a) K1 is elementary iff K2 is Δ -elementary

iff K2 is elementary.

Conclude:
(b) The class of fields whose characteristic is a prime is not Δ -elementary.

3.10 Exercise. A set Φ of S-sentences is called independent if no ϕ ∈ Φ is a con-
sequence of Φ \{ϕ}. Show:
(a) Every finite set Φ of S-sentences has an independent subset Φ0 such that

ModSΦ = ModSΦ0.
(b) If S is at most countable then every Δ -elementary class of S-structures has

an independent system of axioms. Hint: Start by defining a system of axioms
ϕ0,ϕ1, . . . such that |= ϕi+1 → ϕi for i ∈ N.

3.11 Exercise. Let Φ be the finite system of axioms for vector spaces expressed in
terms of the symbol set S = {F ,V ,+, ·,0,1,◦,e,∗} (cf. Section III.7.2). Show:
(a) For every n the class of n-dimensional vector spaces is elementary.
(b) The class of infinite-dimensional vector spaces is Δ -elementary.
(c) The class of finite-dimensional vector spaces is not Δ -elementary.

90 VI The Löwenheim–Skolem and the Compactness Theorem

VI.4 Elementarily Equivalent Structures

Isomorphic structures satisfy the same sentences of first-order logic and thus cannot
be distinguished by a set of first-order sentences. Contrary to that, structures that
satisfy the same first-order sentences may not be isomorphic. In this section we
present some basic results concerning the relationship between isomorphism and
indistinguishability in first-order logic.

We begin by introducing two new concepts.

4.1 Definition. (a) S-structures A and B are called elementarily equivalent (writ-
ten: A≡B) if for every S-sentence ϕ we have A |= ϕ iff B |= ϕ .

(b) For an S-structure A let Th(A) := {ϕ ∈ LS
0 | A |= ϕ} be the (first-order) theory

of A.

4.2 Lemma. For S-structures A and B,

B≡ A iff B |= Th(A).

Proof. If B≡A then, since A |=Th(A), also B |=Th(A). Conversely, if B |=Th(A)
then, given an S-sentence ϕ , we examine the two possibilities: (i) If A |= ϕ , then
ϕ ∈ Th(A) and hence B |= ϕ . (ii) If not A |= ϕ , then ¬ϕ ∈ Th(A); thus B |= ¬ϕ
and therefore not B |= ϕ . �
In the following, let A be a fixed S-structure. We consider

(1) the class {B |B∼= A} of structures isomorphic to A,
(2) the class of structures which satisfy the same sentences as A, i.e., the class

{B |B≡ A} of structures elementarily equivalent to A.

From the Isomorphism Lemma III.5.2 it follows directly that isomorphic structures
are elementarily equivalent, that is

(+) {B |B∼= A} ⊆ {B |B≡ A}.

4.3 Theorem. (a) If A is infinite, then the class {B |B∼=A} is not Δ -elementary;
in other words, no infinite structure can be characterized up to isomorphism in
first-order logic.

(b) For every structure A, the class {B | B ≡ A} is Δ -elementary; in fact {B |
B≡A}= ModS Th(A). Moreover, {B |B≡A} is the smallest Δ -elementary
class which contains A.

From Theorem 4.3 together with (+) we obtain that for an infinite structure A the
class {B |B∼= A} must be a proper subclass of {B |B≡ A}; in particular:

4.4 Corollary. For each infinite structure there exists an elementarily equivalent,
nonisomorphic structure. �
Proof of Theorem 4.3. (a) We assume A to be infinite and Φ to be a set of S-sentences
such that

VI.4 Elementarily Equivalent Structures 91

(∗) ModSΦ = {B |B∼= A}.

The set Φ has an infinite model, and therefore, by the Upward Löwenheim–Skolem
Theorem 2.3, it has a model B with at least as many elements as the power set of A.
Hence B is not isomorphic to A (cf. Exercise II.1.5), in contradiction to (∗).

(b) From Lemma 4.2 it follows immediately that {B |B≡A}= ModSTh(A). Now,
if ModSΦ is another Δ -elementary class containing A, then A |= Φ and therefore
B |= Φ for every B with B≡ A; hence {B |B≡ A} ⊆ ModS Φ . �
Theorem 4.3(b) shows that a Δ -elementary class contains, together with any given
structure, all elementarily equivalent ones. In certain cases one can use this fact
to show that a class K is not Δ -elementary. To do this one simply specifies two
elementarily equivalent structures, one of which belongs to K, and the other does
not. We illustrate this method in the case of archimedean fields.

An ordered field F is called archimedean if for every a ∈ F there is a natural num-
ber n such that a <F 1F + . . .+1F︸ ︷︷ ︸

n times

. For example, the ordered field of rational num-

bers and the ordered field R< of real numbers are archimedean. We show that there
is an ordered field elementarily equivalent to R< which is not archimedean. This
will prove:

4.5 Theorem. The class of achimedean fields is not Δ -elementary.

Proof. Let

Ψ := Th(R<)∪{0 < x, 1 < x, 2 < x, . . .},

where 0,1,2,. . . stand for the Sar-terms 0,1,1 + 1,. . . . (We shall write nn for the
sum with n entries 1.) Every finite subset of Ψ is satisfiable, for example, by an
interpretation of the form (R<,β), where β (x) is a sufficiently large natural number.
By the Compactness Theorem there is a model (B,γ) of Ψ . Since B |= Th(R<),
B is an ordered field elementarily equivalent to R<, but (as shown by the element
γ(x)) it is not archimedean. �
The application of the Compactness Theorem in the preceding proof is typical and
has already been used several times (cf. Theorem 2.2, Theorem 2.3, and para-
graph 3.5). In each case the problem consists in finding a structure with certain
properties which can be expressed in first-order logic by means of a suitable set Ψ
of formulas. To prove satisfiability of Ψ one employs the Compactness Theorem. In
the preceding proof Ψ contains (in addition to Th(R<)) formulas which guarantee
that there is an element which violates the archimedean ordering property. The Com-
pactness Theorem says in this case that, from the existence of ordered fields with
arbitrarily large “finite” elements, one can conclude the existence of an ordered field
with an “infinitely large” element. We shall give some further applications of this
method.

The system of axioms Π from Exercise III.7.5 characterizes the structure N up to
isomorphism. However, N cannot be characterized up to isomorphism by means of

92 VI The Löwenheim–Skolem and the Compactness Theorem

first-order formulas (cf. Corollary 4.4). Hence the induction axiom, being the only
second-order axiom of Π , cannot be formulated as a first-order formula or as a set
of first-order formulas.

A structure which is elementarily equivalent, but not isomorphic to N is called a
nonstandard model of arithmetic. By the Upward Löwenheim–Skolem Theorem 2.3
there exists an uncountable nonstandard model of arithmetic. We now prove:

4.6 Skolem’s Theorem. There is a countable nonstandard model of arithmetic.

Proof. Let
Ψ := Th(N)∪{¬x ≡ 0, ¬x ≡ 1, ¬x ≡ 2, . . .}.

Every finite subset of Ψ has a model of the form (N,β), where β (x) is a sufficiently
large natural number. By the Compactness Theorem there is a model (A,γ) of Ψ ,
which by the Löwenheim–Skolem Theorem and the countability of Ψ we may as-
sume to be at most countable. A is a structure elementarily equivalent to N. Since
for m �= n the sentence ¬mm ≡ n belongs to Th(N), A is infinite and hence is count-
able. A and N are not isomorphic, since an isomorphism π from N onto A would
have to map n = nN to nA (cf. (i) in the proof of the Isomorphism Lemma III.5.2),
and thus γ(x) would not belong to the range of π . �
Considering the set Th(N<)∪ {¬x ≡ 0, ¬x ≡ 1, ¬x ≡ 2, . . .}, we obtain analo-
gously:

4.7 Theorem. There is a countable structure elementarily equivalent to N< which
is not isomorphic to N<. (In other words, there is a countable nonstandard model
of Th(N<)). �
What do nonstandard models of Th(N) or Th(N<) look like? In the following we
gain some insight into the order structure of a nonstandard model A of Th(N<) (and
hence also into the structure of a nonstandard model of Th(N); cf. Exercise 4.9).

In N< the sentences

∀x(0 ≡ x∨0 < x),

0 < 1∧∀x(0 < x → (1 ≡ x∨1 < x)), 1 < 2∧∀x(1 < x → (2 ≡ x∨2 < x)), . . .

hold. They say that 0 is the smallest element, 1 the next smallest element after 0, 2
the next smallest element after 1, and so on. Since these sentences also hold in A,
the “initial segment” of A looks as follows:

· · ·>
0A 1A 2A 3A

In addition, A contains a further element, say a, since otherwise A and N< would
be isomorphic. Furthermore, N< satisfies a sentence ϕ which says that for every
element there is an immediate successor and for every element other than 0 there
is an immediate predecessor. From this it follows easily that A contains, in addition

VI.4 Elementarily Equivalent Structures 93

to a, infinitely many other elements which together with a are ordered by <A like
the integers:

· · ·>
0A 1A 2A

<· · · · · ·>
a

If we consider the element a+A a we are led to further elements of A:

· · ·>
0A 1A 2A

<· · · · · ·>
a

<· · · · · ·>
a+A a

The reader should give a proof of this and also verify that between every two copies
of (Z,<) in A there lies another copy.

The examples in this and the previous sections show that there are important classes
of structures which cannot be axiomatized in first-order logic. On the other hand,
this weakness of expressive power also has pleasant consequences. For example,
the argument establishing that the class of archimedean fields is not axiomatizable
yields a proof of the existence of non-archimedean ordered fields; and the fact that
the class of fields of characteristic 0 cannot be axiomatized by means of a sin-
gle Sar-sentence is complemented by the interesting result of Theorem 3.3. Using
similar methods, one can obtain structures elementarily equivalent to the ordered
field R< of real numbers which contain, in addition to the real numbers, infinitely
large elements and infinitely small positive elements (so-called infinitesimals). Such
structures can be used in a development of analysis which avoids the ε-δ -technique
(nonstandard analysis; cf. [16, 25, 34]).

4.8 Exercise. Show: If an S<ar-sentence ϕ is valid in all non-archimedean ordered
fields, then ϕ is valid in all ordered fields.

4.9 Exercise. Let the Sar-structure A be a model of Th(N). Let the binary rela-
tion <A be defined on A as follows: For all a,b ∈ A,

a <A b iff (a �= b and there is c ∈ A such that a+A c = b).
Show that (A,<A) is a model of Th(N<).

4.10 Exercise. If A is a model of arithmetic (that is, A |= Th(N)) and if a,b ∈ A,
then a is said to be a divisor of b (written: a|b) if a ·A c = b for a suitable c ∈ A.
Let Q be a set of prime numbers. Show that there is a model A of arithmetic which
contains an element a whose prime divisors are just the members of Q, that is, for
every prime p:

1A + . . .+1A︸ ︷︷ ︸
p times

|a iff p ∈ Q.

Conclude that there are at least as many pairwise nonisomorphic countable models
of arithmetic as there are subsets of N.

94 VI The Löwenheim–Skolem and the Compactness Theorem

4.11 Exercise. Let A= (A,<A) be a partially defined ordering (cf. III.6.4). We say
that <A (or also (A,<A)) has an infinite descending chain if there are elements
a0,a1,a2, . . . in field <A such that

. . . <A a2 <
A a1 <

A a0.

Show: (a) (N,<N) contains no infinite descending chain; on the other hand, if A is
a nonstandard model of Th(N<), then (A,<A) contains an infinite descending
chain.

(b) Let <∈ S and Φ ⊆ LS
0. Assume that for every m ∈ N there is a model A of Φ

such that (A,<A) is a partially defined ordering and field <A contains at least m
elements. Then there exists also a model B of Φ such that (B,<B) is a partially
defined ordering containing an infinite descending chain.

Chapter VII
The Scope of First-Order Logic

In Chapter I we realized that investigations into the logical reasoning used in mathe-
matics require an analysis of the concepts of mathematical proposition and proof. In
undertaking such an analysis, we were led to introduce the first-order languages. We
also defined a notion of formal proof which corresponds to the intuitive concept of
mathematical proof. The Completeness Theorem then shows that every proposition
which is mathematically provable from a system of axioms (and thus follows from
it) can also be obtained by means of a formal proof, provided the proposition and
the system of axioms admit a first-order formulation.

In this chapter we discuss what has been achieved so far and what implications this
has for the foundations of mathematics. To start our discussion let us consider the
following questions:

(1) One goal of our investigations was a clarification of the notion of proof. How-
ever, we carried out mathematical proofs before the notion of proof was made pre-
cise. Are we not trapped in a vicious circle? Furthermore, even if there are no prob-
lems of this kind in our approach, how can we justify the rules of the sequent calcu-
lus S?

(2) We realized, particularly in Chapter VI, that the first-order languages have cer-
tain deficiencies in expressive power. Hence the question: What effect does the re-
striction to first-order languages have on the scope of our investigations?

We deal with the second question in Section 2. There we shall see that the first-
order languages are in principle sufficient for present-day mathematics. Hence, the
following discussion pertaining to the first question applies, in fact, to the whole of
mathematics.

95© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

https://doi.org/10.1007/978-3-030-73839-6_7
H.-D. Ebbinghaus et al., Mathematical Logic, Graduate Texts in Mathematics 291,

http://crossmark.crossref.org/dialog/?10.1007/978-3-030-73839-6_7&domain=pdf

96 VII The Scope of First-Order Logic

VII.1 The Notion of Formal Proof

In answering question (1), we want to show that no mathematical proofs are needed
to introduce the notion of formal proof. In our discussion we also investigate the
nature of the sequent rules and consider possible means of justifying them.

In Section 2 we shall argue that a finite set S of concretely chosen symbols suffices
to represent the statements and arguments arising in mathematics. Therefore, in this
discussion we can specify the symbols as concrete signs; thus terms, formulas, and
sequents are concrete strings of symbols and not abstract mathematical entities such
as are, for example, formulas in a language whose symbol set is {cr | r ∈ R}.

The notion of formal proof is based on the manipulation of symbol strings such
as terms, formulas, and sequents. These manipulations are governed by a series of
calculi, like the calculus of terms and the sequent calculus. The application of rules
in these calculi consists of simple syntactic operations. We illustrate this in the case
of the sequent calculus. To clarify the aspect we have in mind, let us start by a
comparison with the rules of chess.

The rules of chess permit certain operations on concrete objects, the chess pieces.
Applying a rule, that is, making a move, consists of proceeding from one configu-
ration of the pieces to another. Each individual rule of chess is so simple that those
who know the rules – even if they are not chess players – can carry out moves by
themselves, or can check moves to determine whether they were made according to
the rules.

A similar situation pertains in the case of sequent rules. Clearly the rules are moti-
vated by the intended meanings, but their application does not require any knowl-
edge of these meanings: one merely performs concrete syntactic operations on
strings of symbols. Those who know the rules – even if they are not logicians or
mathematicians – can apply them and check whether an application has been car-
ried out correctly. Admittedly, when dealing with sequents, we have often relied on
results proven mathematically (for example, we invoked the unique decomposition
of a sequent into formulas when speaking of the succedent). But this can be avoided
if, when applying a rule, we not only note the sequent, but also keep a record of how
the symbol strings in it were obtained. We give some examples:

(a) Let Θ1 and Θ2 be sequents which occur in a derivation. One reads from the
record accompanying the derivation that Θ1 was obtained by forming a string from
ϕ0, . . . ,ϕn and that Θ2 was obtained similarly from ψ0, . . . ,ψm. If one wants to
apply the rule (∨A), for example, one must first check whether n = m ≥ 1, and
whether the symbol strings ϕi and ψi agree for every i �= n−1. If so, one can apply
(∨A) by forming the symbol string ϕ0 . . .ϕn−2(ϕn−1 ∨ψn−1)ϕn from the compo-
nents ϕ0, . . . ,ϕn−2,ϕn−1, ψn−1,ϕn,(,∨,). Moreover, one notes in the record that
this symbol string was obtained from the components ϕ0, . . . ,ϕn−2,(ϕn−1 ∨ψn−1),
and ϕn.

VII.1 The Notion of Formal Proof 97

(b) An application of the rule (≡) consists of writing down a sequent of the form
t ≡ t, where the term t, for its part, has to be given by means of a derivation in the
calculus of terms (cf. Definition II.3.1).

(c) Similarly, when one uses the rule (∃A) to proceed from the sequent Γ ϕ y
x ψ to

the sequent Γ ∃xϕ ψ , one must supply a derivation of ϕ x y ϕ y
x in the substitu-

tion calculus (cf. Exercise III.8.11), and, for every χ in Γ ∃xϕψ , one must supply
a derivation of y χ in the calculus of nonfree occurrence for variables (cf. Exer-
cise II.5.2) in order to show that the condition “y is not free in Γ ∃xϕ ψ” is fulfilled.
Then, starting from the sequent Γ ϕ y

x ψ , one needs only to write down the sequent
Γ ∃xϕ ψ .

From these examples it becomes clear that an application of the sequent rules con-
sists of purely syntactic manipulations, which can be carried out without any ref-
erence to mathematical arguments. Since, by definition, a formal proof is just a
sequence consisting of sequents, each of which is obtained by an application of a
sequent rule (to preceding sequents), it is obvious from our previous remarks that
no mathematical proofs are needed in order to introduce the notion of formal proof.
Thus, our approach is not circular. The proofs we have given before defining the
notion of formal proof, and the mathematical tools we have used in building up the
semantics, merely served the purpose of gaining insight into first-order languages
and of motivating our development.

A word of warning is in order when considering this reduction of the notion of
proof to a triviality by the calculus of sequents: We have seen that only patience, not
mathematical talent is needed to verify a formal proof in accordance with the rules.
However, it is a completely different matter to understand the idea of a proof, not to
speak of developing such ideas oneself. Likewise, in chess there is also a great dif-
ference between knowing the rules and being able to checkmate a skillful opponent.
Thus when determining the notion of formal proof we did not really touch upon
the more creative part of mathematical activity (and this includes not only the de-
velopment of proof ideas, but also the introduction of adequate concepts, setting up
suitable systems of axioms, and finding new interesting conjectures). On the other
hand, the formal character of the sequent rules leads to new interesting questions:
It is possible to implement the syntactic manipulations on a computer and write a
program which, for example, checks whether a proof is correct (in the sense of the
sequent calculus), or which systematically produces all possible derivations. How
far can we go using such computational methods, and what are their limitations? In
Chapters X and XI we shall discuss these questions in more detail.

Does our formal notion of proof provide a justification of common mathematical
reasoning? Certainly not; for we have merely imitated methods of inference in the
framework of a precisely defined language. However, we can at least claim that
the sequent rules correspond to the normal usage of connectives, quantifiers, and
equality in mathematics. For example, the ∨-rules reflect the use of the inclusive
“or”, according to which the disjunction of two propositions is true if and only if at
least one of the propositions is true. Admittedly, such usage of “or” rests on certain

98 VII The Scope of First-Order Logic

assumptions; for example, it must be meaningful to speak of the truth or falsehood
of a mathematical proposition, and every such proposition must be either true or
false (tertium non datur). In traditional mathematics (which in this regard is also
called classical mathematics) these assumptions are accepted. Thus the rules of the
sequent calculus are based upon the classical usage of the logical connectives.

Some mathematicians engaged in foundational questions, among them intuitionists,
do not share the classical point of view. An intuitionist associates with the assertion
of a mathematical proposition the requirement that it be proved in a “constructive”
way. For instance, an existential statement must be proved by presenting an example,
and a disjunction must be proved by establishing one of its members. To illustrate
this, we consider the following two statements.

A: Every even number ≥ 4 is the sum of two primes (Goldbach’s conjecture);
not A: Not every even number ≥ 4 is the sum of two primes.

From the classical point of view, the proposition (A or not A) is true. However,
an intuitionist cannot assert (A or not A) since neither the proposition A nor the
proposition (not A) has hitherto been proved (even using classical methods).

This example already shows that mathematics as pursued by an intuitionist, so-
called intuitionistic mathematics (cf. [19]), differs considerably from classical math-
ematics. Intuitionists investigate “mental mathematical constructions as such, with-
out reference to questions regarding the nature of the constructed object, such as
whether these objects exist independently of our knowledge of them ” (cf. [19], p. 1).
By contrast, some mathematicians adopt the classical point of view from the con-
viction that “the objects in mathematics, together with the mathematical domains,
exist as such, like the platonic ideas” (cf. [35], p. 1), i.e., that propositions concern-
ing these objects describe properties which either do or do not hold, and hence are
either true or false.

We see from this discussion that the possibilities for justifying methods of math-
ematical reasoning (and specifically for justifying a proof calculus) depend essen-
tially on epistemological assumptions. We shall continue to adopt the classical point
of view.

The interested reader will find more information in [5].

VII.2 Mathematics Within the Framework of First-Order Logic

In this section we wish to discuss the second question raised at the beginning of this
chapter: How serious is the restriction to first-order languages?

To treat this question we start with the example of arithmetic. In this case, the weak-
ness of the expressive power of first-order languages manifests itself in the fact that
the structure Nσ = (N,σ ,0) (cf. III.7.3) cannot be characterized up to isomorphism

VII.2 Mathematics Within the Framework of First-Order Logic 99

in L{σσ ,0}. On the other hand, according to Dedekind’s Theorem, Nσ can be charac-
terized in a second-order language by the Peano axioms (cf. III.7.4):

(P1) ∀x¬σ x ≡ 0
(P2) ∀x∀y(σ x ≡ σ y → x ≡ y)
(P3) ∀X((X0∧∀x(Xx → Xσ x))→∀yXy).

Let us call a structure which satisfies (P1)–(P3) a Peano structure. Then we can
formulate Dedekind’s Theorem as follows:

2.1. Any two Peano structures are isomorphic.

Since Peano structures cannot be characterized in the first-order language, one might
suspect that the result 2.1 cannot be formulated in the framework given by first-order
logic, and in particular, that the proof of Theorem III.7.4, which involves (P1)–(P3),
cannot be carried out within this framework. Nevertheless, this can be achieved, as
we now show.

First, let us note that in 2.1 a statement is made about {σ ,0}-structures. We want to
interpret 2.1 as a statement about a domain which comprises as elements all Peano
structures and also with any two such structures an isomorphism between them. Fur-
thermore, this domain should contain the elements and subsets of Peano structures,
since these play a role in the formulation of (P1)–(P3) and in the proof of 2.1.

To avoid drawing arbitrary boundaries and enable us to apply our discussion to
other propositions besides 2.1, we shall consider as domain the totality of all objects
which are treated in mathematics; we call it the (mathematical) universe. This uni-
verse contains not only “simple” objects, such as the natural numbers or the points
of the euclidean plane, but also “more complicated” objects, such as sets, functions,
structures or topological spaces. A mathematician assumes in his arguments that the
universe has certain properties: for example, that for every two objects a1 and a2 the
set {a1,a2} is an object as well, likewise for any two sets M1,M2 the union M1∪M2,
and for every injective function f the inverse f−1. Mathematical statements can then
be regarded as propositions about the universe. From this point of view, 2.1 says that
for every two Peano structures A and B in the universe there is another object in the
universe which is an isomorphism between A and B.

It is possible to present in a suitable first-order language a rather simple set of
sentences expressing all the properties of the universe which mathematicians use.
Proposition 2.1 can be formalized in this language. In other words, 2.1 can be for-
malized as a proposition about the universe in a first-order language LS appropriate
to the universe, just as the proposition “there is no largest real number” can be
formalized as a proposition about the structure (R,<R) in the language L{<} appro-
priate to (R,<R).

In order to give a concrete impression, we carry out the essential steps of this idea
more carefully: A preliminary analysis of the totality of mathematical objects leads
us to a symbol set S which is suitable for the universe. In a second step we present
parts of a system Φ0 ⊆ LS of axioms which comprise the properties of the universe

100 VII The Scope of First-Order Logic

used in mathematics. (A complete presentation of such a system Φ0 follows in Sec-
tion 3.) Finally, we indicate how to obtain a first-order formalization of 2.1 in LS.

When introducing the universe, we spoke of “simple” objects (numbers, points, . . .)
and “complex” objects (sets, functions, . . .). For the sake of simplicity we make use
of the empirical fact that the whole spectrum of “complex” objects can be reduced
to the concept of set. (We shall carry out this reduction for ordered pairs and func-
tions.) We call the “simple” objects urelements. Thus, the universe contains only
urelements and sets. The sets consist of elements which are either urelements or
else sets themselves. Therefore Φ0 collects basic properties of (urelements and) sets
and hence is called a system of axioms for set theory.

We use the unary relation symbols U (“. . . is an urelement”) and M (“. . . is a set”) to
distinguish between urelements and sets, and we use the binary relation symbol εε
for the relation “. . . is an element of . . .”. Thus we are led to the symbol set S :=
{U,M, ε}.

Now we give four axioms from Φ0 which formalize simple properties of the uni-
verse.

(A1) ∀x(Ux∨Mx) “Every object (of the universe) is an urelement or a set.”

(A2) ∀x¬(Ux∧Mx) “No object is both an urelement and a set.”

(A3) ∀x∀y((Mx∧My∧∀z(z ε x ↔ zε y))→ x ≡ y) “Two sets which contain the
same elements are equal.”

(A4) ∀x∀y∃z(Mz∧∀u(uε z ↔ (u ≡ x∨u ≡ y))) “For every two objects x and y,
the pair set {x,y} exists.”

The set z, whose existence is guaranteed by (A4), is uniquely determined by (A3).
Repeated application of (A4) yields the existence of the set {{x,x},{x,y}}. This set
is normally written (x,y) and called the ordered pair of x and y. It is not difficult to
show from (A1)–(A4) that

(x,y) = (x′,y′) iff x = x′ and y = y′.

Ordered triples can then be introduced by

(x,y,z) := ((x,y),z).

In order to obtain formalizations in LS which are easier to read, we introduce a
number of abbreviations.

⊆ x ⊆ y “x is a subset of y” for Mx∧My∧∀z(zε x → zε y)

Instead of treating “x ⊆ y” as an abbreviation we could have added the binary rela-
tion symbol ⊆ to S and expanded Φ0 by adding the axiom

∀x∀y(x ⊆ y ↔ (Mx∧My∧∀z(zε x → zε y))).

Both approaches are equivalent, as we shall see in Section VIII.3.

VII.2 Mathematics Within the Framework of First-Order Logic 101

(OP) OPzxy “z is the ordered pair of x and y” for

Mz∧∀u(uεε z ↔ (Mu ∧ (∀v(vε u ↔ v ≡ x)∨∀v(v ε u ↔ (v ≡ x∨ v ≡ y)))))

(OT) OTuxyz “u is the ordered triple (x,y,z)” for

Mu∧∃v(OPuvz∧OPvxy).

(E) Euxy “The ordered pair (x,y) is an element of u” for

Mu∧∃z(zεεε u∧OPzxy).

(F) Fu “u is a function, that is, a set of ordered pairs (x,y), where y is the value
of u at x” for

Mu∧∀z(zε u →∃x∃yOPzxy)∧∀x∀y∀y′((Euxy∧Euxy′)→ y ≡ y′)

By means of (F) the concept of function is reduced in the usual manner to that of
set: A function f with domain A is considered as the set {(x, f (x)) | x ∈ A}, which
is also referred to as the graph of f .

(D) Duv “v is the domain of the function u” for

Fu∧Mv∧∀x(xε v ↔∃yEuxy).

(R) Ruv “v is the range of the function u” for

Fu∧Mv∧∀y(yε v ↔∃xEuxy).

For simplicity, we regard a {σσσ ,0}-structure (contrary to Definition III.1.1) as an
ordered triple (x,y,z) consisting of a set x, a function y : x → x and an element z
of x. Then the following abbreviation “PSu” expresses that u is a Peano structure,
whereby parts (1), (2), and (3) are formulations of the Peano axioms (P1), (P2), and
(P3), respectively.

(PS) PSu for ∃x∃y∃z(OTuxyz ∧ Mx ∧ zε x ∧ Fy ∧ Dyx ∧∃v(Ryv∧ v ⊆ x) ∧
(1) ∀w(wε x →¬Eywz) ∧
(2) ∀w∀w′∀v((Eywv∧Eyw′v)→ w ≡ w′) ∧
(3) ∀x′((x′ ⊆ x∧ zε x′ ∧∀w∀v((wε x′ ∧Eywv)→ vε x′))→ x′ ≡ x)).

The final abbreviation “Iwuu′” states the property that w is an isomorphism from
the Peano structure u onto the Peano structure u′:

(I) Iwuu′ for PSu∧PSu′ ∧Fw∧
∃x∃y∃z∃x′∃y′∃z′(OTuxyz∧OTu′x′y′z′ ∧Dwx∧Rwx′ ∧
∀r∀s∀v′((Ewrv′ ∧Ewsv′)→ r ≡ s)∧Ewzz′ ∧
∀v∀v′∀r((Eyvr∧Ewvv′)→∃r′(Ewrr′ ∧Ey′v′r′))).

Thus the following is a formalization of 2.1, Dedekind’s Theorem:

102 VII The Scope of First-Order Logic

(+) ∀u∀v(PSu∧PSv →∃wIwuv).

Clearly, (+) is a {U,M,εεε}-sentence. So we have attained our goal of formulating
2.1 within a first-order language. This was possible because we did not distinguish
between different types of mathematical objects, such as natural numbers and sets
of natural numbers, but simply treated all objects in the universe as first-order ones
(compare (P3) and (3) in (PS)).

We can achieve even more: Recall that the system Φ0 (which we have given only in
part) captures all properties of the universe needed for mathematical reasoning. By
rewriting in LS the proof of Dedekind’s Theorem from Section III.7, one can obtain
a derivation of the assertion (+) from axioms of Φ0. Hence we have:

2.2. Φ0 � ∀u∀v(PSu∧PSv →∃wIwuv).

More generally: Experience shows that all mathematical propositions can be for-
malized in LS (or in variants of it), and that mathematically provable propositions
have formalizations which are derivable from Φ0. Thus it is in principle possible to
imitate all mathematical reasoning in LS using the rules of the sequent calculus. In
this sense, first-order logic is sufficient for mathematics.

At the same time this experience shows that the properties of the universe which
are expressed in Φ0 are a sufficient basis for a set-theoretic development of math-
ematics. Thus Φ0 is a formalization of the set-theoretic assumptions about the uni-
verse upon which the mathematician ultimately relies. Since these set-theoretic as-
sumptions can be viewed as the background for all mathematical considerations, we
call Φ0, in this context, a system of axioms for background set theory.

On the other hand, Φ0 itself, like any other system of axioms, can also be the object
of mathematical investigations. For example, one can ask whether Φ0 is consistent
or study the models of Φ0. In this context Φ0 is called a system of axioms for object
set theory.

A model of Φ0 is of the form A = (A,UA,MA,εε A) and is, like every structure, an
object of the universe, that is, an object in the sense of background set theory. The
same is true of the domain A. Thus, as an object of the universe, A is distinct from
the universe. Nevertheless, in a model A= (A,UA,MA, εA) of Φ0, all set-theoretical
statements hold which are derivable from Φ0; but note that, for example, aε Ab (for
a,b ∈ A) does not mean that a is an element of b, i.e., that a ∈ b holds.

Let us emphasize once again that Φ0 plays two roles: First, it is an object of math-
ematical investigation, second, it gives a formalized description of basic properties
of the universe. In other words, it is both a mathematical object and a framework for
mathematics.

Thus we have two levels, object set theory and background set theory, which must
be carefully distinguished. Many paradoxes arise from a confusion of these two
levels. In Section 4 we shall discuss this in more detail. For the present we merely
mention Skolem’s paradox. It is well known that there are uncountably many sets
(for example, there are uncountably many subsets of N). This fact can be formalized

VII.3 The Zermelo–Fraenkel Axioms for Set Theory 103

by a sentence ϕ , which is derivable from Φ0. By the Löwenheim–Skolem Theorem
there is a countable model A of Φ0 and hence of ϕ . The countable model A thus
satisfies a sentence which says that there are uncountably many sets in A!

VII.3 The Zermelo–Fraenkel Axioms for Set Theory

We now present, in full, a system of axioms for set theory. Our exposition will be
rather sketchy; for a more detailed treatment we refer the reader to [26, 27].

In Section 2 we assumed that the universe consists only of sets and urelements, and
we saw by means of set-theoretic definitions for concepts such as “ordered pair” and
“function” that this assumption is really no restriction. Furthermore, experience has
shown that one can even replace the urelements arising in mathematics by suitable
sets. Later, as an example, we shall give a set-theoretic substitute for the natural
numbers.

Since we are abandoning the use of urelements, the symbols U and M become super-
fluous. Therefore, we formulate the axioms in L{εε}, where the variables are intended
to range over the sets of the universe. The resulting system of axioms, called ZFC, is
originally due to Zermelo, Fraenkel,1 and Skolem, and includes the axiom of choice.

ZFC contains the axioms EXT (axiom of extensionality), PAIR (pair set axiom),
SUM (sum set axiom), POW (power set axiom), INF (axiom of infinity), AC (axiom
of choice), FUND (axiom of foundation) and the axiom schemes SEP (separation
axioms) and REP (replacement axioms):

EXT: ∀x∀y(∀z(zε x ↔ zε y)→ x ≡ y)
“Two sets which contain the same elements are equal.”

SEP: For each ϕ(z,x1, . . . ,xn)
2 and arbitrary distinct variables x,y which are also

distinct from z and the xi, the axiom

∀x1 . . .∀xn∀x∃y∀z(zε y ↔ (zε x∧ϕ(z,x1, . . . ,xn)))

“Given a set x and a property P which can be formulated by an {ε}-formula ϕ , the
set {z ∈ x | z has the property P} exists.”

PAIR: ∀x∀y∃z∀w(wε z ↔ (w ≡ x∨w ≡ y))
“Given two sets x,y, the pair set {x,y} exists.”

SUM: ∀x∃y∀z(zε y ↔∃w(wε x∧ zε w))
“Given a set x, the union of all sets in x exists.”

1 Ernst Zermelo (1871–1953), Abraham Fraenkel (1891–1965).
2 Here and in the following we write ψ(y1, . . . ,yn) to indicate that the variables occurring free
in ψ are among the distinct variables y1, . . . ,yn.

104 VII The Scope of First-Order Logic

POW: ∀x∃y∀z(zεε y ↔∀w(wε z → wε x))
“Given a set x, the power set of x exists.”

To formulate the remaining axioms more conveniently, we introduce more symbols
and define their meaning. The considerations in Section VIII.3 show that formulas
which contain these symbols can be regarded as abbreviations of {ε}-formulas. The
symbols and their definitions are:

/ (constant for the empty set):0

∀y(/0 ≡ y ↔∀z¬zε y).

⊆ (binary relation symbol for the subset relation):

∀x∀y(x ⊆ y ↔∀z(zε x → zε y)).

{,} (binary function symbol for pairing):

∀x∀y∀z({x,y} ≡ z ↔∀w(w ε z ↔ (w ≡ x∨w ≡ y))).

(For the term {y,y} we often write the shorter form {y}.)

∪ (binary function symbol for the union):

∀x∀y∀z(x∪ y ≡ z ↔∀w(wε z ↔ (wε x∨wε y))).

∩ (binary function symbol for the intersection):

∀x∀y∀z(x∩ y ≡ z ↔∀w(wε z ↔ (wε x∧wε y))).

P (unary function symbol for the power set operation):

∀x∀y(Px ≡ y ↔∀z(z ε y ↔∀w(wε z → wε x))).

The remaining axioms of ZFC are as follows:

INF: ∃x(/0 ε x∧∀y(yε x → y∪{y} ε x))
“There exists an infinite set, namely a set containing /0,{ /0},{ /0,{ /0}},”

REP: For each ϕ(x,y,x1, . . . ,xn) in L{ε} and all distinct variables u,v which are
also distinct from x,y and the xi, the axiom

∀x1 . . .∀xn(∀x∃=1yϕ(x,y,x1, . . . ,xn)→
∀u∃v∀y(yε v ↔∃x(xε u∧ϕ(x,y,x1, . . . ,xn))))

“If for parameters x1, . . . ,xn the formula ϕ(x,y,x1, . . . ,xn) defines a map x �→ y, then
the range of a set under this map is again a set.”

AC: ∀x((¬ /0 ε x∧∀u∀v((uε x∧ vε x∧¬u ≡ v)→ u∩ v ≡ /0))→
∃y∀w(wε x →∃=1zz ε w∩ y))

“Given a set x of nonempty pairwise disjoint sets, there exists a set which contains
exactly one element of each set in x.”

VII.3 The Zermelo–Fraenkel Axioms for Set Theory 105

As the axiom FUND of foundation is not needed for the following considerations,
we shall formulate it at the end of this section.

Within the framework of ZFC one can now introduce the notions of ordered pair,
ordered triple, function, etc. as we did in the preceding section, and, by examples,
give evidence that all mathematical propositions can be formalized in L{εε}, and that
provable propositions correspond to sentences derivable from ZFC.

As stated earlier, we now show in the case of the natural numbers that one can
replace the urelements by suitable sets: In our present framework we exhibit a Peano
structure which can play the role of Nσ .

The sets 0̃ := /0, 1̃ := { /0}, 2̃ := { /0,{ /0}}, . . . will play the role of the natural numbers
0,1,2, Thus 0̃ = /0, 1̃ = {0̃}, 2̃ = {0̃, 1̃}, and in general ñ = {0̃, 1̃, . . . , ñ−1}. Let
us call a set inductive if it contains /0, and if whenever it contains x it also contains
x∪{x}; then the smallest inductive set assumes the role of N. It remains to show
that the statement “there is a smallest inductive set” is derivable in ZFC. We give a
guideline as to how to proceed. By INF there exists an inductive set, say x. Using
SEP we obtain the set

ω := {z | z ∈ x and z ∈ y for all inductive y},

which can be shown to be the smallest inductive set, i.e., ω is inductive and for every
inductive y, ω ⊆ y. The function ν : ω → ω with ν(x) := x∪{x} for x ∈ ω (i.e., the
function ν = {(x,x∪{x}) | x ∈ ω}) plays the role of the successor function. One
can see that (ω,ν , 0̃) is a Peano structure.

The definition of ω as a smallest inductive set forms the basis for definitions and
proofs by induction on the natural numbers. During his research on topics of anal-
ysis, G. Cantor3 was led to definitions and proofs by transfinite induction. Such
definitions and proofs run over ordinal numbers, an extension of the natural num-
bers into the infinite. The sets ω and ω +1 := ω ∪{ω} are the first infinite ordinal
numbers. The theory of ordinal numbers forms a cornerstone in Cantor’s founda-
tional papers, where he introduces the notion of set into mathematics and creates set
theory as a new mathematical discipline (cf. [7]).

We close our presentation of ZFC with an important methodological aspect by
briefly discussing the so-called continuum hypothesis. This hypothesis was stated
at the end of the nineteenth century by Cantor and has had a crucial influence on the
development of set theory. We first give an intuitive formulation.

Two sets x,y are said to be of the same cardinality (written: x ∼ y) if there is a
bijection from x to y. A set is finite if and only if it is of the same cardinality as an
element of ω; it is countable if it is of the same cardinality as ω . The set R of real
numbers (the “continuum”) is uncountable (cf. Exercise II.1.3).

3 Georg Cantor (1845–1918).

106 VII The Scope of First-Order Logic

Now the continuum hypothesis states: Every infinite subset of R is either countable
or of the same cardinality as R. Using canonically defined symbols R,Fin,Count,
and ∼∼, this statement can be formulated in L{ε} in the following form:

∀x((x ⊆ R∧¬Fin x)→ (Count x∨ x ∼ R)).

This formula is often denoted by “CH” (Continuum Hypothesis). The question of
whether the continuum hypothesis holds corresponds to the question of whether CH
is derivable from ZFC.

Gödel showed in 1938:

3.1. If ZFC is consistent, then not ZFC � ¬CH,

and P. Cohen showed in 1963:

3.2. If ZFC is consistent, then not ZFC � CH.

Thus if we assume that ZFC is consistent (cf. Section 4), then neither CH nor ¬CH
is derivable from it. For an exposition of these results we refer the reader to [26].

The axiom system ZFC embodies our knowledge of the intuitive concept of set
which mathematicians, in fact, use. In view of the results of Gödel and Cohen, we
see that our concept is so vague that it does not definitely decide the truth or false-
hood of the continuum hypothesis. One can even show (cf. Section X.7) that it is not
possible to present “explicitly” an axiom system Ψ for set theory, which decides ev-
ery set-theoretic statement (in the sense that for every {ε}-sentence ψ either Ψ � ψ
or Ψ � ¬ψ).

Finally, we formulate the axiom of foundation:

FUND: ∀x(¬x ≡ /0 →∃y(yε x∧ y∩ x ≡ /0))
“Every nonempty x contains an element that has no element in common with x.”

The axiom becomes important when set theory itself is an object of mathematical
investigation. It essentially contributes to the form of the universe of sets. For exam-
ple, it excludes sets u with u ∈ u (apply it to the set x = {u}). Moreover, the universe
gains a clear structure: It consists exactly of those sets, which, starting from the
empty set, can be obtained by an iterated application of (more exactly: by transfinite
induction over) the formation of power set.

VII.4 Set Theory as a Basis for Mathematics

We now supplement our previous discussion by treating three aspects: In Sec-
tion 4.1, taking ZFC as an example, we show how the question of the consistency
of mathematics may be made precise by the use of suitable first-order axioms suf-
ficient for mathematics. In Section 4.2 we discuss misunderstandings which may
arise from a confusion of object set theory with background set theory. Finally, in

VII.4 Set Theory as a Basis for Mathematics 107

Section 4.3 we show how first-order logic, like every other mathematical theory, can
be based on set theory.

4.1. In the preceding sections we have emphasized the experience that mathemat-
ical statements can be formalized in L{εε} and that provable statements lead to for-
malizations which are derivable from ZFC. Taking this for granted, suppose it were
possible in mathematics to prove both a statement and its negation. Let ϕ be a for-
malization of this statement. Then both ZFC � ϕ and ZFC � ¬ϕ would hold, and
thus ZFC would be inconsistent. Therefore, a proof that ZFC is consistent could be
regarded as strong evidence for the consistency of mathematics. In fact, the question
of the consistency of ZFC is one of the key problems of foundational investigations.
In an explicit formulation it asks: Is there a derivation in the sequent calculus of a se-
quent of the form ϕ1 . . .ϕn(ϕ ∧¬ϕ), where ϕ1, . . . ,ϕn are ZFC axioms? We thus see
that the problem of consistency is of a purely syntactic nature. Therefore, one might
hope to solve it by elementary arguments concerning the manipulation of symbol
strings by sequent rules. (Hilbert also demanded a proof of such an elementary na-
ture to recognize “that the generally accepted methods of mathematics taken as a
whole do not lead to a contradiction.”) However, by Gödel’s Second Incomplete-
ness Theorem, such a consistency proof for ZFC is not possible if ZFC is consistent
(cf. Section X.7). A proof is not even possible if one admits all the auxiliary means
of the background set theory described by ZFC. In particular, one cannot prove the
existence of a model of ZFC (since Sat ZFC would imply Con ZFC). Nevertheless,
the fact that ZFC has been investigated and used in mathematics for decades and no
inconsistency has been discovered, attests to the consistency of ZFC.

In the following considerations we assume ZFC to be consistent.

4.2. We investigate the relationship between background set theory and object set
theory by first discussing Skolem’s Paradox (cf. Section 2). In terms of ZFC the
paradox can be formulated as follows: ZFC, being a countable, consistent set of
sentences, has a countable model A= (A,ε A) according to the Löwenheim–Skolem
Theorem. On the other hand, A satisfies an {ε}-sentence ϕ (derivable from ZFC)
which says that there are uncountably many sets in A. If, for simplicity, we again
use defined symbols, we can write

ϕ := ∃x¬∃y(Function y∧ injective y ∧ Domain(y)≡ x∧Range(y) ⊆ ω).

The sentence ϕ symbolizes the property of the universe that there exists an uncount-
able set (and hence, also that uncountably many sets exist). Since A is a model of
ZFC, we have A |= ϕ , i.e., there is an a ∈ A (for x) such that

(∗) A |= ¬∃y(Function y∧ . . .∧Range(y) ⊆ ω)[a].

The set {b ∈ A | bε Aa} is at most countable because it is a subset of A. Therefore in
the universe there exists an injective function whose domain is {b ∈ A | bε Aa} and
whose range is a subset of ω . However, this does not contradict (∗). For (∗) merely
says that in A there is no injective function defined on a with values in ωA, or more

108 VII The Scope of First-Order Logic

exactly, that there is no b ∈ A such that FunctionAb, injectiveAb, DomainA(b) = a,
and RangeA(b) ⊆⊆ Aω A; that is, a is uncountable in the sense of A.

From this example we see that it is necessary to distinguish carefully between the
set-theoretical concepts (which refer to the universe) and their meaning in a model.

Let us consider another example. The set of sentences

Ψ := ZFC∪{cr ε ω | r ∈ R}∪{¬cr ≡ cs | r,s ∈ R,r �= s}
is satisfiable, as one can easily show using the Compactness Theorem. Let B =
(B, ε B) be a model of Ψ (more exactly, the {ε}-reduct of a model of Ψ). Then
{b ∈ B | bε Bω B} is an uncountable set. On the other hand, ω B (being the set of
natural numbers in B) is CountableB (that is, we have CountableBωB).

As before, let A= (A,ε A) be a countable model of ZFC. Then {a ∈ A | aε Aω A} is
countable because it is a subset of A, and we obtain:

(1) There is no bijection from {b ∈ B | bε Bω B} onto {a ∈ A | aε A ω A},

since one set is uncountable, whereas the other one is countable. At first glance (1)
seems to contradict Dedekind’s Theorem, according to which every two Peano struc-
tures are isomorphic. To analyze the situation, we take a formalization ψ of this
theorem as an {ε}-sentence, for example as

ψ := ∀x∀y((Peanostructure x∧Peanostructure y)→ x isomorphic y).

Then we have

(2) ZFC � ψ .

However, (1) and (2) do not contradict each other. (2) merely says that in each
individual model C of ZFC every two Peano structures are isomorphic (in the sense
of C), whereas (1) speaks of Peano structures in different models of ZFC.

4.3. We provide a set-theoretic development of first-order logic, i.e., we show that
its concepts can be based on the concept of set, as we have done already for functions
and Peano structures. To be specific, we restrict ourselves to the symbol set S =
{P1,P2, . . .} with n-ary Pn. Our first goal is to give a set-theoretic substitute for
S-formulas.

As a substitute for the variables we use the elements 0̃, 1̃, . . . of ω . The roles of the
symbols ¬,∨,∃,≡ are assumed by the ordered pairs ¬̃ := (0̃, 0̃), ∨̃ := (0̃, 1̃), ∃̃ :=
(0̃, 2̃), and ≡̃ := (0̃, 3̃). For the Pn (for n ≥ 1) we take the ordered pairs P̃x := (1̃,x)
where x ∈ ω \ {0}. (Similarly, one could, for example, let ordered pairs (2̃,x) with
x ∈ ω \ {0} stand for function symbols. In order to represent uncountable symbol
sets, one could use an appropriate set of larger cardinality instead of ω .)

Now formulas of the form vn ≡ vm correspond to triples (x,≡̃,y) with x,y∈ω . These
triples are the elements of the set

At≡ := ω ×{≡̃}×ω .

VII.4 Set Theory as a Basis for Mathematics 109

Ordered pairs of the form (P̃x,z), where x∈ω \{0} and z is a function from x into ω ,
play the role of formulas of the form Pnvm0 . . .vmn−1 . (For instance, the formula

P3v1v4v5 corresponds to the ordered pair (P̃3̃,z) with z = {(0̃, 1̃),(1̃, 4̃),(2̃, 5̃)}.)
Thus, we are led to the set AtR of atomic “relational” formulas

AtR := {(P̃x,z) | x ∈ ω \{0} and z : x → ω}.

Likewise, one can define the set of all S-formulas set-theoretically to be the smallest
set A which satisfies the conditions:

– At≡ ∪AtR ⊆ A;
– if y ∈ A, then (¬̃,y) ∈ A;
– if y,z ∈ A, then (y, ∨̃,z) ∈ A;
– if x ∈ ω and y ∈ A, then (∃̃,x,y) ∈ A.

We can now give a natural set-theoretic description of the notions of sequent and
derivation, developing in this way the whole syntax set-theoretically. Semantic con-
cepts such as the notions of structure or consequence can also be introduced set-
theoretically. By doing so, we obtain a set-theoretic formulation of the Complete-
ness Theorem. All considerations can be carried out in L{εεε} on the basis of ZFC.
In particular, the Completeness Theorem can be formalized as an {εεε}-sentence and
can be derived from ZFC.

What benefits do we obtain from such a set-theoretical treatment? We mention three
points.

(1) The mathematical development of first-order logic (as given in the first six chap-
ters) can be founded upon the axiomatic basis of ZFC.

(2) The set-theoretic treatment enables us to deal with uncountable symbol sets in
a precise manner. Appropriate variations of this approach make it possible to define
other languages, e.g., languages with infinitely long “formulas” of the form ϕ0 ∨
ϕ1 ∨ϕ2 ∨ . . . (Chapter IX).

(3) In our discussion concerning the formal notion of proof and the scope of first-
order logic, we did not appeal to the Completeness Theorem. This was done to
avoid becoming trapped in a vicious circle, since the Completeness Theorem itself
requires a proof. In a set-theoretical framework, one can investigate more closely
the assumptions which are needed for a proof of the Completeness Theorem. Doing
this one finds that a considerably weaker axiom system than ZFC is sufficient for
the proof (cf. [3]).

4.4 Exercise. A reader who has been confused by the discussion of this chapter
says, “Now I’m completely mixed up. How can ZFC be used as a basis for first-
order logic, while first-order logic was actually needed in order to build up ZFC?”
Help such a reader out of his dilemma. Hint: Again, be careful in distinguishing
between the object and the background level.

Chapter VIII
Syntactic Interpretations and Normal Forms

In this chapter we collect some results that show to what extent we can choose
different symbol sets for a mathematical theory. For instance, the expressive power
of first-order languages for group theory does not depend on the choice of Sgrp or
Sgr as symbol set. The notion of syntactic interpretation will turn out to be a central
concept in this context. In the section about normal forms we show that, for different
syntactic properties, one can find for each formula a logically equivalent one which
has this property, e.g., one which has syntactically an especially simple form.

We start with a preliminary investigation which will allow for some technical sim-
plifications.

VIII.1 Term-Reduced Formulas and Relational Symbol Sets

Terms in a formula usually contain “nested” occurrences of function symbols. For
instance, the { f ,g}-formula

ϕ := ∀x f gx ≡ y

(with unary f ,g) contains the nested term f gx. But ϕ is logically equivalent to the
formula

∀x∃u(gx ≡ u∧ f u ≡ y),

which contains no more nested terms, and which, in this sense, is “term-reduced”.
We show this fact in general.

1.1 Definition. An S-formula is called term-reduced iff its atomic subformulas have
the form Rx1 . . .xn, x ≡ y, f x1 . . .xn ≡ x, or c ≡ x.

The result just mentioned can now be formulated as follows:

1.2 Theorem. With every S-formula ψ one can associate a logically equivalent,
term-reduced S-formula ψ∗ with free(ψ) = free(ψ∗).

111© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

https://doi.org/10.1007/978-3-030-73839-6_8
H.-D. Ebbinghaus et al., Mathematical Logic, Graduate Texts in Mathematics 291,

http://crossmark.crossref.org/dialog/?10.1007/978-3-030-73839-6_8&domain=pdf

112 VIII Syntactic Interpretations and Normal Forms

Proof. For ψ ∈ LS let x1,x2,x3, . . . be the enumeration of the variables not occurring
in ψ in the order induced by v0,v1,v2, First we define ψ∗ for formulas ψ of the
form t ≡ x; this is done by induction on the term t:

[y ≡ x]∗ := y ≡ x;

for c ∈ S:

[c ≡ x]∗ := c ≡ x;

for n-ary f ∈ S:

[f t1 . . . tn ≡ x]∗ := ∃x1 . . .∃xn([t1 ≡ x1]
∗ ∧ . . .∧ [tn ≡ xn]

∗ ∧ f x1 . . .xn ≡ x).

For the remaining atomic formulas ψ we define ψ∗ as follows:

If t2 is not a variable,

[t1 ≡ t2]∗ := ∃x1([t2 ≡ x1]
∗ ∧ [t1 ≡ x1]

∗),

and if R ∈ S is n-ary,

[Rt1 . . . tn]∗ := ∃x1 . . .∃xn([t1 ≡ x1]
∗ ∧ . . .∧ [tn ≡ xn]

∗ ∧Rx1 . . .xn).

Finally we set
[¬ψ]∗ := ¬ψ∗;

(ψ1 ∨ψ2)
∗ := (ψ∗

1 ∨ψ∗
2);

[∃xψ]∗ := ∃xψ∗.

Using this definition, it is quite easy to prove the claim. �
The following consideration gives a first example showing us how useful term-
reduced formulas can be.

A symbol set is called relational if it contains only relation symbols. Sometimes it
is convenient, as for example in Chapter XII, to be able to restrict oneself to rela-
tional symbol sets. We show how function symbols and constants can be replaced
by relation symbols in order to obtain a relational symbol set. The idea is to consider
the graph of a function, rather than the function itself.

Let S be an arbitrary symbol set. For every n-ary f ∈ S let F be a new (n+ 1)-ary
relation symbol, and for c ∈ S let C be a new unary relation symbol. Let Sr consist
of the relation symbols from S together with the new relation symbols. Thus Sr is
relational.

We associate with every S-structure A an Sr-structure Ar by replacing the functions
and constants by their graphs. We define:

(1) Ar := A;
(2) for P ∈ S:

PAr
:= PA;

VIII.1 Term-Reduced Formulas and Relational Symbol Sets 113

(3) for n-ary f ∈ S:
FAr

:= the graph of fA,

that is,

FAr
a1 . . .ana :iff fA(a1, . . . ,an) = a;

(4) for c ∈ S:
CAr

:= the graph of cA,

that is,
CAr

a :iff cA = a.

Then the following holds:

1.3 Theorem. (a) For every ψ ∈ LS there is ψr ∈ LSr
such that for all S-interpre-

tations I= (A,β),

(A,β) |= ψ iff (Ar,β) |= ψr.

(b) For every ψ ∈ LSr
there is ψ−r ∈ LS such that for all S-interpretations I =

(A,β),

(A,β) |= ψ−r iff (Ar,β) |= ψ .

Proof. (a) By Theorem 1.2 it suffices to define ψr for term-reduced ψ . This is done
inductively:

[Ry1 . . .yn]
r := Ry1 . . .yn;

[x ≡ y]r := x ≡ y;
[f y1 . . .yn ≡ x]r := Fy1 . . .ynx;

[c ≡ x]r := Cx;
[¬ψ]r := ¬ψr;

(ψ1 ∨ψ2)
r := (ψr

1 ∨ψr
2);

[∃xψ]r := ∃xψr.

The proof of the equivalence is easy.

(b) We argue similarly; in particular we set

[Ft1 . . . tnt]−r := f t1 . . . tn ≡ t,

[Ct]−r := c ≡ t. �

From Theorem 1.3 we obtain immediately:

1.4 Corollary. For S-structures A and B,

A≡B iff Ar ≡Br. �

114 VIII Syntactic Interpretations and Normal Forms

VIII.2 Syntactic Interpretations

We now aim towards the notion of syntactic interpretation. In the following parts A
to D we present some motivating examples.

A. Axiom Systems for Groups

We introduced two axiom systems for the class of groups: the system Φgr in LSgr
0

with Sgr = {◦,e} and the system Φgrp in LSgrp
0 with Sgrp = {◦,−1,e}. For Sg := {◦}

we have the following axiom system Φg ⊆ LSg
0 :

Φg := {∀x∀y∀z(x◦ y)◦ z ≡ x◦ (y◦ z), ∃z(∀x x◦ z ≡ x∧∀x∃y x◦ y ≡ z)}.
All three axiom systems are equivalent in the sense that the same statements are
expressible in each of these languages and the same statements provable in the cor-
responding axiom system. For instance, the Sgrp-sentence

∀x x◦ x−1 ≡ e

corresponds to the Sg-sentence

∃z(∀x x◦ z ≡ x∧∀x∃y x◦ y ≡ z),

and, in this case, the first sentence is provable from Φgrp and the second from Φg.

B. Axiom Systems for Orderings

Let S := {<}. In III.6.4 we introduced the axiom system Φord for the class of order-
ings. Often one extends the symbol set by a symbol ≤ whose interpretation is given
by

∀x∀y(x ≤ y ↔ (x < y∨ x ≡ y)).

In the new symbol set S′ := {<,≤} we have the axiom system

Φ ′
ord := Φord ∪{∀x∀y(x ≤ y ↔ (x < y∨ x ≡ y))}.

Since ≤ can always be replaced by its definition, we can associate with each S′-
formula ϕ an S-formula ϕ< such that

Φ ′
ord |= ϕ iff Φord |= ϕ<.

It is in this sense that LS and LS′ have the same expressive power for the class of
orderings.

C. Rings

If in the axiom system Φfd for fields (cf. III.6.5) we leave out the axiom ∀x(¬x≡ 0→
∃y x · y ≡ 1) about the existence of the multiplicative inverse and the commutative

VIII.2 Syntactic Interpretations 115

law ∀x∀y x ·y≡ y ·x for the multiplication, we obtain the axiom system Φrg for rings,
more precisely: for rings with 1. Every field (as an Sar-structure) is a ring. The set of
integers, under the natural interpretation of the Sar-symbols, forms a ring, the ring
of integers. For n ≥ 1, the n× n-matrices over R under the usual interpretation of
the symbols from Sar also form a ring M(n).

Let A be a ring. An element a ∈ A is a unit in A iff there is some b ∈ A such that
a ·A b = b ·A a = 1. In the ring of integers only 1 and −1 are units, in the rings M(n)
the units are the invertible matrices.

We set, with x for v0 and y for v1

ε := ∃y(x · y ≡ 1∧ y · x ≡ 1).

Then

E(A) := {a ∈ A | A |= ε[a]}
is the set of units in A. It is easy to show that 1A ∈ E(A), that E(A) is closed under
multiplication, and that E(A) with 1A and the multiplication even forms a group (as
an Sgr-structure), the group E(A) of units in A. It turns out that in A one can talk
about E(A) in the sense that for every ϕ ∈ LSgr

0 there exists a ϕ ′ ∈ LSar
0 such that

(◦) E(A) |= ϕ iff A |= ϕ ′.

For example, if ϕ is the commutative law ∀x∀y x ◦ y ≡ y◦ x, then ϕ ′ can be chosen
to be the Sar-sentence

∀x∀y((ε ∧ ε y
x)→ x · y ≡ y · x).

D. Relativizations

An important aspect of the translation of the commutative law into the language of
rings which we just discussed is the restriction or, as we shall say, the relativization
of the quantifiers to the set of units. Relativizations have already come up in III.7.2:
If one regards a vector space as a one-sorted structure, then the domain consists of
scalars and vectors. When formulating the vector space axioms in the corresponding
language, one must relativize the field axioms to the set of scalars and the group
axioms (for the vectors) to the set of vectors. For the field axiom ∀x(¬x ≡ 0 →
∃yx · y ≡ 1) this can be done by using the relation symbol F for the set of scalars
and reformulating the axiom as ∀x(Fx → (¬x ≡ 0 →∃y(Fy∧x ·y ≡ 1))). Similarly,
the formula in the field language

ϕ := ∀x(x ≡ 0∨ x ≡ 1),

when relativized to F , becomes

ϕF := ∀x(Fx → (x ≡ 0∨ x ≡ 1)).

116 VIII Syntactic Interpretations and Normal Forms

In a vector space, ϕF just says that the field of scalars satisfies ϕ . It turns out that, in
this sense, one can transform every formula of the language LSar into the language
of vector spaces.

E. Syntactic Interpretations

A common feature in all previous examples is the fact that in one structure one talks
about another structure: in groups as Sg-structures about groups as Sgr-structures, in
orderings with underlying symbol set {<} about orderings with underlying symbol
set {<,≤}, in rings about the group of units, and in structures (e.g., vector spaces)
about substructures whose domains are given by unary relation symbols (e.g., scalar
fields). The concept of syntactic interpretation comprises the aspect common to all
of these examples: A syntactic interpretation of a symbol set S′ in a symbol set S
will allow us to talk in S-structures about induced S′-structures.

For this purpose, an S-formula ϕS′(v0) will be specified in order to define the do-
main of the intended S′-structure, and for each relation symbol (function symbol,
constant) in S′ an S-formula describing a relation (function, element) will be given.
We write ϕ(v0, . . . ,vn−1) for a formula ϕ ∈ LS

n and ϕ(t0, . . . , tn−1) for ϕ t0 . . . tn−1
v0 . . .vn−1

.

2.1 Definition. Let S and S′ be symbol sets. A syntactic interpretation of S′ in S is
a map I : S′ ∪{S′} → LS where

I(S′) is a formula ϕS′(v0) ∈ LS
1,

I(R) is a formula ϕR(v0, . . . ,vn−1) ∈ LS
n for n-ary R ∈ S′,

I(f) is a formula ϕ f (v0, . . . ,vn−1,vn) ∈ LS
n+1 for n-ary f ∈ S′,

I(c) is a formula ϕc(v0) for c ∈ S′.

In many applications one has ϕS′(v0) = v0 ≡ v0.

The following set ΦI of S-sentences says that ϕS′(v0) defines the domain of an S′-
structure.

ΦI

⎧⎪⎪⎨⎪⎪⎩
∃v0ϕS′(v0),
∀v0 . . .∀vn−1((ϕS′(v0)∧ . . .∧ϕS′(vn−1))→

∃=1vn(ϕS′(vn)∧ϕ f (v0, . . . ,vn−1,vn)))

∃=1v0(ϕS′(v0)∧ϕc(v0))
for f ∈ S′ n-ary,
for c ∈ S′.

If ϕS′(v0) = v0 ≡ v0, then ΦI is equivalent1 to

{∀v0 . . .∀vn−1∃=1vnϕ f (v0, . . . ,vn−1,vn) | f ∈ S′ n-ary}∪{∃=1v0ϕc(v0) | c ∈ S′}.

For an S-structure A with A |= ΦI we define an S′-structure A−I as follows:

A−I := {a ∈ A | A |= ϕS′ [a]};

1 We call two sets Φ and Ψ of S-sentences equivalent if ModSΦ = ModSΨ . Then, in particular,
Φ |= χ iff Ψ |= χ for all χ ∈ LS.

VIII.2 Syntactic Interpretations 117

for n-ary R ∈ S′ and a0, . . . ,an−1 ∈ A−I ,

RA−I
a0 . . .an−1 :iff A |= ϕR[a0, . . . ,an−1];

for n-ary f ∈ S′ and a0, . . . ,an−1,a ∈ A−I ,

f A−I
(a0, . . . ,an−1) = a :iff A |= ϕ f [a0, . . . ,an−1,a];

for c ∈ S′ and a ∈ A−I ,

cA−I
= a :iff A |= ϕc[a].

If R ∈ S∩S′ is n-ary and ϕR = Rv0 . . .vn−1, we say that I is the identity on R. Sim-
ilarly, I is the identity on f ∈ S′ (for n-ary f) and c ∈ S′, if ϕ f = f v0 . . .vn−1 ≡ vn
and ϕc = c ≡ v0, respectively. If S ⊆ S′, ϕS′ = v0 ≡ v0, and if I is the identity on all
symbols from S, then

A−I |S = A

for all S-structures A with A |= ΦI .

Using a syntactic interpretation of S′ in S we can talk in S-structures about induced
S′-structures:

2.2 Theorem on Syntactic Interpretations. Let I be a syntactic interpretation of S′
in S. Then, with every ψ ∈ LS′ one can associate a ψ I ∈ LS with free(ψ I)⊆ free(ψ)
such that for all S-structures A with A |= ΦI and all assignments β in A−I ,

(∗) (A,β) |= ψ I iff (A−I ,β) |= ψ .

In particular, for ψ ∈ LS′
0 ,

A |= ψ I iff A−I |= ψ .

Before proving the theorem we want to apply it to clear up the claims in the parts A
to C. The relativization from part D will be discussed at the end. In the sequel we
use x,y, . . . for v0,v1,

In the ring-theoretic example from part C, concerning the group of units, we choose
the syntactic interpretation I of Sgr = {◦,e} in Sar = {+, ·,0,1} given by

ϕSgr(x) := ε(x),
ϕ◦(x,y,z) := x · y = z.

Then ΦI is equivalent to

{∃xε(x), ∀x∀y(ε(x)∧ ε(y)→ ε(x · y))},

and for a ring A we have A |= ΦI and A−I = E(A). For ϕ ∈ LSgr
0 the equivalence (∗)

in 2.2 says

E(A) |= ϕ iff A |= ϕ I ,

which is the claim (◦) in part C (if we set ϕ ′ := ϕ I).

118 VIII Syntactic Interpretations and Normal Forms

In the example about orderings in part B we define the syntactic interpretation I of
S′ = {<,≤} in S = {<} as follows:

ϕS′(x) := x ≡ x;
ϕ<(x,y) := x < y;
ϕ≤(x,y) := (x < y∨ x ≡ y).

Then ΦI is equivalent to the empty set, and ϕ I is a {<}-sentence for ϕ ∈ LS′
0 =

L{<,≤}. Theorem 2.2 yields for every ϕ ∈ LS′
0 and every S-structure A

A−I |= ϕ iff A |= ϕ I .

Since A |= Φord implies A−I |= Φ ′
ord (Φ ′

ord was defined above in part B), and since
for every S′-structure B with B |= Φ ′

ord we have B|S |= Φord and (B|S)−I =B, we
obtain

Φ ′
ord |= ϕ iff Φord |= ϕ I .

Finally we discuss the group theoretic example from part A. We use the following
syntactic interpretation I of Sgrp in Sg:

ϕSgrp(x) := x ≡ x,
ϕ◦(x,y,z) := x◦ y ≡ z,
ϕ−1(x,y) := ∃z(∀uu◦ z ≡ u∧ x◦ y ≡ z),

ϕe(x) := ∀y y◦ x ≡ y.

Then we can argue as in the previous example and obtain: If A= (A,◦A) is a group
(as an Sg-structure) with identity element eA and inverse function −1A

, then A−I =

(A,◦A,−1A
,eA), and for all ϕ ∈ LSgrp

0 we have

A−I |= ϕ iff A |= ϕ I

and

Φgrp |= ϕ iff Φg |= ϕ I .

We now turn to the proof of Theorem 2.2. It suffices to define ψ I for term-reduced
ψ ∈ LS′ . (Then, for arbitrary ψ ∈ LS′ , we can set ψ I := [ψ∗]I , where (according
to Theorem 1.2) ψ∗ is a term-reduced S′-formula logically equivalent to ψ with
free(ψ) = free(ψ∗).) We set

[Rx0 . . .xn−1]
I := ϕR(x0, . . . ,xn−1) for n-ary R ∈ S′;

[x ≡ y]I := x ≡ y;
[f x0 . . .xn−1 ≡ x]I := ϕ f (x0, . . . ,xn−1,x) for n-ary f ∈ S′;

[c ≡ x]I := ϕc(x) for c ∈ S′;

and

VIII.2 Syntactic Interpretations 119

[¬ϕ]I := ¬ϕ I ;
(ϕ1 ∨ϕ2)

I := (ϕ I
1 ∨ϕ I

2);
[∃xϕ]I := ∃x(ϕS′(x)∧ϕ I).

Using this definition it is not difficult to prove (∗). We demonstrate the step involving
a quantifier. So, let A be an S-structure with A |= ΦI , and let β be an assignment
in A−I . Then:

(A,β) |= [∃xϕ]I iff (A,β) |= ∃x(ϕS′(x)∧ϕ I)

iff for some a ∈ A, (A,β a
x) |= ϕS′(x) and (A,β a

x) |= ϕ I

iff for some a ∈ A−I , (A,β a
x) |= ϕ I

iff for some a ∈ A−I , (A−I ,β a
x) |= ϕ (ind. hypothesis)

iff (A−I ,β) |= ∃xϕ. �

Finally, we come back to the relativizations as introduced in part D and present, as
a further application of Theorem 2.2, a precise statement of the connection between
a formula and its relativization.

Let S = S′ ∪ {P}, where P is a unary relation symbol not contained in S′. Let the
syntactic interpretation I of S′ in S be the identity on the symbols from S′, and let

ϕS′(v0) := Pv0.

Then ΦI is equivalent to

{∃v0Pv0} ∪ {Pc | c ∈ S′} ∪
{∀v0 . . .∀vn−1(Pv0 ∧ . . .∧Pvn−1 → P f v0 . . .vn−1) | f ∈ S′, f is n-ary},

and for an S-structure (A,PA) we have:

(1) (A,PA) |= ΦI iff PA is S′-closed in A.

(2) If PA is S′-closed in A, then (A,PA)−I = [PA]A.

Recall that for an S-closed subset X of an S-structure A we denote by [X]A the
substructure of A with domain X ; cf. p. 39.

If ψ ∈ LS′ , we also write ψP for ψ I , and we call ψP the relativization of ψ to P.
Hence (1) and (2) yield (note that PA being S-closed implies that it is S ∪ {P}-
closed):

2.3 Relativization Lemma. Let A be an S∪{P}-structure such that P �∈ S and P is
unary. Suppose the set PA ⊆ A is S-closed in A. Then for ψ ∈ LS

0,

[PA]A |= ψ iff A |= ψP.

This means: The relativization ψP says in A the same as ψ does in [PA]A. �

120 VIII Syntactic Interpretations and Normal Forms

It is easy to give a direct proof of the Relativization Lemma. For this purpose one
defines for ψ ∈ LS the formula ψP ∈ LS∪{P} inductively by

ψP := ψ , if ψ is atomic
[¬ψ]P := ¬ψP

(ψ1 ∨ψ2)
P := (ψP

1 ∨ψP
2)

[∃xψ]P := ∃x(Px∧ψP).

Then one shows by induction on ψ that for all assignments β : {vn | n ∈ N}→ PA,

([PA]A,β) |= ψ iff (A,β) |= ψP. �

2.4 Exercise. Let U and V be distinct unary relation symbols, U,V /∈ S. Assume
(A,UA,V A) to be an S∪{U,V}-structure such that UA and V A are S-closed in A
and UA ⊆V A. Show that for ϕ ∈ LS

0,

(A,UA,V A) |= ([ϕV]U ↔ ϕU
)
.

2.5 Exercise. Let < and ≤ be two binary relation symbols. Show that for every
ϕ ∈ L{<}

0 there is a ψ ∈ L{≤}
0 , and that for every ψ ∈ L{≤}

0 there is a ϕ ∈ L{<}
0 such

that (a) and (b), respectively, hold:
(a) An ordering (A,<A) satisfies ϕ iff the corresponding ordering (A,≤A) in the

sense of “≤” satisfies ψ .
(b) An ordering (A,≤A) in the sense of “≤” satisfies ψ iff the corresponding or-

dering (A,<) satisfies ϕ .

2.6 Exercise. In the discussion of groups following the statement of Theorem 2.2,
interchange the roles of Φgrp and Φg.

2.7 Exercise. (a) Give a syntactic interpretation I of Sar in Sar such that

for all ϕ ∈ LSar
0 : (N,+, ·,0,1) |= ϕ iff (Z,+, ·,0,1) |= ϕ I .

Hint: Natural numbers can be written as sums of four squares of integers.
(b) Prove the analogue of (a) obtained by interchanging the roles of N and Z.

2.8 Exercise. Prove Theorem 1.3 using Theorem 2.2 by applying suitable syntactic
interpretations.

VIII.3 Extensions by Definitions

In some of the previous examples we dealt with two axiom systems: the axiom
systems Φg and Φgrp for group theory (part A), and the axiom systems Φord and
Φ ′

ord for orderings (part B).

Usually mathematicians do not work with two or more symbol sets for one and
the same theory, but consider a single underlying symbol set which possibly is ex-

VIII.3 Extensions by Definitions 121

tended by “defined” symbols. Thus, in group theory one can start with the sym-
bol set Sg = {◦} and extend it to Sgrp = {◦, −1,e} by the defined symbols for the
inverse function and the unit element. For orderings one can start with S = {<}
and extend S to S′ = {<,≤} by the defined symbol ≤. We proceeded in the same
way when discussing set theory in Section VII.3; there we extended the symbol set
S = {εεε} successively by the defined symbols /0/0/0, ∩∩∩, ∪∪∪ Our goal in this section is
to analyze these extensions by definitions. To clarify our intuitive expectation and to
explain the idea, we take the transition from Sg = {◦} to Sgr = {◦,e} in the example
from group theory. We use x,y,z for v0,v1,v2.

The starting point is the axiom system Φg ⊆ LSg
0 . We notice that the unit element is

uniquely determined, namely

Φg |= ∃=1x∀yy◦ x ≡ y.

Hence, we can introduce a new constant e to denote the unit element and fix its
interpretation by the following definition:

δe := ∀x(e ≡ x ↔∀yy◦ x ≡ y),

thus arriving at the new symbol set Sgr = {◦,e} and the extension

Φg ∪{δe}
of Φg by the definition δe as the new axiom system. (It is easy to show that the
sets Φg ∪{δe} and Φgr of Sgr-sentences are equivalent.) Introducing e simplifies the
notation, but we do not expect any major changes by this transition from LSg to LSgr .
This can be made precise as follows:

(E1) “Extensions by definitions are conservative” For all ϕ ∈ LSg
0 ,

Φg ∪{δe} |= ϕ iff Φg |= ϕ

(thus, adding definitions does not increase the set of provable sentences of the
original language).

(E2) “Defined symbols can be eliminated” For the syntactic interpretation I of Sgr
in Sg with

ϕSgr(x) := x ≡ x
ϕ◦(x,y,z) := x◦ y ≡ z

ϕe(x) := ∀yy◦ x ≡ y

the following holds for all χ ∈ LSgr :

Φg ∪{δe} |= χ ↔ χ I .

(E3) “The elimination of defined symbols respects the theory” For I as in (E2)
and ϕ ∈ LSgr

0 ,

Φg ∪{δe} |= ϕ iff Φg |= ϕ I .

122 VIII Syntactic Interpretations and Normal Forms

Note that (E3) follows immediately from (E1) and (E2), since for ϕ ∈ LSgr
0 we have

Φg ∪{δe} |= ϕ iff Φg ∪{δe} |= ϕ I (by (E2))
iff Φg |= ϕ I (by (E1)).

We now turn to the Theorem on Definitions. It will show immediately that (E1) to
(E3) are fulfilled.

3.1 Definition. Let Φ be a set of S-sentences.

(a) Suppose P /∈ S is an n-ary relation symbol and ϕP(v0, . . . ,vn−1) an S-formula.
Then we say that

∀v0 . . .∀vn−1(Pv0 . . .vn−1 ↔ ϕP(v0, . . . ,vn−1))

is an S-definition of P in Φ .
(b) Suppose f /∈ S is an n-ary function symbol and ϕ f (v0, . . . ,vn−1,vn) an S-

formula. We say that

∀v0 . . .∀vn(f v0 . . .vn−1 ≡ vn ↔ ϕ f (v0, . . . ,vn−1,vn))

is an S-definition of f in Φ provided

Φ |= ∀v0 . . .∀vn−1∃=1vnϕ f (v0, . . . ,vn−1,vn).

(c) Suppose c /∈ S is a constant and ϕc(v0) an S-formula. We say that

∀v0(c ≡ v0 ↔ ϕc(v0))

is an S-definition of c in Φ provided

Φ |= ∃=1v0ϕc(v0).

Thus

∀x∀y(x ≤ y ↔ (x < y∨ x ≡ y))

is an {<}-definition of ≤ in Φord,

∀x(e ≡ x ↔∀yy◦ x ≡ y)

is an Sg-definition of e in Φg, and

∀x∀y∀z(z∩∩∩y ≡ z ↔∀w(wεεε z ↔ (wεεε x∧wεεε y)))

is an {εεε}-definition of ∩∩∩ in ZFC.

Let S be given, and let s be a relation symbol, a function symbol, or a constant with
s �∈ S. Furthermore, let Φ ⊆ LS

0 and let s be defined in Φ as in Definition 3.1 by the
S-formula δs. We define, in the obvious way, the associated syntactic interpretation I
of S′ := S∪{s} in S to be the identity on the symbols from S and

(I(S′) =) ϕS′(v0) := v0 ≡ v0, I(s) := ϕs.

VIII.3 Extensions by Definitions 123

So ΦI is logically equivalent to

– the empty set of sentences if s is a relation symbol,
– {∀v0 . . .∀vn−1∃=1vnϕ f (v0, . . . ,vn−1,vn)} if s is an n-ary function symbol f ,
– {∃=1v0ϕc(v0)} if s is a constant c.

Therefore, we have:

(∗) for every S-structure A with A |= Φ : A |= ΦI

(∗∗) for every S∪{sA}-structure (A,sA) with A |= Φ :
(A,sA) |= δs iff A−I = (A,sA).

Now we easily reach our goal:

3.2 Theorem on Definitions. Let Φ be a set of S-sentences, s a new symbol, δs an
S-definition of s in Φ and I the associated syntactic interpretation of S∪{s} in S.
Then:

(a) For all ϕ ∈ LS
0,

Φ ∪{δs} |= ϕ iff Φ |= ϕ .

(b) For all χ ∈ LS∪{s}
0 ,

Φ ∪{δs} |= χ ↔ χ I .

(c) For all ϕ ∈ LS∪{s}
0 ,

Φ ∪{δs} |= ϕ iff Φ |= ϕ I .

Proof. (a) For the proof of the non-trivial direction, assume that Φ ∪{δs} |= ϕ , and
let A be an S-structure with A |= Φ . By (∗), A−I is defined, say A−I = (A,sA). Then
by (∗∗) it follows that (A,sA) |= Φ ∪{δs}, therefore by assumption (A,sA) |= ϕ , and
hence A |= ϕ by the Coincidence Lemma III.4.6.
(b) Let χ ∈ LS∪{s}

0 and let (A,sA) be an (S∪{s})-structure such that

(A,sA) |= Φ ∪{δs}.

By the Theorem 2.2 on Syntactic Interpretations, the following holds for the struc-
ture A−I (= (A,sA); cf. (∗∗)):

(A,sA) |= χ iff A |= χ I

iff (A,sA) |= χ I .

(c) This easily follows from (a) and (b). �
3.3 Exercise. Generalize Theorem 3.2 to the case of more (possibly infinitely
many) definitions of new symbols.

3.4 Exercise. Formulate precisely and show: For a set Φ of S-sentences the fol-
lowing holds: An extension by definitions of an extension by definitions of Φ is an
extension by definitions of Φ .

124 VIII Syntactic Interpretations and Normal Forms

3.5 Exercise. Let P be a k-ary relation symbol, P �∈ S, and Φ ′ a set of (S∪{P})-
sentences which implicitly defines P, in the sense that for every S-structure A and
all P1,P2 ⊆ Ak the following holds:

If (A,P1) |= Φ ′ and (A,P2) |= Φ ′, then P1 = P2.

Then, by Beth’s Definability Theorem (see Exercise XIII.3.7), there is an explicit
definition of P with respect to Φ ′, i.e., there is an S-formula ϕP(v0, . . . , vk−1) such
that

Φ ′ |= ∀v0 . . .∀vk−1(Pv0 . . .vk−1 ↔ ϕP(v0, . . . ,vk−1)).

Using this, show that there is a set Φ of S-sentences and a definition δP of P in Φ
such that for all ϕ ∈ LS∪{P}

0 ,

Φ ∪{δP} |= ϕ iff Φ ′ |= ϕ;

thus Φ ′ is, up to equivalence, an extension of Φ by definitions.

VIII.4 Normal Forms

In this section we show that one can associate with every formula a logically equiv-
alent formula which has a special syntactic form.

Let S be a fixed symbol set. For an arbitrary set Φ of S-formulas let 〈Φ〉 be the
smallest subset of LS which contains Φ and is closed under the formation of nega-
tions and disjunctions, i.e., the smallest subset Λ of LS containing Φ such that for
any ϕ and ψ in Λ also ¬ϕ and (ϕ∨ψ) are in Λ . Note that Φ ⊆ LS

r implies 〈Φ〉 ⊆ LS
r .

4.1 Lemma. Let Φ ⊆ LS
r . Suppose A and B are S-structures, and a0, . . . , ar−1 ∈ A,

b0, . . . ,br−1 ∈ B. If

(∗) A |= ϕ[a0, . . . ,ar−1] iff B |= ϕ[b0, . . . ,br−1]

holds for all ϕ ∈ Φ , then (∗) holds for all ϕ ∈ 〈Φ〉.
Proof. The set of formulas ϕ for which (∗) holds includes Φ and is closed under the
formation of negations and disjunctions.

4.2 Lemma. Let Φ = {ϕ0, . . . ,ϕn} be a finite set of formulas. Then every satisfiable
formula in 〈Φ〉 is logically equivalent to a formula of the form

(+) (ψ0,0 ∧·· ·∧ψ0,n)∨·· ·∨ (ψk,0 ∧·· ·ψk,n)

where k < 2n+1 and for i ≤ k and j ≤ n, the formula ψi, j equals ϕ j or ¬ϕ j . In
particular, there are only finitely many pairwise logically nonequivalent formulas
in 〈Φ〉.

Thus, we see that every formula in 〈Φ〉 is logically equivalent to a disjunction of
conjunctions of formulas from {ϕ0, . . . ,ϕn,¬ϕ0, . . . ,¬ϕn}.

VIII.4 Normal Forms 125

Proof. We choose an r such that Φ = {ϕ0, . . . ,ϕn} ⊆ LS
r . For a structure A and an

r-tuple ra := (a0, . . . ,ar−1) ∈ Ar let

(1) ψ(A,
ra) := ψ0 ∧·· ·∧ψn,

where

ψi :=
{

ϕi, if A |= ϕi[a0, . . . ,ar−1],
¬ϕi, if A |= ¬ϕi[a0, . . . ,ar−1].

Then

(2) A |= ψ(A,
ra)[a0, . . . ,ar−1],

and ψ(A,
ra) is a conjunction of the form of the conjunctions in (+). Moreover, for

any B and b0, . . . ,br−1 ∈ B,

(3) B |= ψ(A,
ra)[b0, . . . ,br−1] iff for i = 0, . . . ,n,

A |= ϕi[a0, . . . ,ar−1] iff B |= ϕi[b0, . . . ,br−1]

iff (cf. Lemma 4.1) for all ϕ ∈ 〈Φ〉,
A |= ϕ[a0, . . . ,ar−1] iff B |= ϕ[b0, . . . ,br−1].

From (1) it follows that the set

{ψ(A,
ra)|A is an S-structure and ra ∈ Ar}

has at most 2n+1 elements.

The proof is complete if we can show that every satisfiable ϕ ∈ 〈Φ〉 is logically
equivalent to the disjunction χ of the finitely many formulas from the set

{ψ(A,
ra)|A is an S-structure, ra ∈ Ar, A |= ϕ[a0, . . . ,ar−1]}.

In a suggestive notation, we write

χ =
∨
{ψ(A,

ra)|A is an S-structure, ra ∈ Ar, A |= ϕ[a0, . . . ,ar−1]}.

To verify the equivalence between ϕ and χ , assume first that B |= ϕ[b0, . . . ,br−1].
Then ψ

(B,
r

b)
is a member of the disjunction χ . Since B |= ψ

(B,
r

b)
[b0, . . . ,br−1]

(cf. (2)), it follows that B |= χ[b0, . . . ,br−1]. Conversely, if B |= χ[b0, . . . ,br−1],
then by definition of χ there is a structure A and there are a0, . . . ,ar−1 ∈ A such that

A |= ϕ[a0, . . . ,ar−1] and B |= ψ(A,
ra)[b0, . . . ,br−1].

Then, by (3), b0, . . . ,br−1 satisfy the same formulas of 〈Φ〉 in B as a0, . . . , ar−1 do
in A. In particular, B |= ϕ[b0, . . . ,br−1]. �
A formula which is a disjunction of conjunctions of atomic or negated atomic for-
mulas is called a formula in disjunctive normal form. A formula which contains no
quantifiers is said to be quantifier-free. As a corollary to Lemma 4.2 we obtain

126 VIII Syntactic Interpretations and Normal Forms

4.3 Theorem on the Disjunctive Normal Form. Every quantifier-free formula is
logically equivalent to a formula in disjunctive normal form.

Proof. Let ϕ be a quantifier-free formula. If ϕ is not satisfiable, then ϕ is logically
equivalent to ¬v0 ≡ v0. If ϕ is satisfiable and ψ0, . . . ,ψn are the atomic subformulas
in ϕ , then ϕ ∈ 〈{ψ0, . . . ,ψn}〉. The claim now follows from Lemma 4.2. �
We turn to formulas which may contain quantifiers. A formula ψ is said to be in
prenex normal form if it has the form Q0x0 . . .Qm−1xm−1ψ0, where Qi = ∃ or Qi = ∀
for i < m and ψ0 is quantifier-free. The quantifier block Q0x0 . . .Qm−1xm−1 is called
the prefix and ψ0 the matrix of ψ .

4.4 Theorem on the Prenex Normal Form. With every formula ϕ one can asso-
ciate a logically equivalent formula ψ in prenex normal form with free(ϕ) =
free(ψ).

Proof. First, we note some simple properties of logical equivalence. For simplicity,
we abbreviate ϕ =||= ψ by ϕ ∼ ψ .

(1) If ϕ ∼ ψ , then ¬ϕ ∼ ¬ψ .
(2) If ϕ0 ∼ ψ0 and ϕ1 ∼ ψ1, then (ϕ0 ∨ϕ1)∼ (ψ0 ∨ψ1).
(3) If ϕ ∼ ψ and Q = ∃ or Q = ∀, then Qxϕ ∼ Qxψ .
(4) ¬∃xϕ ∼ ∀x¬ϕ, ¬∀xϕ ∼ ∃x¬ϕ .
(5) If x /∈ free(ψ), then (∃xϕ ∨ψ)∼ ∃x(ϕ ∨ψ), (∀xϕ ∨ψ)∼ ∀x(ϕ ∨ψ),

(ψ ∨∃xϕ)∼ ∃x(ψ ∨ϕ), and (ψ ∨∀xϕ)∼ ∀x(ψ ∨ϕ).

We shall see how one can transform a given formula into prenex normal form by
repeated applications of (1)–(5). For instance, if ϕ =¬∃xPx ∨ ∀xRx we can proceed
as follows:

¬∃xPx ∨ ∀xRx ∼ ∀x¬Px ∨ ∀xRx (by (2) and (4))
∼ ∀x¬Px ∨ ∀yRy (since ∀xRx ∼ ∀yRy and by (2))
∼ ∀x(¬Px ∨ ∀yRy) (by (5))
∼ ∀x∀y(¬Px ∨ Ry) (by (3) and (5)).

In general, we argue as follows: For ϕ ∈ LS let qn(ϕ) be the quantifier number of ϕ ,
i.e., the number of quantifiers occurring in ϕ . Using induction on n, we prove:

(∗)n
For ϕ with qn(ϕ) ≤ n there is a ψ ∈ LS in prenex normal form such
that ϕ ∼ ψ, free(ϕ) = free(ψ), and qn(ϕ) = qn(ψ).

We leave the arguments for “free(ϕ) = free(ψ)” to the reader.

n = 0: If qn(ϕ) = 0, then ϕ is quantifier-free and we can set ψ := ϕ .

n > 0: We show (∗)n by induction on ϕ . Suppose qn(ϕ) ≤ n. The quantifier-free
case is clear. If ϕ = ¬ϕ ′ and qn(ϕ)> 0, then qn(ϕ ′) = qn(ϕ)> 0, and by induction
hypothesis there is a formula of the form Qxχ which is a prenex normal form for ϕ ′

VIII.4 Normal Forms 127

(where qn(Qxχ) = qn(ϕ) and where χ may contain quantifiers). By (1) and (4),
ϕ ∼ Q−1x¬χ (where ∀−1 := ∃ and ∃−1 := ∀). Since qn(¬χ) = qn(Qxχ)− 1 =
qn(ϕ)− 1 ≤ n− 1, there exists a formula ψ logically equivalent to ¬χ which is
in prenex normal form such that qn(ψ) = qn(¬χ). By (3), Q−1xψ is a formula
logically equivalent to ϕ with the desired properties.

Let ϕ = (ϕ ′ ∨ ϕ ′′) and let qn(ϕ) > 0, e.g., qn(ϕ ′) > 0. By induction hypothesis
there is a formula of the form Qxχ which is a prenex normal form for ϕ ′. Let y be a
variable which does not occur in Qxχ or in ϕ ′′. It is then easy to show that

Qxχ ∼ Qyχ y
x

and thus, by (2) and (5), to obtain

ϕ = (ϕ ′ ∨ ϕ ′′) ∼ (Qyχ y
x ∨ ϕ ′′)

∼ Qy(χ y
x ∨ ϕ ′′).

Since qn(χ y
x ∨ ϕ ′′) = qn(ϕ)−1 ≤ n−1, we can find a formula ψ in prenex normal

form which is logically equivalent to (χ y
x ∨ ϕ ′′). Qyψ has the desired properties.

Let ϕ = ∃xϕ ′. Since qn(ϕ ′) ≤ n− 1 there is a formula ψ ′ in prenex normal form
which is logically equivalent to ϕ ′. Then ∃xψ ′ is a formula in prenex normal form
which, by (3), is logically equivalent to ϕ and has the same quantifier number as ϕ .

�
If ϕ and ψ are formulas such that

Sat ϕ iff Sat ψ,

we call ϕ and ψ equivalent for satisfaction. If, in the Theorem on the Prenex Normal
Form, the condition of logical equivalence is weakened to ψ |= ϕ and equivalence
for satisfaction, the formula ψ can, in addition, be chosen universal, i.e., in such a
way that its prefix contains only universal quantifiers. The following example serves
as an illustration. Let S = {R} and let ϕ be the S-formula ∀x∃yRxy. We set S′ :=
{R, f} with unary f and ψ := ∀xRx f x. Then ψ is universal and ψ |= ϕ . Hence
each model of ψ is a model of ϕ . On the other hand, let (A,RA) be a model of
∀x∃yRxy. As we have, for every a ∈ A, an element b ∈ A with RAab, we can choose
an interpretation f A of f in such a way that RAa f A(a) for all a∈A, i.e., (A,RA, f A) |=
∀xRx f x. Hence ∀xRx f x has a model, too.

4.5 Theorem on the Skolem Normal Form. With each formula ϕ one can asso-
ciate a universal formula ψ in prenex normal form with ψ |= ϕ and free(ϕ) =
free(ψ) such that ϕ and ψ are equivalent for satisfaction. Besides the symbols
from ϕ , the formula ψ may contain additional function symbols or constants.

Proof. We describe how we can “construct” ψ from ϕ . Often such a ψ is called a
Skolem normal form of ϕ .

128 VIII Syntactic Interpretations and Normal Forms

Let ϕ be an S-formula. According to Theorem 4.4 we can assume that ϕ is in prenex
normal form, say,

ϕ = Q1x1 . . .Qmxmϕ0,

where ϕ0 is quantifier-free. We proceed by induction on the number of existential
quantifiers in the prefix Q1x1 . . .Qmxm.

If the number equals zero, we set ψ := ϕ . In the induction step, let ϕ be of the form

ϕ = ∀x1 . . .∀xk∃xk+1Qk+2xk+2 . . .Qmxmϕ0.

We may assume that x1, . . . ,xk are pairwise distinct. Let

ϕ1 := Qk+2xk+2 . . .Qmxmϕ0

and let f be a new k-ary function symbol if k �= 0 and a constant if k = 0. We show
for

ψ ′ := ∀x1 . . .∀xkϕ1
f x1 . . .xk

xk+1
:

(1) If Sat ϕ , then Sat ψ ′.
(2) ψ ′ |= ϕ .

Then we are done: As the prefix of ψ ′ contains fewer existential quantifiers than
the prefix of ϕ , the induction hypothesis yields a formula ψ in Skolem normal form
such that

(3) ψ ′ and ψ are equivalent for satisfaction and free(ψ ′) = free(ψ).
(4) ψ |= ψ ′.

As free(ψ ′) = free(ϕ), (1)–(4) yield that ψ is a formula with the desired properties.

To prove (1), let A be an S-structure and I = (A,β) a model of ϕ . Then, for all
a1, . . . ,ak ∈ A, we have

Ia1 . . .ak
x1 . . .xk

|= ∃xk+1ϕ1,

hence, we can choose a function f A on A such that

for all a1, . . . ,ak ∈ A : I
a1 . . .ak f A(a1, . . . ,ak)
x1 . . .xk xk+1

|= ϕ1.

By the Substitution Lemma III.8.3 we get

for all a1, . . . ,ak ∈ A : ((A, f A),β)a1 . . .ak
x1 . . .xk

|= ϕ1
f x1 . . .xk

xk+1
.

Therefore, ((A, f A),β) is a model of ∀x1 . . .∀xkϕ1
f x1 . . .xk

xk+1
, so ψ ′ is satisfiable.

To prove (2), let I= ((A, f A),β) be a model of ψ ′. Then for all a1, . . . ,ak ∈ A,

VIII.4 Normal Forms 129

Ia1 . . .ak
x1 . . .xk

|= ϕ1
f x1 . . .xk

xk+1
,

hence,
Ia1 . . .ak

x1 . . .xk
|= ∃xk+1ϕ1,

and thus I is a model of ϕ . �
4.6 Exercise. Let ϕ be an S-sentence and ψ the universal sentence that we get
from ϕ by the preceding proof. Furthermore, let S′ ⊇ S with ψ ∈ LS′

0 . Show for
every S-structure A that the following are equivalent:
(i) A |= ϕ.

(ii) There is an S′-expansion A′ of A that is a model of ψ .

4.7 Exercise (Conjunctive Normal Form). Show: If ϕ is quantifier-free, then ϕ is
logically equivalent to a formula which is a conjunction of disjunctions of atomic or
negated atomic formulas.

4.8 Exercise. Let S be a relational symbol set and suppose ϕ ∈ LS
0 is of the form

∃x0 . . .∃xn∀y0 . . .ymψ with ψ quantifier-free. Show that every model of ϕ contains a
substructure with at most n+1 elements which also is a model of ϕ . Conclude that
the sentence ∀x∃yRxy cannot be logically equivalent to a sentence of the same form
as ϕ .

4.9 Exercise. Show: With every universal formula ϕ one can associate a logically
equivalent formula ψ of the form ∀x1 . . .∀xsψ0 where ψ0 is quantifier-free.

Part B

Chapter IX
Extensions of First-Order Logic

We have seen that the structure N of natural numbers cannot be characterized in
first-order logic. The same situation holds for the field of real numbers and the class
of torsion groups. As we showed in Chapter VII, one can, at least in principle,
overcome this weakness by a set-theoretical formulation: One introduces a system of
first-order axioms for set theory, e.g., ZFC, which is sufficient for mathematics, and
then, in this system, carries out the arguments that are required, say, for a definition
and characterization of N. However, this approach necessitates an explicit use of set
theory to an extent not usual in ordinary mathematical practice.

The situation may encourage us to consider languages with more expressive power,
which permit us to avoid this detour through set theory. For example, we can directly
characterize the natural numbers by means of Peano’s axioms in a second-order
language. However, already at this stage we wish to remark that in order to set up
the semantics of such a language and to prove the correctness of inference rules,
one has to make more extensive use of set-theoretic assumptions (for example, of
the ZFC axioms) than for first-order logic.

There is another reason for introducing and investigating more powerful languages.
We saw that results such as the Compactness Theorem are useful in algebraic in-
vestigations (cf. Section VI.4). Therefore, it seems worthwhile to seek other, more
expressive languages in the hope of obtaining tools for more far-reaching applica-
tions in mathematics.

In this chapter we introduce the reader to some of the languages that have been
considered with these aims in mind.

IX.1 Second-Order Logic

The difference between second-order and first-order languages lies in the fact that
in the former one can quantify over second-order objects (for example, subsets of
the domain of a structure) whereas in the latter this is not possible.

133© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

https://doi.org/10.1007/978-3-030-73839-6_9
H.-D. Ebbinghaus et al., Mathematical Logic, Graduate Texts in Mathematics 291,

http://crossmark.crossref.org/dialog/?10.1007/978-3-030-73839-6_9&domain=pdf

134 IX Extensions of First-Order Logic

1.1 The Second-Order Languages LS
II. Let S be a symbol set, that is, a set of re-

lation symbols, function symbols, and constants. The alphabet of LS
II contains, in

addition to the symbols of LS, for each n ≥ 1 countably many n-ary relation vari-
ables V n

0 ,V
n
1 ,V

n
2 , To denote relation variables we use letters X ,Y, . . ., where we

indicate the arity by superscripts, if necessary. We define the set LS
II of second-order

S-formulas to be the set generated by the rules of the calculus for first-order formulas
(cf. Definition II.3.2), extended by the following two rules:

(a) If X is an n-ary relation variable and t1, . . . , tn are S-terms, then Xt1 . . . tn is an
S-formula.

(b) If ϕ is an S-formula and X is a relation variable, then ∃Xϕ is an S-formula.

1.2 The Satisfaction Relation for LS
II. A second-order assignment γ in a struc-

ture A is a map that assigns to each variable vi an element of A and to each relation
variable V n

i an n-ary relation on A. We extend the notion of satisfaction from LS

to LS
II by taking (a) and (b) into account as follows:

If A is an S-structure, γ a second-order assignment in A and I= (A,γ), then we set:

(a′) I |= Xt1 . . . tn :iff γ(X) holds for I(t1), . . . ,I(tn).
(b′) For n-ary X : I |= ∃Xϕ :iff there is a C ⊆ An such that IC

X |= ϕ

(where IC
X =

(
A,γ C

X

)
and γ C

X is the assignment that maps X to C but otherwise
agrees with γ).

We let LII denote second-order logic, that is, the logical system given by the lan-
guages LS

II together with the satisfaction relation for these languages. Similarly, LI
denotes first-order logic. For the present, we still use the term “logical system” in
an informal sense. A precise definition will be given in XIII.1.

1.3 Remarks and Examples. (1) One defines the free occurrence of variables and
relation variables in second-order formulas in the obvious way and can then prove
the analogue of the Coincidence Lemma III.4.6. In particular, when ϕ is an LS

II-
sentence, i.e., a formula that neither contains free variables nor free relation vari-
ables, it is meaningful to say that A is a model of ϕ , written A |= ϕ .

(2) Let ∀Xϕ be an abbreviation for ¬∃X¬ϕ . Then

I |= ∀Xnϕ iff for all C ⊆ An: IC
X |= ϕ .

(3) If X is a unary relation variable, then the following formalizations of Peano’s
axioms, which we already encountered in III.7.3, are L{σ ,0}

II -sentences:

(P1) ∀x ¬ σ x ≡ 0;
(P2) ∀x∀y(σ x ≡ σ y → x ≡ y);
(P3) ∀X((X0∧∀x(Xx → Xσ x))→∀yXy).

Hence, by passing from first-order logic to second-order logic we have gained ex-
pressive power, since no first-order axioms can characterize the structure (N,σ ,0)
up to isomorphism.

IX.1 Second-Order Logic 135

(4) The ordered field R< of the real numbers is, up to isomorphism, the only com-
pletely ordered field. Therefore, if ψR< is the conjunction of the axioms for ordered
fields (cf. III.6.5) and the second-order Sar-sentence “Every nonempty set that is
bounded above has a supremum,” i.e.,

∀X((∃xXx∧∃y∀z(Xz → z < y))

→∃y(∀z(Xz → (z < y∨ z ≡ y))∧∀x(x < y →∃z(x < z∧Xz)))),

then the following holds for all S<ar-structures A:

A |= ψR< iff A∼=R<.

(5) Let S be arbitrary. Then the LS
II-sentence

(+) ∀x∀y(x ≡ y ↔∀X(Xx ↔ Xy))

is valid: two things are equal precisely when there is no property that distinguishes
them (the identitas indiscernibilium of Leibniz). Thus, in the development of LS

II we
could have done without the equality symbol, using (+) to express equality.

(6) When setting up the second-order languages we could have introduced, in addi-
tion to relation variables, function variables which can also be quantified. This pro-
cedure would increase convenience, but not the expressive power of the languages.
We illustrate this by means of an example (cf. the elimination of function symbols
in Section VIII.1).

Let g be a unary function variable and let ϕ be the “second-order formula”

∀g(∀x∀y(gx ≡ gy → x ≡ y)→∀x∃yx ≡ gy).

Then (for the natural extension of the notion of satisfaction) the following holds for
every structure A:

A |= ϕ iff every injective function from A to A is surjective
iff A is finite.

Considering the graph of a unary function instead of the function itself, we can use
a binary relation variable X and replace ϕ by the following formula:

ϕfin := ∀X((∀x∃=1yXxy∧∀x∀y∀z((Xxz∧Xyz)→ x ≡ y))→∀y∃xXxy).

The formulas ϕ and ϕfin have the same models. Therefore,

A |= ϕfin iff A is finite.

In later examples we shall often use function variables to obtain formulas that are
easier to read.

(7) In LII one can introduce operations such as substitution and relativization by
definitions analogous to those for LI. One can also verify basic semantic properties
such as the analogue of the Isomorphism Lemma III.5.2.

136 IX Extensions of First-Order Logic

The situation is different when we consider deeper semantic properties such as the
Completeness Theorem, the Compactness Theorem, and the Löwenheim–Skolem
Theorem: the price we have to pay for being able to quantify over second-order
objects is the loss of all these central properties.

1.4 Theorem. The Compactness Theorem does not hold for LII.

Proof. The following set of sentences is a counterexample:

{ϕfin}∪{ϕ≥n | n ≥ 2}.

This set is not satisfiable, but, of course, every finite subset is satisfiable. �
1.5 Theorem. The Löwenheim–Skolem Theorem does not hold for LII.

Proof. We give a sentence ϕunc ∈ L /0
II such that for all structures A,

A |= ϕunc iff A is uncountable.

Then ϕunc is satisfiable, but it has no model that is at most countable.

To define ϕunc we use an L /0
II-formula ψfin(X), similar to ϕfin, with just one free unary

relation variable X , for which

(A,γ) |= ψfin(X) iff γ(X) is finite.

(We leave it to the reader to write down such a formula.) Clearly, a set A is at most
countable if and only if there is an ordering relation on A such that every element has
only finitely many predecessors. So, using a binary relation variable Y , we define

ϕ≤ctbl := ∃Y (∀x¬Y xx∧∀x∀y∀z((Y xy∧Y yz)→ Y xz)

∧∀x∀y(Y xy∨ x ≡ y∨Y yx)∧∀x∃X(ψfin(X)∧∀y(Xy ↔ Y yx))).

Then we have

A |= ϕ≤ctbl iff A is at most countable.

Hence we can set ϕunc := ¬ϕ≤ctbl. �
1.6. For first-order logic we obtained the Compactness Theorem from the existence
of an adequate system of derivation rules (cf. VI.2). For LII there is no correct and
complete system of derivation rules. Otherwise we could use the same argument as
we did for LI to prove the Compactness Theorem for LII.

This negative result does not, of course, hinder us from setting up correct rules for
second-order logic. For example, one can add to the first-order rules the following
correct rules for quantification over relation variables:

Γ ϕ
Γ ∃Xϕ ;

Γ ϕ ψ
Γ ∃Xϕ ψ if X is not free in Γ ψ .

IX.1 Second-Order Logic 137

In the introduction to this chapter we provided two motivations for investigating
more expressive languages, namely: (a) to facilitate the formalization of mathemat-
ical statements and arguments, and (b) to supply us with more powerful tools for
mathematical investigations. In regard to (a) and (b), what have we accomplished
by second-order logic?

To begin with, we note that by supplementing the second-order rules presented
above, one can obtain a system largely sufficient for the purposes of mathemat-
ics. (However, by 1.6, one never gets a complete system, so that the choice of rules
can only be made from a pragmatic point of view, and not with the aim of attain-
ing completeness.) In addition, bearing in mind that mathematics can be formulated
more conveniently in a second-order language, one can tend toward the opinion that
progress in the sense of (a) has indeed been made. However, as far as (b) is con-
cerned, LII is hardly an appropriate system. The results 1.4 and 1.5 already hint at
this. The expressive power of second-order languages is so great that results such as
the Compactness Theorem or the Löwenheim–Skolem Theorem, which are of value
for mathematical applications, no longer hold. In view of these remarks it is natural
to investigate other extensions of first-order logic (cf. Sections 2 and 3).

By considering a further aspect, we explain how, in a certain sense, second-order
logic has overshot the mark: We show that set theory, as based on ZFC, is not suffi-
cient to decide basic semantic questions for LII. We demonstrate this by presenting
a sentence ϕCH ∈ L /0

II that is valid if and only if Cantor’s continuum hypothesis CH
holds. Since neither CH nor its negation can be proved in ZFC (cf. VII.3), the valid-
ity of ϕCH can neither be established nor refuted within the framework of ZFC. CH
says:

(1)
For every subset A of R, either A is at most countable, or there is a
bijection from R onto A.

The sentence ϕCH will be essentially a formalization of (1).

First, similar to ϕ≤ctbl, we can easily give a formula χ≤ctbl(X) with the property

(A,γ) |= χ≤ctbl(X) iff γ(X) is at most countable.

Further, there is a formula ϕR such that

(2) A |= ϕR iff A and R have the same cardinality.

Note that for the S<ar-sentence ψR< introduced in 1.3(4) and for all S<ar-structures A,

A |= ψR< iff A∼=R<.

So, to satisfy (2), we can choose ϕR to be an L /0
II-sentence that says:

“There are functions +, ·, elements 0,1, and a relation < such that ψR< .”

(We leave it to the reader to write down ϕR as a second-order sentence.) Now we
can take as ϕCH a sentence that says that “if the domain is of the same cardinality
as R, then every subset of the domain is either at most countable or else of the same

138 IX Extensions of First-Order Logic

cardinality as the domain”, i.e., as ϕCH we can take the sentence

ϕR →∀X(χ≤ctbl(X)∨∃g(∀x∀y(gx ≡ gy → x ≡ y)∧∀y(Xy ↔∃xgx ≡ y))).

It is easy to prove (cf. (1)) that |= ϕCH iff CH holds.

1.7 Exercise (The System L w
II of Weak Second-Order Logic). For every S, we set

Lw,S
II := LS

II. Change the notion of satisfaction for LII by specifying, for I= (A,γ):

I |=w ∃Xnϕ :iff there is a finite C ⊆ An such that I C
Xn |= ϕ .

Thus, only quantifications over finite sets (and relations) are allowed. Show:

(a) There is a second-order sentence ϕ and a structure A such that A |=w ϕ but not
A |= ϕ .

(b) For each sentence ϕ ∈ Lw,S
II there is a sentence ψ ∈ LS

II such that for all S-
structures A, A |=w ϕ iff A |= ψ .

(c) The Compactness Theorem does not hold for Lw
II. (However, the Löwenheim–

Skolem Theorem does hold for Lw
II. This follows from the result 2.4 in the

following section; cf. Exercise 2.7.)

IX.2 The System Lω1ω

In VI.3.5 we showed that the class of torsion groups cannot be characterized in first-
order logic. But we can axiomatize this class if we add to the group axioms the
“formula”

(∗) ∀x(x ≡ e∨ x◦ x ≡ e∨ x◦ x◦ x ≡ e∨ . . .).

Thus we gain expressive power when allowing infinite disjunctions and conjunc-
tions. Such formations are characteristic of the so-called infinitary languages. In
the simplest case one restricts to conjunctions and disjunctions of countable length.
This leads to the system Lω1ω . (The notation Lω1ω follows the systematic termi-
nology usual in the study of infinitary languages, cf. [4]). To define the formulas
of Lω1ω we use the jargon of calculi. Nevertheless it should be noted that the rule in
2.1(b) below is not a rule of a calculus in the strict sense, since it has infinitely many
premises. (For example, in order to obtain the “formula” (∗) one must already have
obtained the formulas x ≡ e, x◦ x ≡ e,) A precise version of such “calculi” and
their usage can be given within the framework of set theory (cf. VII.4.3). For exam-
ple, the definition of formulas and proofs by induction on formulas can be based on
the principle of transfinite induction.

2.1 Definition of Lω1ω . Compared with the first-order language LS, we add the fol-
lowing to constitute the language LS

ω1ω :

(a) the symbol
∨

(for infinite disjunctions);

IX.2 The System Lω1ω 139

(b) to the calculus of formulas the following “rule”:
If Φ is an at most countable set of S-formulas, then

∨
Φ is an S-formula (the

disjunction of the formulas in Φ);
(c) to the definition of the notion of satisfaction the following clause:

If Φ is an at most countable set of LS
ω1ω -formulas, A an S-structure, β an as-

signment in A, and I= (A,β), then

I |=∨Φ :iff I |= ϕ for some ϕ ∈ Φ .

There are many classes of structures that can be characterized in Lω1ω , but not in
first-order logic. Examples are:

the class of torsion groups, characterized by the conjunction of the group axioms
and

∀x
∨{x◦ . . .◦ x︸ ︷︷ ︸

n times

≡ e | n ≥ 1},

the class of fields with characteristic a prime, by the conjunction of the field axioms
and ∨{1+ . . .+1︸ ︷︷ ︸

p times

≡ 0 | p prime},

the class of archimedean ordered fields, by the conjunction of the axioms for ordered
fields and

∀x
∨{x < 1+ . . .+1︸ ︷︷ ︸

n times

| n ≥ 1},

the class of structures isomorphic to (N,σ ,0), by the conjunction of the first two
Peano axioms and

∀x
∨{x ≡ σσ . . .σ︸ ︷︷ ︸

n times

0 | n ≥ 0},

the class of connected graphs, by the conjunction of the axioms for graphs and

∀x∀y(¬x ≡ y →
∨
{∃z0 . . .∃zn(x ≡ z0 ∧ y ≡ zn ∧Rz0z1 ∧ . . .∧Rzn−1zn) | n ≥ 1}).

2.2 Remarks. (a) For an at most countable set Φ let
∧

Φ be an abbreviation for the
Lω1ω -formula ¬∨{¬ϕ | ϕ ∈ Φ}. Then

I |=∧Φ iff for all ϕ ∈ Φ , I |= ϕ .

The formula
∧

Φ is called the conjunction of the formulas in Φ .

(b) The definition of the set SF(ϕ) of subformulas of a formula ϕ in Lω1ω is ob-
tained from the corresponding definition for first-order formulas in II.4.5 by adding
the clause

140 IX Extensions of First-Order Logic

SF(
∨

Φ) := {∨Φ}∪⋃ψ∈Φ SF(ψ).

It can be proved for arbitrary ϕ that SF(ϕ) is at most countable. The proof is
by induction on formulas; we give the

∨
-step: Let ϕ =

∨
Φ , where by induc-

tion hypothesis SF(ψ) is at most countable for every ψ ∈ Φ . Since SF(
∨

Φ) =
{∨Φ}∪⋃ψ∈Φ SF(ψ) is an at most countable union of at most countable sets, SF(ϕ)
is at most countable. In particular, for every ϕ ∈ LS

ω1ω there exists an at most count-
able S′ ⊆ S such that ϕ ∈ LS′

ω1ω .

(c) Define the set free(
∨

Φ) of variables occurring free in the formula
∨

Φ to be⋃
ψ∈Φ free(ψ). The formula

∨{vn ≡ vn | n ∈ N} has infinitely many free variables.
However, one can easily prove by induction that in case free(ϕ) is finite, free(ψ) is
also finite for any subformula ψ of ϕ . In particular, subformulas of Lω1ω -sentences
have only finitely many free variables.

Consider the L /0
ω1ω -sentence

ψfin :=
∨{¬ϕ≥n | n ≥ 2}

(for ϕ≥n cf. III.6.3). Then for every structure A we have

A |= ψfin iff A is finite.

Hence the set of sentences {ψfin}∪{ϕ≥n | n ≥ 2} is an example showing

2.3 Theorem. The Compactness Theorem does not hold for Lω1ω . �
Nevertheless, many results for LI have their counterparts in Lω1ω . We mention
some examples and refer the reader to [24] for more information.

(1) The analogue of the Löwenheim–Skolem Theorem holds (see 2.4).

(2) One can extend the sequent calculus S for first-order logic by the following
“rules” for

∨
:

(
∨

A)
Γ ϕ ψ for every ϕ ∈ Φ
Γ
∨

Φ ψ ;

(
∨

S)
Γ ϕ
Γ
∨

Φ if ϕ ∈ Φ .

Here Γ stands for a finite sequence of Lω1ω -formulas.

In this way one obtains a correct and complete “calculus”: For Lω1ω -sentences
ϕ1, . . . ,ϕn,ϕ , the sequent ϕ1 . . .ϕnϕ is derivable if and only if it is correct. However,
one must allow infinitely long derivations as is obvious from (

∨
A).

(3) An analysis of (2) shows that by suitably generalizing the concept of finiteness
one can transfer other results from LI to Lω1ω . Among these is the Barwise Com-
pactness Theorem for Lω1ω , cf. [3].

2.4 Löwenheim–Skolem Theorem for Lω1ω . Every satisfiable Lω1ω -sentence has
a model over an at most countable domain.

IX.2 The System Lω1ω 141

Since for every Lω1ω -sentence ϕ there is an at most countable S such that ϕ ∈ LS
ω1ω ,

2.4 follows directly from

2.5 Lemma. Let S be at most countable, ϕ an LS
ω1ω -sentence, and B an S-structure

such that B |= ϕ . Then there is an at most countable substructure A⊆B such that
A |= ϕ .

Proof. We first present the idea of the proof. Let B0 be a nonempty at most count-
able subset of B that is S-closed, i.e., that contains all cB for c ∈ S and is closed
under application of fB for f ∈ S. Then B0 is the domain of an at most countable
substructure B0 of B. If one tries to prove by induction that B0 |= ϕ , the proof
breaks down at the point where ∃-quantifiers are considered. For example, in the
simple case where ϕ is of the form ∃xPx, one must ensure that there is a b ∈ B0
such that PBb. Therefore we shall close B0 with respect to all possible existential
requirements arising from subformulas of ϕ .

Let us turn to the proof. For pairwise distinct variables x1, . . . ,xn we denote by
ψ(x1, . . . ,xn) a formula ψ with free(ψ)⊆ {x1, . . . ,xn}. We write D |= ψ[a1, . . . ,an]
if ψ holds in D when the variables xi get the assignment ai for 1 ≤ i ≤ n.

Let ϕ be given. We define a sequence A0,A1,A2, . . . of at most countable subsets
of B so that for m ∈ N

(a) Am ⊆ Am+1;
(b) for ψ(x1, . . . ,xn,x) ∈ SF(ϕ) or ψ = f x1 . . .xn ≡ x (with n-ary f ∈ S) and

a1, . . . ,an ∈ Am, if B |= ∃xψ[a1, . . . ,an], then there is a ∈ Am+1 such that
B |= ψ[a1, . . . ,an,a].

Let A0 be a nonempty at most countable subset of B that contains {cB | c ∈ S}.
Suppose Am is already defined and is at most countable. In order to define Am+1, for
every formula ψ(x1, . . . ,xn,x) that belongs to SF(ϕ) or has the form f x1 . . .xn ≡ x
(with n-ary f ∈ S), and for all a1, . . . ,an ∈ Am with B |= ∃xψ[a1, . . . ,an] we choose
a b ∈ B such that B |= ψ[a1, . . . ,an,b]. Let A′

m be the set of b’s chosen in this way.
Since SF(ϕ) and Am are at most countable, so is A′

m. We set Am+1 := Am ∪ A′
m.

Then Am+1 is at most countable, and (a) and (b) are satisfied.

For

A :=
⋃

m∈N Am

we have:

(1) A is at most countable.

(2) A is S-closed. By choice of A0, we need only show that A is closed under fB

for n-ary f ∈ S. Let a1, . . . ,an ∈ A. Since the sets Am form an ascending chain,
a1, . . . ,an lie in some Ak. As B |= ∃x f x1 . . .xn ≡ x [a1, . . . ,an], by (b) the element
fA(a1, . . . ,an) lies in Ak+1, hence in A.

By (1) and (2), A is the domain of an at most countable substructure A of B. There-
fore we are done if we can show:

142 IX Extensions of First-Order Logic

(∗) A |= ϕ .

This follows immediately from the following claim:

(∗∗)
For all ψ(x1, . . . ,xn) ∈ SF(ϕ) and all a1, . . . ,an ∈ A,

A |= ψ[a1, . . . ,an] iff B |= ψ[a1, . . . ,an].

We prove (∗∗) by induction on ψ , but limit ourselves to the ∃-case.

Let ψ(x1, . . . ,xn) = ∃xχ(x1, . . . ,xn,x), and suppose a1, . . . ,an ∈ A. Assuming that
A |= ∃xχ[a1, . . . ,an], we obtain successively:

There is an a ∈ A such that A |= χ[a1, . . . ,an,a].
There is an a ∈ A such that B |= χ[a1, . . . ,an,a] (induction hypothesis).
B |= ∃xχ[a1, . . . ,an].

Conversely, if B |= ∃xχ[a1, . . . ,an], we choose k such that a1, . . . ,an ∈ Ak, and we
obtain successively:

There is an a ∈ Ak+1 such that B |= χ[a1, . . . ,an,a] (by (b)).
There is an a ∈ Ak+1 such that A |= χ[a1, . . . ,an,a] (induction hypothesis).
A |= ∃xχ[a1, . . . ,an]. �

Consider an at most countable set Φ of first-order sentences and let ϕ :=
∧

Φ . Then
it follows from 2.5 that every model of Φ has an at most countable substructure
which is also a model of Φ . In particular, this yields a proof of the Löwenheim–
Skolem Theorem for first-order logic which does not rely on the proof of the Com-
pleteness Theorem.

Note that an Lω1ω -sentence characterizing (N,σ ,0) has no uncountable model;
hence in Lω1ω we do not have the analogue of the upward Löwenheim–Skolem
Theorem VI.2.3.

To conclude this section, we give a mathematical application of Lemma 2.5 by
choosing ϕ appropriately.

We consider groups as Sgrp-structures with Sgrp := {◦,e,−1}. A group G is said to
be simple if {eG} and G are the only normal subgroups of G. If for a ∈ G we denote
by 〈a〉G the normal subgroup of G generated by a, then clearly

G is simple iff 〈a〉G =G for all a ∈ G with a �= eG.

Since

〈a〉G = {g0az0g−1
0 . . .gnazng−1

n | n ∈ N,z0, . . . ,zn ∈ Z,g0, . . . ,gn ∈ G},

the class of simple groups can be axiomatized in LSgrp
ω1ω by the conjunction ϕs of the

group axioms and the sentence

IX.3 The System LQ 143

∀x(¬x ≡ e →∀y
∨
{∃u0 . . .∃un∨

{y ≡ u0xz0u−1
0 . . .unxznu−1

n | z0, . . . ,zn ∈ Z} | n ∈ N}).

2.6. If G is a simple group and M a countable subset of G, then there is a countable
simple subgroup of G that contains M.

Proof. Let S′ := Sgrp ∪ {ca | a ∈ M}, where ca are new constants for a ∈ M. We
expand G to an S′-structure G′, interpreting each ca by the corresponding a, and
apply Lemma 2.5 to G′ and ϕs. �
2.7 Exercise. Show that for every Lw,S

II -sentence ϕ (cf. Exercise 1.7) there is an
LS

ω1ω -sentence ψ with the same models, that is, (A |=w ϕ iff A |= ψ) for all S-
structures A. Conclude that the Löwenheim–Skolem Theorem holds for L w

II .

2.8 Exercise. Show that the following classes can be axiomatized by an Lω1ω -
sentence:
(a) the class of finitely generated groups;
(b) the class of structures isomorphic to (Z,<).

2.9 Exercise. (a) For arbitrary S, show that LS
ω1ω is uncountable.

(b) Give an uncountable structure B (for a suitable countable symbol set S) such
that there is no countable structure A satisfying the same LS

ω1ω -sentences as B.

IX.3 The System LQ

The system LQ is obtained from first-order logic by adding the quantifier Q, where
a formula Qxϕ says “there are uncountably many x satisfying ϕ .”

3.1 Definition of LQ. Compared with the first-order language LS, we add the fol-
lowing to constitute the language LS

Q:

(a) to the alphabet: the symbol Q;
(b) to the calculus of formulas the rule: If ϕ is an S-formula, then so is Qxϕ;
(c) to the definition of the notion of satisfaction the clause: If ϕ is an S-formula

and I= (A,β) an S-interpretation, then

I |= Qxϕ :iff {a ∈ A | Ia
x |= ϕ} is uncountable.

The system LQ has more expressive power than LI. For example, the class of at
most countable structures can be axiomatized in LQ by the sentence ¬Qxx ≡ x. For
S = {<} let ϕ0 be the conjunction of the axioms for orderings and

(Qxx ≡ x∧∀x¬Qyy < x).

Then ϕ0 is an LS
Q-sentence characterizing the class of uncountable orderings in

which every element has at most countably many predecessors. These so-called
ω1-like orderings play an important role in investigations of LQ.

144 IX Extensions of First-Order Logic

Note that the sentence ϕ0, or even the sentence Qxx ≡ x, has an uncountable, but
no at most countable model. Hence, the strict analogue of the Löwenheim–Skolem
Theorem VI.1.1 does not hold for LQ. However, each satisfiable LQ-sentence has
a model of cardinality ≤ ℵ1; cf. Exercise 3.3.

One can set up an adequate sequent calculus for LQ by adding the following rules to
the sequent calculus S for first-order logic. (After each rule an explanatory comment
is given, containing the essence of a correctness proof.)

Γ Qxϕ
Γ Qyϕ y

x
if y is not free in ϕ

(Renaming of bound variables);

¬Qx(x ≡ y∨ x ≡ z)
if y and z are distinct from x

(“Singletons and pair sets are not uncountable”);

Γ ∀x(ϕ → ψ)

Γ Qxϕ → Qxψ

(“Sets having uncountable subsets are uncountable”);

Γ ¬Qx∃yϕ
Γ Qy∃xϕ
Γ ∃xQyϕ

(“If the union of at most countably many sets is uncountable then at least one of
these sets is uncountable”).

One can show (cf. [23]) that this calculus allows for the derivation of exactly the
correct sequents. Furthermore, the Completeness Theorem holds for countable sets
Φ of LS

Q-formulas: Φ |= ϕ iff Φ � ϕ . As for first-order logic we conclude (cf. Sec-
tion VI.2):

3.2 LQ-Compactness Theorem. For every countable set Φ of LS
Q-formulas, Φ is

satisfiable if and only if every finite subset of Φ is satisfiable. �
The following example shows that the Compactness Theorem does not hold for
uncountable sets of formulas. Let S be an uncountable set of constants and let

Φ := {¬c ≡ d | c,d ∈ S,c �= d}∪{¬Qxx ≡ x}.

Then every finite subset of Φ is satisfiable, but Φ itself is not.

In Chapter VI we saw that the Compactness Theorem and the Löwenheim–Skolem
Theorem are useful for mathematical applications. None of the extensions of LI
which we have discussed in this chapter satisfies both theorems. The Compact-
ness Theorem fails for Lω1ω , the Löwenheim–Skolem Theorem for LQ, and
both for LII. Does there exist any logical system at all that has more expressive
power than first-order logic and for which both the Compactness Theorem and the
Löwenheim–Skolem Theorem hold? In Chapter XIII we give a negative answer.

IX.3 The System LQ 145

3.3 Exercise. Show that every satisfiable LQ-sentence has a model over a domain
of cardinality at most ℵ1 (where ℵ1 is the smallest uncountable cardinal). Hint:
Use a method similar to that in the proof of Lemma 2.5: for formulas Qxϕ that hold
in B, add ℵ1 elements satisfying ϕ .

3.4 Exercise. Let L o
Q be obtained from LQ by changing the notion of satisfaction

3.1(c) as follows:

I |= Qxϕ :iff {a ∈ A | Ia
x |= ϕ} is infinite.

Show that the Compactness Theorem does not hold for L o
Q , but that the Löwenheim–

Skolem Theorem does.

Chapter X
Computability and Its Limitations

Only in methodological questions have we thus far referred to the fact that applica-
tions of sequent rules consist ultimately of mechanical operations on symbol strings
(cf. VII.1). In this chapter we make stronger use of this formal-syntactic aspect in
mathematical considerations about logic as well. Let us give an initial idea, taking
as an example the system of axioms Φgr = {ϕ0,ϕ1,ϕ2} for group theory. It follows
from the Completeness Theorem that for all Sgr-sentences ϕ ,

Φgr |= ϕ iff Φgr � ϕ .

Thus ϕ is a theorem of group theory

Thgr := {ψ ∈ LSgr
0 | Φgr |= ψ},

if and only if the sequent ϕ0ϕ1ϕ2ϕ is derivable. By systematically applying the
sequent rules one can generate all possible derivations and thus compile a list of
the theorems of Thgr: One adds a sentence ϕ ∈ LSgr

0 to the list if one arrives at a
derivation whose last sequent is ϕ0ϕ1ϕ2ϕ .

Hence there is a procedure by which one can, in a “mechanical” way, list all the-
orems of Thgr. It should be plausible that one could use a suitably programmed
computer to carry out such a procedure. Of course, one would have to be able to
increase the capacity of the computer if necessary since the derivations and the se-
quents and formulas therein can be arbitrarily long. A set such as Thgr that can be
listed by means of such a procedure is said to be enumerable.

Of course, the enumeration procedure just sketched yields many trivialities such as
∀x(x ≡ x → x ≡ x). Moreover, one does not know how soon it will yield any use-
ful theorem. On the other hand, group theorists are mainly interested in specific
statements ϕ relevant for their investigations. The aim is to determine for such a ϕ
whether ϕ ∈ Thgr or not. Usually this is accomplished either by a proof of ϕ or by a
counterexample to ϕ (i.e., a group G with G |= ¬ϕ). Often it is difficult to accom-
plish either of the above. So it is natural to ask whether there is a procedure that can
be applied to arbitrary Sgr-sentences and that decides for each of these sentences,
in finitely many steps, whether it belongs to Thgr or not. In other words, can one

147© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

https://doi.org/10.1007/978-3-030-73839-6_10
H.-D. Ebbinghaus et al., Mathematical Logic, Graduate Texts in Mathematics 291,

http://crossmark.crossref.org/dialog/?10.1007/978-3-030-73839-6_10&domain=pdf

148 X Computability and Its Limitations

program a computer so that whenever it is given an Sgr-sentence ϕ it “computes”
whether ϕ belongs to Thgr or not? If such a procedure exists for a given theory, we
call that theory decidable.

The present chapter is devoted to questions of this kind. First we discuss the con-
cepts of enumerability and decidability in more detail, in Section 1 from a naive
point of view, and in Section 2 on the basis of the precise notion of register ma-
chine. These topics form part of the theory of computability, formerly known as
recursion theory. The remaining sections of this chapter then contain applications
to first-order and second-order logic.

For further information about the theory of computability we refer to [10, 17, 31].

X.1 Decidability and Enumerability

A. Procedures, Decidability

It is well-known how to decide whether an arbitrary natural number n is prime:
If n = 0 or n = 1, n is not prime. If n = 2, then n is prime. If n ≥ 3, one tests the
numbers 2, . . . ,n−1 to see whether they divide n. If none of these numbers divide n,
then n is prime; otherwise it is not.

This procedure operates with strings of symbols. For example, in the case of dec-
imal representation of natural numbers it operates with strings over the alphabet
{0, . . . ,9}. Our description has not specified it in complete detail (for instance, we
have not described how division is to be carried out), but it should be clear that it
is possible to fill these gaps in order to ensure that all steps are completely deter-
mined. In view of its purpose we call the procedure a decision procedure for the set
of primes.

Other well-known procedures include those for

(a) multiplication of two natural numbers,
(b) computing the square root of a natural number,
(c) listing the primes in increasing order.

Common to all of these procedures is the fact that they proceed step by step, they
operate on symbol strings and they can be carried out by a suitably programmed
computer. A procedure can operate on one or more inputs (as in (a) or (b)) or it can
be started without any particular input (as in (c)). It can stop after finitely many steps
and yield an output (as in (a) for any input and in (b) for inputs that are squares),
or it can run without ever stopping, possibly giving an output from time to time (as
in (c)).

Procedures in our sense are also called algorithms, sometimes processes. They op-
erate with concrete objects such as symbol strings. Occasionally. mathematicians

X.1 Decidability and Enumerability 149

use these notions in a wider sense, speaking, for instance, of the Gram–Schmidt
orthogonalization process even when referring to “abstract” vector spaces.

Often, we indicate the existence of a procedure by the term “effective”. For example,
we use formulations like “with each formula one can associate a number effectively
(or: in an effective way)”, to express that there exists a procedure for obtaining from
every formula the associated number.

Concerning the following definition and the subsequent discussion the reader should
bear in mind that the notion of procedure has so far been introduced only in an
intuitive way and by examples.

1.1 Definition. Let A be an alphabet, W a set of words over A, i.e., W ⊆A∗, and P
a procedure.

(a) P is a decision procedure for W if, for every input ζ ∈A∗, P eventually stops,
having previously given exactly one output η ∈ A∗, where

η =� if ζ ∈W and η �=� if ζ /∈W .

(b) W is decidable if there is a decision procedure for W .

Thus, when a decision procedure for W is applied to an arbitrary word ζ over A,
it yields an answer to the question “ζ ∈ W?” in finitely many steps. The answer is
“yes” if the output is the empty word; it is “no” if the output is a nonempty word.

To formulate the above decision procedure for the set of primes according to Defi-
nition 1.1 we set A := {0, . . . ,9} and W := set of primes (in decimal representation).
The empty word shall be the output for primes and, say, the word 1 the output for
nonprimes.

Further examples of decidable sets are the set of terms and the set of formulas for a
concretely given symbol set. In the case of S∞ (cf. Section II.2) for instance, terms
and formulas are strings over the alphabet

A∞ := {v0,v1, . . . ,¬,∨,∃,≡,),(}∪S∞.

We sketch a decision procedure for the terms.

Let ζ ∈ A∗
∞ be given. First, determine the length l(ζ) of ζ . If l(ζ) = 0, ζ is not a

term. If l(ζ) = 1, ζ is a term if and only if ζ is a variable or a constant. If l(ζ)> 1,
then ζ is not a term unless it begins with a function symbol. If ζ begins with a
function symbol, say ζ = f 3

1 ζ ′, then check whether there is a decomposition ζ1ζ2ζ3
of ζ ′, where the ζi are terms. ζ is a term if and only if such a decomposition exists.
To check whether each ζi is a term, use the same procedure as for ζ . Clearly, since
the ζi are shorter than ζ , an answer will be obtained after finitely many steps.

If one analyzes this procedure or tries to write a computer program for it, a difficulty
arises: programs (or descriptions of procedures) are finite and therefore can only
refer to finitely many symbols in A∞, whereas A∞ contains, among other things, the
infinite list of symbols v0,v1,v2, Therefore we introduce the new finite alphabet

150 X Computability and Its Limitations

A0 := {v,0,1, . . . ,9,0,1, . . . ,9,¬,∨,∃,≡,),(,R, f ,c}
and then represent the symbols in A∞ using the symbols of A0 in the natural way.
For example, we represent v71 by v71, c11 by c11, R3

18 by R318 and the S∞-formula
∃v3(R1

1v3 ∨ c11 ≡ f 1
0 v1) by ∃v3(R11v3∨c1 1≡ f 10v1).

With this in mind, we only consider finite alphabets in the sequel.

1.2 Exercise. Let A be an alphabet, and let W,W ′ be decidable subsets of A∗. Show
that W ∪W ′, W ∩W ′, and A∗ \W are also decidable.

1.3 Exercise. Describe decision procedures for the following subsets of A∗
0:

(a) the set of strings xϕ over A0 such that x ∈ free(ϕ),
(b) the set of S∞-sentences.

B. Enumerability

Consider a computer program which operates as follows: it successively generates
the numbers n = 0,1,2, . . ., tests in each case whether n is a prime, and yields n as
output if the answer is positive. The program runs without ever stopping, thereby
generating a list of all primes, i.e., a list in which every prime eventually appears.

Sets, such as the set of primes, which can be listed by means of a procedure are said
to be enumerable:

1.4 Definition. Let A be an alphabet, W ⊆ A∗, and P a procedure.

(a) P is an enumeration procedure for W if P, once having been started, even-
tually yields as outputs exactly the words in W (in some order, possibly with
repetitions).

(b) W is enumerable if there is an enumeration procedure for W .

We give some further examples for enumerable sets.

1.5. If A is an alphabet, then A∗ is enumerable.

Proof. Suppose A= {a0, . . . ,an}. We first define the lexicographic order on A∗ (with
respect to the indexing a0, . . . ,an). In this ordering ζ precedes ζ ′ if either

l(ζ)< l(ζ ′) or
l(ζ)= l(ζ ′) and “ζ precedes ζ ′ in a dictionary”, that is, there are ai,a j ∈ A

with i < j, such that for suitable ξ ,η ,η ′ ∈A∗, ζ = ξ aiη and ζ ′ = ξ a jη ′.

For example, if A = {a,b,c, . . . ,x,y,z}, then “papa” comes before “papi”, but after
“zuu”. In general, the ordering begins as follows:

�,a0, . . . ,an,a0a0,a0a1, . . . ,a0an,a1a0, . . . ,anan,a0a0a0,

It is easy to set up a procedure that lists the set A∗ in lexicographic order. �
1.6. {ϕ ∈ LS∞

0 | |= ϕ} is enumerable.

X.1 Decidability and Enumerability 151

Proof. By the Completeness Theorem V.4.1 we may describe a procedure that lists
the S∞-sentences ϕ with � ϕ . We use the same idea as in the procedure for list-
ing Thgr at the beginning of this chapter: We systematically generate all possible
derivations for the symbol set S∞. If the last sequent in such a derivation consists
of a single sentence ϕ , we include ϕ in the list. The derivations can be generated
as follows: For n = 1,2,3, . . . one constructs the first n terms and formulas in the
lexicographic ordering, and one forms the finitely many derivations of length ≤ n
that use only these formulas and terms and consist of sequents containing at most n
members. �

C. The Relationship Between Enumerability and Decidability

We have just seen that the set of “logically true” sentences can be listed by means of
an enumeration procedure. Is it possible to go farther than this and decide whether an
arbitrary given sentence is “logically true”? The enumeration procedure given above
does not help to solve this problem. For example, if we want to test a sentence ϕ for
validity we might start the enumeration procedure in 1.6 and wait to see whether ϕ
appears; we obtain a positive decision as soon as ϕ is added to the list. But as long
as ϕ has not appeared, we cannot say anything about ϕ , since we do not know
whether ϕ will never appear (because it is not valid) or whether it will appear at a
later time. In fact, we shall show (cf. Theorem 4.1) that the set of valid S∞-sentences
is not decidable.

On the other hand, if a set is decidable, we can conclude that it is enumerable:

1.7 Theorem. Every decidable set is enumerable.

Proof. Suppose W ⊆A∗ is decidable and P is a decision procedure for W . To list W ,
generate the strings of A∗ in lexicographic order, use P to check for each string ζ
thus obtained whether it belongs to W or not, and, if the answer is positive, add ζ to
the list. �
As an extension of Theorem 1.7 we have:

1.8 Theorem. A subset W of A∗ is decidable if and only if W and the complement
A∗ \W are enumerable.

Proof. Suppose W is decidable. Then A∗ \W is also decidable (one can use a deci-
sion procedure for W , merely interchanging the outputs “yes” and “no”). Thus by
Theroem 1.7, W and A∗ \W are enumerable. Conversely, suppose W and A∗ \W
are enumerable by means of procedures P and P′. We combine P and P′ into a
decision procedure for W , which operates as follows: Given ζ , P and P′ run simul-
taneously until ζ is yielded by either P or P′. This will eventually be the case since
every symbol string in A∗ is either in W or in A∗ \W . If ζ is listed by P, it belongs
to W , otherwise to A∗ \W . �
1.9 Exercise. Suppose U ⊆ A∗ is decidable and W ⊆U . Show that if W and U \W
are enumerable, then W is decidable.

152 X Computability and Its Limitations

Our definitions of decidability and enumerability were given with respect to a fixed
alphabet. However, this reference is not essential:

1.10 Exercise. Let A1 and A2 be alphabets such that A1 ⊆ A2, and suppose that
W ⊆ A∗

1. Show that W is decidable (enumerable) with respect to A1 if and only if it
is decidable (enumerable) with respect to A2.

1.11 Exercise. Show: (a) The set PIR of polynomials in several unknowns with
integer coefficients that have an integer root, is enumerable. (Choose, for ex-
ample, the alphabet {x,+,−,0, . . . ,9, 0, . . . ,9, 0, . . . ,9} and represent the poly-
nomial −3x1 + x3

2x5 +2 by −3x1+ x23x5+2.)
(b) The set PIR1 of polynomials in one unknown which belong to PIR is decid-

able. (See also the remarks before Exercise 6.13 regarding the question of the
decidability of PIR.)

D. Computable Functions

Let A and B be alphabets. A procedure that for each input from A∗ yields a word
in B∗ determines a function from A∗ to B∗. A function whose values can be com-
puted in this way by a procedure is said to be computable. An example of a com-
putable function is the length function l, which assigns to every ζ ∈ A∗ the length
of ζ (in decimal notation as a word over {0, . . . ,9}).

Whereas our discussion of procedures deals mainly with the notions of enumerabil-
ity and decidability, many presentations of the theory of computability start with the
computability of functions as the key concept. Both approaches are equivalent in the
sense that the above notions are definable from each other. The following exercise
shows that the notion of computable function can be reduced to both the notion of
enumerability and the notion of decidability.

1.12 Exercise. Let A and B be alphabets, # /∈ A∪B and f : A∗ → B∗. Show that
the following are equivalent:

(i) f is computable. (ii) {ζ # f (ζ) | ζ ∈ A∗} is enumerable.
(iii) {ζ # f (ζ) | ζ ∈ A∗} is decidable.

The set {ζ # f (ζ) | ζ ∈A∗} can be considered as the graph of f , and hence the equiv-
alences in 1.12 can be formulated as follows: A function f : A∗ →B∗ is computable
if and only if its graph is enumerable (decidable).

X.2 Register Machines

In the foregoing discussion we have used an intuitive notion of procedure which we
illustrated by use of examples. The conception we have thus acquired is perhaps
sufficient for recognizing in a given case whether a proposed procedure can be ac-
cepted as such. But in general, our informal concept does not enable us to prove

X.2 Register Machines 153

that a particular set is not decidable. Namely, in this case one must show that every
possible procedure is not a decision procedure for the set in question. However, such
a proof is usually not possible without a precise notion of procedure.

We now introduce such a precise concept, starting from the idea that a procedure
should be programmable on a computer. For this purpose we set up a programming
language and define procedures in the formal sense to be exactly those procedures
that can be programmed in this language. A. M. Turing1 was the first to introduce a
similar and equivalent concept (cf. [42]).

For the following discussion we fix an alphabet A= {a0, . . . ,ar}.

The programs are executed by computers with a memory consisting of finitely many
units R0, . . . ,Rm, called registers. (In the literature such machines are frequently
called register machines.) At each stage in a computation every register contains
exactly one word from A∗. We assume that we have machines with arbitrarily many
registers at their disposal, and that the individual registers can store words of arbi-
trary length. This idealization agrees with our objective of encompassing all pro-
cedures which can be carried out “in principle” by a computer, i.e., disregarding
problems of capacity.

A program (over A = {a0, . . . ,ar}) consists of instructions, where each instruc-
tion begins with a natural number L, its label. Only instructions of the form (1)
through (5) below are permitted.

(1) L LET Ri = Ri +a j

for L, i, j ∈ N with j ≤ r (Add-instruction: “Add the letter a j at the end of the word
in register Ri”);

(2) L LET Ri = Ri −a j

for L, i, j ∈ N with j ≤ r (Subtract-instruction: “If the word in register Ri ends with
the letter a j, delete this a j; otherwise leave the word unchanged”);

(3) L IF Ri = � THEN L′ ELSE L0 OR . . . OR Lr

for L, i,L′,L0, . . . ,Lr ∈N (Jump-instruction: “If register Ri contains the empty word
go to instruction labeled L′; if the word in register Ri ends with a0 (resp. a1, . . . ,ar)
go to instruction labeled L0 (resp. L1, . . . ,Lr)”);

(4) L PRINT

for L ∈ N (Print-instruction: “Print as output the word stored in register R0”);

(5) L HALT

for L ∈ N (Halt-instruction: “Halt”).

2.1 Definition. A register program (or simply a program) is a finite sequence
α0, . . . ,αk of instructions of the form (1) through (5) with the following properties:

1 Alan M. Turing (1912–1954).

154 X Computability and Its Limitations

(i) αi has label i (i = 0, . . . ,k).
(ii) Every jump-instruction refers to labels ≤ k.

(iii) Only the last instruction αk is a halt-instruction.

Each program P gives rise to a procedure: Imagine we have a computer which con-
tains all registers occurring in P and which has been programmed with P. At the be-
ginning of a computation all registers with the possible exception of R0 are empty,
i.e., they contain the empty word, whereas R0 contains a possible input. The com-
putation proceeds stepwise, each step corresponding to the execution of one instruc-
tion of the program. Beginning with the first instruction one proceeds line-by-line
through the program, jumping only as required by a jump-instruction. Whenever a
print-instruction is encountered, the respective content of R0 is given as an output
(“printed out”). The machine stops when the halt-instruction is reached.

Examples of Programs

2.2. Let A = {|}. We identify the strings �, |, ||, . . . , |n, . . . over A with the natural
numbers 0,1,2, . . . ,n, The following program P0 decides whether an input in
the register R0 is an even number or not: P0 successively deletes strokes | from the
string n given as an input in R0 until the empty string � is obtained. It ascertains
whether n is even or odd and prints out � or | accordingly and then stops.

0 IF R0 = � THEN 6 ELSE 1
1 LET R0 = R0 −|
2 IF R0 = � THEN 5 ELSE 3
3 LET R0 = R0 −|
4 IF R0 = � THEN 6 ELSE 1
5 LET R0 = R0 + |
6 PRINT
7 HALT

We say that the program P is started with a word ζ ∈A∗, if P begins the computation
with ζ in R0 and � in the remaining registers. If P, started with ζ , eventually reaches
the halt-instruction, we write

P: ζ → halt;

otherwise we write

P: ζ → ∞.

For ζ ,η ∈ A∗,

P : ζ → η

means that P started with ζ eventually stops, having – in the course of the computa-
tion – given exactly one output, namely η . In the above example,

P0 : n →� if n is even,
P0 : n → | if n is odd.

X.2 Register Machines 155

2.3. Let A= {a0, . . . ,ar}. For the program P:

0 PRINT
1 LET R0 = R0 +a0
2 IF R0 = � THEN 0 ELSE 0 OR . . . OR 0
3 HALT

we have P: ζ → ∞ for all ζ . If P is started with a word ζ , P prints out successively
the words ζ ,ζ a0,ζ a0a0,

Instruction 2 of P has the form

L IF R0 = � THEN L′ ELSE L′ OR . . . OR L′.

In every case such an instruction results in a jump to instruction L′. For the sake of
simplicity we shall in the sequel abbreviate it by

L GOTO L′.

2.4. We present a program P for the alphabet A= {a0,a1} such that P : ζ → ζ ζ for
ζ ∈ A∗. Started with ζ in R0, instructions 0–8 serve to build up ζ in reverse order
in R1 and R2, thereby erasing ζ in R0. Then ζ ζ is built up in R0, with the first copy
from R1 (instructions 9–15) and the second copy from R2 (instructions 16–22).

0 IF R0 = � THEN 9 ELSE 1 OR 5
1 LET R0 = R0 −a0
2 LET R1 = R1 +a0
3 LET R2 = R2 +a0
4 GOTO 0
5 LET R0 = R0 −a1
6 LET R1 = R1 +a1
7 LET R2 = R2 +a1
8 GOTO 0
9 IF R1 = � THEN 16 ELSE 10 OR 13

10 LET R1 = R1 −a0
11 LET R0 = R0 +a0
12 GOTO 9
13 LET R1 = R1 −a1
14 LET R0 = R0 +a1
15 GOTO 9
16 IF R2 = � THEN 23 ELSE 17 OR 20
17 LET R2 = R2 −a0
18 LET R0 = R0 +a0
19 GOTO 16
20 LET R2 = R2 −a1
21 LET R0 = R0 +a1
22 GOTO 16
23 PRINT
24 HALT

156 X Computability and Its Limitations

As an exercise the reader should write a program P over the alphabet A= {a0,a1,a2}
that accomplishes the following:

P: ζ → halt if ζ = a0a0a2,
P : ζ → ∞ if ζ �= a0a0a2.

By analogy with the naive definitions in Section 1, we can introduce the exact no-
tions of register-decidability and register-enumerability.

2.5 Definition. Let W ⊆ A∗.

(a) A program P decides W if for all ζ ∈ A∗,

P : ζ →� if ζ ∈W ,
P : ζ → η with η �=� if ζ /∈W .

(b) W is said to be register-decidable (abbreviated: R-decidable) if there is a pro-
gram that decides W .

Example 2.2 shows that the set of even natural numbers is R-decidable.

2.6 Definition. Let W ⊆ A∗.

(a) A program P enumerates W , if P, started with �, prints out exactly the words
in W (in some order, possibly with repetitions).

(b) W is said to be register-enumerable (abbreviated: R-enumerable), if there is a
program that enumerates W .

If P enumerates an infinite set, then P: � → ∞. By Example 2.3, the set W =
{�,a0,a0a0, . . .} is R-enumerable. The program 0 HALT enumerates the empty
set, as does the program

0 LET R1 = R1 +a0
1 GOTO 0
2 HALT

For the sake of completeness, we add the following definition of register-computable
functions.

2.7 Definition. Let A and B be alphabets and F : A∗ → B∗.

(a) A program P over A∪B computes F if for all ζ ∈ A∗,

P : ζ → F(ζ).

(b) F is said to be register-computable (abbreviated: R-computable) if there is a
program over A∪B that computes F .

In this terminology, program P from Example 2.4 computes the function

F : {a0,a1}∗ → {a0,a1}∗ with F(ζ) = ζ ζ .

X.2 Register Machines 157

Definitions 2.5 through 2.7 can easily be extended to n-ary relations and functions.
For example, in order to use a program to compute a binary function, one enters the
two arguments in the first two registers.

Since any program describes a procedure it is clear that every R-decidable set is
decidable, every R-enumerable set is enumerable, and every R-computable function
is computable. Does the converse also hold? In other words, can every procedure
in the intuitive sense be simulated by means of a program? A mathematical treat-
ment of this problem is not possible because the concept of procedure is an intuitive
one, without an exact definition. Nevertheless, in spite of the simple form of the
instructions allowed in register programs, it is widely accepted today that all proce-
dures can indeed be simulated by register programs, and, consequently, that the intu-
itive concepts of decidability, enumerability, and computability coincide with their
mathematically precise R-analogues. This view was first expressed by A. Church2

in 1935 (referring to a different but equivalent precise notion of decidability and
enumerability). Therefore, the claim that every procedure can be simulated by a
program and, hence, that the concepts of enumerability and decidability coincide
with their precise counterparts, is called Church’s Thesis (sometimes also Church–
Turing Thesis, as Turing independently stated a similar claim in [42]). We mention
two arguments which support this thesis.

Argument 1: Experience. Hitherto it has always been possible to simulate any given
procedure by a register program. In particular, programs in programming languages
such as FORTRAN, C, JAVA, etc. can be rewritten as register programs.

Argument 2: Since 1930 numerous mathematical concepts have been proposed as
precise counterparts to the notion of procedure. Although developed from different
starting points, all these definitions have turned out to be equivalent.

In the literature R-decidable sets and R-computable functions are often called re-
cursive, and R-enumerable sets are called recursively enumerable.

Proofs of R-enumerability or R-decidability often require a considerable amount
of programming work. To avoid getting lost in details, rather than actually writing
down register programs, we shall usually content ourselves with describing proce-
dures intuitively. The following example should help to illustrate this.

2.8. The set of valid S∞-sentences is R-enumerable.

We accept the procedure described in 1.6 as a proof. �
In the following exercises the critical reader is invited to practice writing programs
for given procedures. The more trusting reader may instead draw upon the experi-
ence of others and rely on Church’s Thesis.

2.9 Exercise. Suppose W,W ′ ⊆ A∗. Show that if W and W ′ are R-decidable, then
so are A∗ \W , W ∩W ′, and W ∪W ′.

2 Alonzo Church (1903–1995).

158 X Computability and Its Limitations

2.10 Exercise. Show: (a) A∗ is R-enumerable.
(b) If W ⊆ A∗, then W is R-decidable if and only if W and A∗ \W are R-

enumerable.

2.11 Exercise. Suppose W ⊆ A∗. Show that (i) and (ii) are equivalent.
(i) W is R-enumerable.

(ii) There is a program P such that P : ζ →� if ζ ∈W , and P: ζ → ∞ if ζ /∈W .

2.12 Exercise. A set W ⊆ A∗ is called lexicographically R-enumerable if there is a
program that enumerates W in lexicographic order. Show that W is R-decidable if
and only if W is lexicographically R-enumerable.

2.13 Exercise. Restrict the jump-instruction for register programs to the form

(3′) L IF Ri = � THEN L′ ELSE L′′

(If Ri contains the empty word go to instruction labeled L′; otherwise go to instruc-
tion labeled L′′). Show that there is no register program P over {a0,a1} of this new
kind such that P : ζ → ζ ζ for all ζ ∈ {a0,a1}∗.

X.3 The Halting Problem for Register Machines

Again we fix an alphabet A= {a0, . . . ,ar}. Our aim is to present a subset of A∗ that
is not R-decidable. The set will consist of register programs (over A) suitably coded
as words over A.

For this purpose we associate with every program P (over A) a word ξP ∈ A∗. First
we extend A by new symbols to an alphabet B,

(+) B := A∪{A,B,C, . . . ,X ,Y,Z}∪{0,1, . . . ,8,9}∪{=,+,−,�,§},
and we order B∗ lexicographically according to the order of letters given in (+). We
represent a program P as a word over B, e.g., the program

0 LET R1 = R1 −a0
1 PRINT
2 HALT

is represented by the word

0LETR1=R1−a0§1PRINT§2HALT

If this word is the nth word in the lexicographic ordering on B∗, let ξP := a0 . . .a0︸ ︷︷ ︸
n times

.

Set Π := {ξP | P is a program over A}.

The transition from P to ξP (i.e., the “numbering” of programs over A with words
in {a0}∗) is an example of a Gödel numbering (Gödel was the first to apply this
method); and ξP is called the Gödel number of P.

X.3 The Halting Problem for Register Machines 159

Clearly, for each P we can effectively (i.e., by means of an algorithm) determine the
corresponding ξP ∈A∗; conversely, given ζ ∈A∗, we can decide whether it belongs
to Π or not, and if it does we can effectively determine the program P with ξP = ζ .
The corresponding procedures can be programmed for register machines (cf. the
discussion at the end of Section 2). In particular, we have

3.1 Lemma. Π is R-decidable. �
The following theorem presents first examples of R-undecidable sets.

3.2 Theorem (Undecidability of the Halting Problem).

(a) The set

Π ′
halt : ={ξP | P is a program over A and P: ξP → halt}

is not R-decidable.
(b) The set

Πhalt : ={ξP | P is a program over A and P: �→ halt}

is not R-decidable.

Part (b) says that there is no register program that decides the set Πhalt. Hence, by
Church’s Thesis there is no procedure whatsoever that decides Πhalt. From this we
obtain the following formulation of (b):

There is no procedure that decides for any given program P whether P: �→ halt.

For, if such a procedure P did exist, one could use it to decide Πhalt as follows. First,
for a given ζ , check whether ζ ∈ Π (cf. Lemma 3.1). If ζ /∈ Π then ζ /∈ Πhalt. If
ζ ∈ Π , construct the program P for which ξP = ζ and then apply P to P.

Proof of Theorem 3.2. (a) Towards a contradiction, suppose that there is a program
P0 deciding Π ′

halt. Then for all P:

(1) P0 : ξP →�, if P : ξP → halt,
P0 : ξP → η for some η �=�, if P : ξP → ∞.

From this we easily obtain a program P1 (see below) such that

(2) P1 : ξP → ∞, if P : ξP → halt,
P1 : ξP → halt, if P : ξP → ∞.

Then the following holds for all programs P:

(3) P1 : ξP → ∞ iff P : ξP → halt.

In particular, if we set P = P1, we have

(4) P1 : ξP1 → ∞ iff P1 : ξP1 → halt,

a contradiction.

160 X Computability and Its Limitations

To complete the proof we show how to construct P1 from P0: We change P0 in such
a way that if P0 prints the empty word, the new program P1 will not reach the halt
instruction. This is achieved by replacing the last instruction k HALT in P0 by

k IF R0 = � THEN k ELSE k+1 OR . . . OR k+1
k+1 HALT

and all instructions of the form L PRINT by L GOTO k.

(b) To each program P we assign in an effective way a program P+ such that

(∗)
P : ξP → halt iff P+ : �→ halt,
i.e., ξP ∈ Π ′

halt iff ξP+ ∈ Πhalt.

Using a program P+ such that (∗) holds we can prove (b) indirectly as follows:
Suppose that Πhalt is R-decidable, say by means of the program P0. Then, in contra-
diction to (a), we obtain the following decision procedure for Π ′

halt: For an arbitrarily
given ζ ∈ A∗ first check whether ζ ∈ Π (cf. Lemma 3.1). If ζ /∈ Π , then ζ /∈ Π ′

halt.
If ζ ∈ Π , take the program P with Gödel number ζ , i.e., with ξP = ζ , and construct
P+. Using P0, decide whether ξP+ ∈ Πhalt. On account of (∗) one thus obtains an
answer to the question of whether ξP ∈ Π ′

halt, i.e., whether ζ ∈ Π ′
halt.

It remains to define a program P+ satisfying (∗). If ξP = a0 . . .a0︸ ︷︷ ︸
n times

, let P+ be the

program that begins with the lines

0 LET R0 = R0 +a0
...

n−1 LET R0 = R0 +a0

followed by the lines of P with all labels increased by n. When P+ is started with �
as input, it first builds up the word ξP in R0 and then operates in the same way as the
program P applied to ξP. Hence (∗) holds. Since we can build the word ξP from P in
an effective way, we can also build P+ from P in an effective way. �
The reader should note that the only properties of the map P �→ ξP used in the proof
were its injectivity and properties of effectiveness as mentioned before Lemma 3.1.
Therefore the undecidability of the halting problem does not depend on our partic-
ular choice of the Gödel numbering.

Of course, for some programs P it may be easy to determine whether P: �→ halt
or not. But Theorem 3.2 tells us that there cannot exist a procedure which decides
this question “uniformly” for each P. Strictly speaking, Theorem 3.2 only refers to
procedures which can be simulated by register programs. However, we obtain our
preceding formulation if we accept Church’s Thesis. Henceforth we shall tacitly do
this in explanatory remarks.

The following lemma together with Theorem 3.2 shows that Πhalt is an example of
an enumerable set which is not decidable.

X.3 The Halting Problem for Register Machines 161

3.3 Lemma. Πhalt is R-enumerable.

Proof. We sketch an enumeration procedure: For n = 1,2,3, . . . generate the finitely
many programs whose Gödel numbers are of length ≤ n. Start each such program
with � as input, and let each one perform n steps of its computation. To compile the
desired list, note each program that stops. �
Applying Theorem 1.8 (cf. Exercise 2.10(b)), we obtain

3.4 Corollary. A∗ \Πhalt is not R-enumerable. �
Before discussing questions about decidability in first-order and second-order logic
in the next sections, we briefly consider the aspect of costs of computations, which
we will not get into otherwise.

Propositional formulas are built up from propositional variables p0, p1, . . . using ¬
and ∨ (in the same way as quantifier-free first-order formulas are built up from
atomic formulas). A propositional formula is said to be satisfiable if one can assign
the truth values T (true) and F (false)) to the occurring propositional variables in
such a way that the truth value T is assigned to the whole formula if we interpret ¬
and ∨ in the usual way. (We will give a precise definition of propositional logic in
Section XI.4.)

The set SAT of satisfiable propositional formulas α is decidable: Suppose the pro-
positional variables occurring in α are among p0, . . . , pn. Then check systematically
for all b0, . . . ,bn ∈ {T,F} whether α is assigned the truth value T if we assign
bi to pi (for i ≤ n). If α contains, say, 1000 propositional variables then, in the
worst case, we have to check this for 21000 tuples. Not even with the fastest existent
computers is this possible within a human life time. Therefore, even for “relatively
short” inputs it may be impossible to carry out a decision procedure. Thus it is
conceivable that a set is “theoretically”, but not “practically” decidable, since all
decision procedures are too costly, e.g., they need too many computation steps or too
much memory (in the registers). Questions of this kind are the subject of complexity
theory (cf. [12, 22, 32]). We give a first impression by considering the number of
computation steps, the so-called time complexity. Let t : N → N. Then a register
program P over A is said to be t-bounded in time if for all n ∈ N the following
holds: If ζ ∈A∗ is a word of length n, then, started with ζ , the program P stops after
at most t(n) many steps. We say that a program is polynomially bounded in time if
it is t-bounded in time for a suitable polynomial t (with coefficients in the natural
numbers). Let P be the class of R-decidable sets that can be decided by a program
polynomially bounded in time.

Experience shows that, as far as problems in practical applications are concerned
(or problems that arise naturally in mathematics), the existence of a procedure
executable in practice corresponds to the existence of a procedure polynomially
bounded in time. Therefore, one often identifies the “practically decidable” sets
with the sets in P. This “Church’s Thesis of practical computability” (also called
Thesis of Cobham and Edmonds) can only be justified to a certain extent: note, for
example, that no restriction is imposed on the degree of the polynomials.

162 X Computability and Its Limitations

The set Π of register programs lies in P; on the other hand it is not known whether
the set SAT lies in P. It is conjectured that SAT /∈ P.

The set SAT lies in NP, the class of sets accepted by so-called non-deterministic
register programs polynomially bounded in time. In non-deterministic programs in-
structions of the form

L GOTO Z

are allowed in addition to the usual instructions. Here Z is a nonempty finite set of la-
bels. To follow instructions of this kind the machine chooses “non-deterministically”
a label from Z and jumps to the corresponding instruction. So, by successively
choosing appropriate labels, non-deterministic machines are able to “guess” words,
e.g., a satisfying assignment for a propositional formula. In this way one shows that
SAT ∈ NP. From the exact definitions it follows immediately that P ⊆ NP. Fur-
thermore, it can be shown that SAT /∈ P if and only if P �= NP. If one could show
that SAT /∈ P, then P �= NP would be proved, and the so-called “P = NP”-problem,
the probably most well-known unsolved problem in theoretical computer science,
would be settled in the expected way.

The proof of Theorem 3.2(a) is based on a so-called “diagonal argument”. The fol-
lowing exercise contains an abstract version of this method of proof.
3.5 Exercise. (a) Suppose M is a nonempty set and R⊆M×M is a binary relation

over M. For a ∈ M let Ma := {b ∈ M | Rab}. Show that the set D := {b ∈ M |
not Rbb} (the complement of the diagonal) is different from each Ma.

(b) Let M = A∗ for some alphabet A= {a0, . . . ,ar} and define R ⊆ M×M by

Rξ η :iff ξ is the Gödel number of a program enumerating a set
in which η occurs.

Show that D := {η | not Rηη} is not R-enumerable. Thus the set of programs
that do not print their own Gödel number is not enumerable.

(c) Again, let M = A∗ for A = {a0, . . . ,ar} and R ⊆ M×M be defined by

Rξ η :iff ξ is not the Gödel number of a program P with
P: η → halt.

Show that all R-decidable subsets of A∗ (= M) occur among the sets Mξ and
that D = Π ′

halt. (Here Mξ and D are defined as in (a).)

3.6 Exercise. Show for a given alphabet A that the set

{ξP | P is a program over A and P: ζ → halt for some ζ ∈ A∗}
is not R-decidable.

X.4 The Undecidability of First-Order Logic 163

X.4 The Undecidability of First-Order Logic

The set of valid first-order S∞-sentences is enumerable (cf. 1.6). On the other hand
we now show:

4.1 Theorem on the Undecidability of First-Order Logic. The set of valid S∞-
sentences, i.e., the set {ϕ ∈ LS∞

0 | |= ϕ}, is not R-decidable.

Thus there is no procedure that decides, for an arbitrary S∞-sentence, whether it is
valid or not.

Proof. We adopt the notation of Section 3 with A = {|}. Again we identify words
over A with natural numbers. By Theorem 3.2 we know that the set

Πhalt = {ξP | P is a program over A and P: �→ halt}
is not R-decidable. We shall assign to every program P, in an effective way, an S∞-
sentence ϕP such that

(∗) |= ϕP iff P : �→ halt.

Then we are done: If the set {ϕ ∈ LS∞

0 | |= ϕ} were decidable, we would have the
following decision procedure for Πhalt (a contradiction): Given ζ ∈ A∗, first check
whether ζ is of the form ξP. If so, take P, construct ϕP, and decide whether ϕP is
valid. By (∗) we obtain an answer to the question of whether P: � → halt, i.e.,
whether ξP ∈ Πhalt.

The following considerations are preparatory to the definition of the sentences ϕP.
Let P be a program with instructions α0, . . . ,αk. Denote by n the smallest num-
ber such that the registers occurring in P are among R0, . . . ,Rn. An (n+ 2)-tuple
(L,m0, . . . ,mn) of natural numbers with L ≤ k is called a configuration of P. We say
that (L,m0, . . . ,mn) is the configuration of P after s steps if P, started with �, runs
for at least s steps, and if after s steps instruction L is to be executed next, while the
numbers m0, . . . ,mn are in R0, . . . ,Rn, respectively. In particular, (0,0, . . . ,0) is the
configuration of P after 0 steps (the initial configuration of P). Since only αk is a
halt-instruction we have

(1) P: �→ halt iff for suitable s,m0, . . . ,mn, (k,m0, . . . ,mn) is the
configuration of P after s steps.

If P : �→ halt, we let sP be the number of steps carried out by P until it arrives at
the halt-instruction.

Finally we choose symbols R ((n+3)-ary), < (binary), f (unary), and c ∈ S∞ (e.g.,
Rn+3

0 ,R2
0, f 1

0 and c0), and set S := {R,<, f ,c}. With the program P we associate an
S-structure AP within which we shall describe how P operates. We distinguish two
cases:

Case 1: P : � → ∞. We set AP := N and interpret < by the usual ordering on N,
the constant c by 0, the function symbol f by the successor function, and R by
{(s,L,m0, . . . ,mn) | (L,m0, . . . ,mn) is the configuration of P after s steps}.

164 X Computability and Its Limitations

Case 2: P : � → halt. We set e := max{k,sP} and AP := {0, . . . ,e} and interpret
< by the usual ordering on AP and c by 0; furthermore we define the function f AP

by f AP(m) = m+ 1 for m < e and f AP(e) = e, and set RAP := {(s,L,m0, . . . ,mn) |
(L,m0, . . . ,mn) is the configuration of P after s steps}. Note that RAP is indeed
a relation on AP, since at each step P increases the contents of each register by
at most 1, and hence we have m0, . . . ,mn ≤ sP ≤ e as well as L ≤ k ≤ e for all
(s,L,m0, . . . ,mn) ∈ RAP .

Now we provide an S-sentence ψP that, in a suitable way, describes the operations
of P on �. We abbreviate c, f c, f f c, . . . by 0,1,2 . . ., respectively. In reading ψP one
should check that the following holds:

(2) (a) AP |= ψP.
(b) If A is an S-structure with A |= ψP and (L,m0, . . . ,mn) is the configuration
of P after s steps, then the elements 0A,1A, . . . ,sA are pairwise distinct and
A |= RsLm0, . . . ,mn .3

We set

ψP := ψ0 ∧R0 . . .0∧ψα0 ∧ . . .∧ψαk−1 .

Here the sentence ψ0 says that < is an ordering whose first element is c, that x ≤ f x
holds for every x and that f x is the immediate successor of x in case x is not the last
element:

ψ0 := “< is an ordering”∧∀x(c < x∨ c ≡ x)∧∀x(x < f x∨ x ≡ f x)

∧∀x(∃yx < y → (x < f x∧∀z(x < z → (f x < z∨ f x ≡ z)))).

For α = α0, . . . ,αk−1, the sentence ψα describes the operation corresponding to
instruction α . The formula ψα is defined as follows:

If α is an add-instruction, say L LET Ri = Ri+ |, then let

ψα := ∀x∀y0 . . .∀yn(RxLy0 . . .yn →
(x < f x∧R f xL+1y0 . . .yi−1 f yiyi+1 . . .yn)).

If α is the instruction L LET Ri = Ri− |, then let

ψα := ∀x∀y0 . . .∀yn(RxLy0 . . .yn → (x < f x∧ ((yi ≡ 0∧R f xL+1y0 . . .yn)

∨ (¬yi ≡ 0∧∃u(f u ≡ yi ∧R f xL+1y0 . . .yi−1uyi+1 . . .yn))))).

If α is the instruction L IF Ri = � THEN L′ ELSE L0, then let

ψα := ∀x∀y0 . . .∀yn(RxLy0 . . .yn →
(x < f x∧ ((yi ≡ 0∧R f xL′y0 . . .yn)∨ (¬yi ≡ 0∧R f xL0y0 . . .yn)))).

3 We shall need the fact that 0A, . . . ,sA are distinct only in the next section.

X.5 Trakhtenbrot’s Theorem and the Incompleteness of Second-Order Logic 165

Finally for α = L PRINT let

ψα := ∀x∀y0 . . .∀yn(RxLy0 . . .yn → (x < f x∧R f xL+1y0 . . .yn)).

Now we set

(3) ϕP := ψP →∃x∃y0 . . .∃ynRxky0 . . .yn.

Then ϕP is an S-sentence that satisfies (∗), i.e.,

|= ϕP iff P : �→ halt.

Indeed, suppose first that ϕP is valid. Then in particular AP |= ϕP. Since by (2)(a)
AP |= ψP, we have AP |= ∃x∃y0 . . .∃ynRxky0 . . .yn (cf. (3)). Therefore for suitable
s,m0, . . . ,mn, the tuple (k,m0, . . . ,mn) is the configuration of P after s steps. Now,
the equivalence (1) yields P: �→ halt.

Conversely, if P : �→ halt, then for suitable s,m0, . . . ,mn, the tuple (k, m0, . . . ,mn)
is the configuration of P after s steps. Hence ϕP is valid, because if A is an S-structure
such that A |= ψP, then A |= Rskm0 . . .mn by (2)(b) and hence A |= ϕP. �
The undecidability of first-order logic was proved in 1936 by Church (in [9]) and
Turing (in [42]). Thus the so-called Entscheidungsproblem, the question on the de-
cidability of valid first-order sentences, was solved negatively. In traditional logic
the problem of finding a decision procedure for “logically true propositions” had
already been considered centuries before (Llull, Leibniz). Theorem 4.1 shows that
such a search was bound to fail.

4.2 Exercise. Prove (2)(b) by induction on s.

4.3 Exercise. Show that the set of satisfiable S∞-sentences is not R-enumerable.

4.4 Exercise. Show that the set

{(ψ,χ) |ψ,χ ∈ LS∞

0 do not contain the equality symbol, |= ψ → χ , ψ is a uni-
versal Horn sentence, and χ is of the form ∃x1 . . .∃xnχ0 with atomic χ0}

is not R-decidable. Hint: In the proof of Theorem 4.1 leave out the ordering < and
formalize in such a way that the ψP become universal Horn sentences.

X.5 Trakhtenbrot’s Theorem and the Incompleteness of
Second-Order Logic

The object of this section is to prove that the set of valid second-order S∞-sentences
is not enumerable, and to briefly discuss the methodological consequences. A useful
tool in this context will be Trakhtenbrot’s Theorem, which says that the set of first-
order sentences valid in all finite structures is not enumerable.

166 X Computability and Its Limitations

5.1 Definition. (a) An S-sentence ϕ is said to be fin-satisfiable if there is a finite
S-structure that satisfies ϕ .

(b) An S-sentence ϕ is said to be fin-valid if every finite S-structure satisfies ϕ .

For S = S∞ we set

Φfs := {ϕ ∈ LS∞

0 | ϕ is fin-satisfiable} and Φfv := {ϕ ∈ LS∞

0 | ϕ is fin-valid}.

As an example, we note that over a finite domain any injective function is also
surjective; therefore the sentence ϕ := ∀x∀y(f x≡ f y→ x≡ y →∀x∃yx≡ f y) is fin-
valid; however, ϕ is not valid. The sentence ¬ϕ is satisfiable but not fin-satisfiable.

5.2 Lemma. Φfs is R-enumerable.

Proof. First we describe a procedure that decides, for every S∞-sentence ϕ and ev-
ery n, whether or not ϕ is satisfiable over a domain with n+1 elements. Suppose ϕ
and n are given. Since for every structure with n+ 1 elements there is an isomor-
phic structure with domain {0, . . . ,n}, we only need to check (by the Isomorphism
Lemma) whether ϕ is satisfiable over {0, . . . ,n}. Let S be the (finite!) set of symbols
occurring in ϕ and A0, . . . ,Ak the finitely many S-structures with domain {0, . . . ,n}
(cf. Exercise III.1.5). We can describe the Ai explicitly by means of finite tables for
the relations, functions, and constants. The sentence ϕ is satisfiable over {0, . . . ,n}
if and only if Ai |= ϕ for some i ≤ k. Thus we only need to test whether Ai |= ϕ for
i = 0, . . . ,k. These tests can be reduced to questions that can be answered from the
respective tables as follows: If ϕ =¬ψ , then the problem “Ai |= ϕ?” can be reduced
to the question of whether Ai |= ψ . If ϕ = (ψ ∨ χ), then similarly the problem can
be reduced to the questions of whether Ai |= ψ and whether Ai |= χ . If ϕ = ∃v0ψ ,
we reduce to the questions “Ai |= ψ[0]?”,. . . , “Ai |= ψ[n]?”. Continuing in this way
we eventually arrive at questions of the form “Ai |= ψ[n0, . . . ,nm−1]?” for atomic
formulas ψ(v0, . . . ,vm−1) and n0, . . . ,nm−1 ≤ n. Clearly these can be answered ef-
fectively by inspecting the tables for Ai.

Now Φfs can be enumerated as follows: For m = 0,1,2, . . . generate the (finitely
many) words over A0 that are S∞-sentences of length ≤ m, and use the procedure
just described to decide, for n = 0, . . . ,m, whether they are satisfiable over a domain
with n+1 elements. List the sentences where this is the case. �
5.3 Theorem. Φfs is not R-decidable.

Proof. For a program P over A = {|}, let AP and ψP be defined as in the proof of
Theorem 4.1. We show

(∗) P : �→ halt iff ψP ∈ Φfs.

This proves the theorem; for otherwise, using (∗), one could obtain from a decision
procedure for Φfs a procedure to decide whether P: �→ halt (cf. the corresponding
argument in the proof of Theorem 4.1).

X.5 Trakhtenbrot’s Theorem and the Incompleteness of Second-Order Logic 167

Proof of (∗): If P : �→ halt, then AP is finite and is a model of ψP. Hence ψP ∈Φfs.
Conversely, if P : �→ ∞, then by (2)(b) in the proof of 4.1, the elements 0A,1A, . . .
are pairwise distinct in every model A of ψP. Thus every model of ψP is infinite,
and hence ψP /∈ Φfs. �
From Lemma 5.2 and Lemma 5.3 we now obtain

5.4 Trakhtenbrot’s Theorem. The set Φfv of first-order S∞-sentences valid in all
finite structures is not R-enumerable.

Proof. Clearly, for ϕ ∈ LS∞

0 ,

(∗) ϕ ∈ LS∞

0 \Φfs iff ¬ϕ ∈ Φfv.

For a contradiction assume that Φfv is R-enumerable. Then, using (∗), one can enu-
merate LS∞

0 \Φfs: one simply starts an enumeration procedure for Φfv, and whenever
it lists a sentence ¬ϕ , one writes down ϕ . This would lead to a decision procedure
for Φfs (in contradiction to Theorem 5.3) as follows: For a string ζ over A0, de-
cide first whether ζ is an S∞-sentence. If so, start enumeration procedures for Φfs
(cf. Lemma 5.2) and for LS∞

0 \Φfs, and let both procedures continue until one of
them yields ζ as output. Thus one obtains a decision whether ζ ∈ Φfs. �
5.5 Theorem (Incompleteness of Second-Order Logic). The set of valid second-
order S∞-sentences is not R-enumerable.

Proof. Let ϕfin be a second-order S∞-sentence with the property that for all A,

A |= ϕfin iff A is finite

(cf. Remark IX.1.3(6)). Then for all first-order (!) S∞-sentences ϕ ,

(∗) ϕ ∈ Φfv iff |= ϕfin → ϕ .

Now, if the set of valid second-order S∞-sentences is R-enumerable, then one can
start an enumeration procedure for this set, and each time it yields a sentence of the
form ϕfin → ϕ , where ϕ ∈ LS∞

0 , one adds ϕ to the list. In this way, by (∗), we obtain
an enumeration of Φfv, in contradiction to Trakhtenbrot’s Theorem. �
Theorem 5.5 is due to Gödel. It is a stronger version of a result obtained in Sec-
tion IX.1. There we concluded from the failure of the Compactness Theorem for
second-order logic LII that there cannot be any correct and complete proof calculus
for LII. In other words, there is no calculus whose derivability relation � satisfies

(+)
For all LII-sentences ϕ and all sets Φ of LII-sentences,
Φ |= ϕ iff Φ � ϕ.

However, (+) leaves open the question of whether there is a calculus that satisfies (+)
for Φ = /0, that is, whether there is a correct calculus in which all valid second-
order sentences are derivable. Now Theorem 5.5 shows that in this sense second-
order logic is also incomplete: If such a calculus existed, one could apply its rules
systematically to generate all possible derivations and hence all valid second-order
sentences (cf. the proof of 1.6).

168 X Computability and Its Limitations

At this point we see how useful it has been to introduce the notion of enumerability:
By employing this notion, we were relieved of the task of giving precise defini-
tions for the notions of derivation rule and calculus, but were nevertheless able to
conclude that there is no adequate proof calculus for the second-order sentences.

The above argument for Theorem 5.5 is based on the fact that the finite sets are
characterizable in second-order logic. Thus, it can also be applied to weak second-
order logic (cf. Exercise IX.1.7).

For the sake of simplicity, in the last two sections we have referred to the symbol
set S∞ although we have actually needed only a few symbols from S∞. It should
be clear that the results are also valid for other symbol sets S that are effectively
given, as is S∞, and contain symbols which allow for the description of the exe-
cution of programs. One can even show that it is sufficient for S to contain only
one binary relation symbol. Moreover, the incompleteness of second-order logic al-
ready holds for S = /0 (cf. Exercise 5.6). On the other hand, the set of valid first-order
S-sentences is decidable provided S contains only unary relation symbols (cf. Exer-
cise XII.3.18(b)).

5.6 Exercise. Show: The set of valid second-order /0-sentences is not R-enumer-
able.

X.6 Theories and Decidability

In this section we investigate several theories, especially with regard to enumerabil-
ity and decidability. Among the results obtained is the undecidability of arithmetic.
We shall always assume that the symbol sets considered are effectively given.

A. First-Order Theories

6.1 Definition. A set T of S-sentences is said to be a theory if it is satisfiable and
closed under consequence (i.e., every S-sentence that follows from T already be-
longs to T).

For an S-structure A the set Th(A) = {ϕ ∈ LS
0 | A |= ϕ} is a theory, the theory of A

(cf. Definition VI.4.1). The set Th(N) is called (elementary) arithmetic where N is
the Sar-structure N= (N,+, ·,0,1).
For Φ ∈ LS

0 let Φ |= := {ϕ ∈ LS
0 | Φ |= ϕ}. If T is a theory, then T = T |=, and if Φ is

a satisfiable set of S-sentences, then Φ |= is a theory. We give a few examples.

(1) /0|= = {ϕ ∈ LS
0 | |= ϕ}.

(2) For S = Sgr: (elementary) group theory Thgr := Φ |=
gr .

(3) For S = {εε}: ZFC set theory ThZFC := ZFC|=.
(4) For S = Sar: (first-order) Peano arithmetic ThPA := Φ |=

PA.

X.6 Theories and Decidability 169

The axiom system ΦPA consists of the Peano axioms given in Exercise III.7.5, where
the usual induction axiom (a second-order sentence) is replaced by the first-order
“induction axioms” (∗) below. The axioms of ΦPA are:

∀x¬x+1 ≡ 0
∀x x+0 ≡ x
∀x x ·0 ≡ 0

∀x∀y(x+1 ≡ y+1 → x ≡ y)
∀x∀y x+(y+1)≡ (x+ y)+1
∀x∀y x · (y+1)≡ x · y+ x

(∗)

⎧⎪⎨⎪⎩
for all x1, . . . ,xn,y and all ϕ ∈ LSar such that free(ϕ)⊆ {x1, . . . ,xn,y}
the sentence

∀x1 . . .∀xn

(
(ϕ 0

y ∧∀y(ϕ → ϕ y+1
y))→∀yϕ

)
.

The structure N is a model of ΦPA and therefore Φ |=
PA ⊆ Th(N). The induction

schema (∗) is a natural substitute for the induction axiom, because it expresses the
induction axiom for properties that are definable in first-order logic. Many theorems
of elementary arithmetic (i.e., sentences in Th(N)) can be derived from ΦPA. Nev-
ertheless, it turns out that not all sentences of Th(N) are derivable from ΦPA: in
Corollary 6.10 we shall show that Φ |=

PA ⊂ Th(N).

6.2 Definition. (a) A theory T is said to be R-axiomatizable if there is an R-
decidable set Φ of sentences such that T = Φ |=.

(b) A theory T is said to be finitely axiomatizable if there is a finite set Φ of sen-
tences such that T = Φ |=.

Every finitely axiomatizable theory can be axiomatized by means of a single sen-
tence. (Take the conjunction of the axioms.) Every finitely axiomatizable theory is
also R-axiomatizable. The theories ThPA and ThZFC are R-axiomatizable, but not
finitely axiomatizable (which we will not show here).

6.3 Theorem. An R-axiomatizable theory is R-enumerable.

Proof. Let T be a theory and let Φ be an R-decidable set of S-sentences such that
T = Φ |=. The sentences of T may be listed as follows: Systematically generate all
derivable sequents and (with a decision procedure for Φ) check in each case whether
the members of the antecedent belong to Φ . If so, list the succedent provided it is a
sentence. �
An R-axiomatizable theory T need not necessarily be R-decidable. Examples are
T = /0|= (for S = S∞; cf. Theorem 4.1) and T = Tgr (cf. [39]). The situation is differ-
ent, however, if T is complete in the following sense.

6.4 Definition. A theory T ⊆ LS
0 is complete if for every S-sentence ϕ we have

ϕ ∈ T or ¬ϕ ∈ T .

Th(A) is complete for every structure A.

6.5 Theorem. (a) Every R-axiomatizable and complete theory is R-decidable.
(b) Every R-enumerable and complete theory is R-decidable.

170 X Computability and Its Limitations

Proof. By Theorem 6.3 it is sufficient to prove (b). Let T be an R-enumerable and
complete theory. In order to decide whether a given sentence ϕ belongs to T , we
use a procedure to enumerate T , continuing until either ϕ or ¬ϕ has been listed.
Since T is complete, this will eventually be the case. If ϕ is listed, ϕ belongs to T ;
if ¬ϕ is listed, ϕ does not belong to T . �
From Theorem 6.5 we obtain the decidability of an axiomatizable theory once we
have proved its completeness. A method for proving completeness will be intro-
duced in Chapter XII. In certain cases one can use the assertion in Exercise 6.7 for
this purpose.

6.6 Exercise. Let T = Φ |= be a theory, where Φ is R-enumerable. Show that T is
R-axiomatizable. Hint: Starting with an enumeration ϕ0,ϕ1, . . . of Φ , consider the
set {ϕ0,ϕ0 ∧ϕ1, . . .}.

6.7 Exercise. (a) For an at most countable S, let T ⊆ LS
0 be a theory having only

infinite models. Further, suppose there is an infinite cardinal κ such that any
two models of T of cardinality κ are isomorphic. Show that T is complete.

(b) Set up a decidable system of axioms for the theory of algebraically closed
fields of a fixed characteristic and use (a) to show its completeness (and hence,
by Theorem 6.5, its decidability).

B. The Undecidability of Arithmetic

In this section we prove the undecidability of arithmetic, i.e., we show that there is
no procedure which decides for every Sar-sentence whether it holds in N. We shall
use the same method of proof as in showing the undecidability of first-order logic:
we effectively assign to every register program P over A = {|} an Sar-sentence ϕP
such that

N |= ϕP iff P : �→ halt.

The undecidability of Th(N) then follows immediately from the undecidability of
Πhalt (cf. Theorem 3.2).

In defining ϕP we shall make use of a formula χP that, in N, describes how the
program P operates. The following lemma provides such a formula.

Assume the register program P consists of the instructions α0, . . . ,αk, and let n be
the smallest number such that all registers mentioned in P are among R0, . . . ,Rn.
Recall (cf. Section 4) that a configuration of P is an (n+ 2)-tuple (L,m0, . . . ,mn)
of natural numbers such that L ≤ k. The tuple (L,m0, . . . ,mn) stands for a situation
where αL is the next instruction to be executed and the contents of the registers
R0, . . . ,Rn are m0, . . . ,mn, respectively.

6.8 Lemma. With any given program P one can effectively associate an Sar-formula
χP(v0, . . . ,v2n+2) such that for all l0, . . . , ln,L,m0, . . . ,mn ∈ N the following holds:

X.6 Theories and Decidability 171

N |= χP[l0, . . . , ln,L,m0, . . . ,mn] iff
the program P, beginning with the configuration (0, l0, . . . , ln), after finitely
many steps reaches the configuration (L,m0, . . . ,mn).

The proof will be given below. Using χP, we can write down the desired formula ϕP:
We set

ϕP := ∃vn+2 . . .∃v2n+2χP(000, . . . ,000,kk,vn+2, . . . ,v2n+2).4

Then we have (note that αk is the halt-instruction of P):

N |= ϕP iff P, beginning with the configuration (0, . . . ,0), after finitely
many steps reaches the configuration (k,m0, . . . ,mn) for
some m0, . . . ,mn

iff P : �→ halt.

Thus we have:

6.9 Theorem on the Undecidability of Arithmetic. Arithmetic, that is, the theory
Th(N), is not R-decidable. �
Since Th(N) is complete, using Theorem 6.5, we obtain

6.10 Corollary. Arithmetic, that is, the theory Th(N), is neither R-axiomatizable
nor R-enumerable. In particular, Φ |=

PA ⊂ Th(N). �
According to Theorem 6.9 and Corollary 6.10, arithmetic is not amenable to a purely
“mechanical” treatment in the following sense: There is no procedure for deciding
whether any given arithmetical sentence is true, nor is there even a procedure that
lists all true arithmetical sentences. In other words, every procedure that lists only
true arithmetical sentences must necessarily omit some true arithmetical sentences.
Thus, mathematicians will never possess a method for systematically proving all
true arithmetical sentences. In particular, one cannot effectively give a system of
axioms Φ ⊆ Th(N) from which all sentences in Th(N) are derivable.

Proof of Lemma 6.8. Let P be given as above. We must find an Sar-formula
χP(x0, . . . ,xn,z,y0, . . . ,yn) that says (in N) that P, beginning with the configuration
(0,x0, . . . ,xn), proceeds through a series of configurations, ending finally with the
configuration (z,y0, . . . ,yn). That is, χP(x0, . . . ,xn,z,y0, . . . ,yn) should be a formal-
ization of the following statement (1):

(1) “There is an s ∈ N and a sequence C0, . . . ,Cs of configurations such that
C0 = (0,x0, . . . ,xn), Cs = (z,y0, . . . ,yn), and for all i < s: Ci →

P
Ci+1.”

Here, “Ci →
P

Ci+1” means that P passes from configuration Ci to Ci+1 when executing

the instruction addressed in Ci.

4 In case ϕ ∈ LSar
2 , for example, we write ϕ(n,v1) for ϕ n

v0
and ϕ(n,m) for ϕ n m

v0 v1
. Here, as before,

0,1,2, . . . stand for the Sar-terms 0,1,1+1,

172 X Computability and Its Limitations

We form a single sequence from C0, . . . ,Cs and thus obtain the following formula-
tion (2) of (1):

(2) “There is an s ∈ N and a sequence

(a0, . . . ,an+1︸ ︷︷ ︸
C0

,an+2, . . . ,a(n+2)+(n+1)︸ ︷︷ ︸
C1

, . . . ,as·(n+2), . . . ,as·(n+2)+(n+1)︸ ︷︷ ︸
Cs

),

such that
a0 = 0, a1 = x0, . . . , an+1 = xn,. . . ,
as·(n+2) = z, as·(n+2)+1 = y0, . . . , as·(n+2)+(n+1) = yn,
and for all i < s:
(ai·(n+2), . . . ,ai·(n+2)+(n+1))→

P
(a(i+1)·(n+2), . . . ,a(i+1)·(n+2)+(n+1)).”

The principal difficulty in formalizing (2) as a first-order LSar -sentence arises with
the quantifier “there exists a sequence.” We overcome this problem by using natural
numbers as codes for finite sequences. Often one codes a sequence (a0, . . . ,ar) by
the number pa0+1

0 · · · par+1
r , where pi denotes the i th prime. However, when using

this code, we would be forced to give an LSar -definition of exponentiation xy. Since
such a definition is rather involved, we provide another coding where a sequence
(a0, . . . ,ar) is coded by two suitably chosen numbers t and p.

6.11 β -Function Lemma.5 There is a function β : N3 → N such that:

(a) For every sequence (a0, . . . ,ar) over N there exist t, p ∈ N such that for all
i ≤ r: β (t, p, i) = ai.

(b) The function β is definable in LSar , i.e., there is an Sar-formula ϕβ (v0,v1,v2,v3)
such that for all t, p, i,a ∈ N,

N |= ϕβ [t, p, i,a] iff β (t, p, i) = a.

Proof. Given (a0, . . . ,ar), we choose a prime p that is larger than a0, . . . , ar,r + 1
and set

(∗) t := 1 · p0 +a0 p1 +2p2 +a1 p3 + . . .+(i+1)p2i +ai p2i+1 + . . .
+(r+1)p2r +ar p2r+1.

By choice of p the right-hand side is the p-adic representation of t.

First, we show that for all i with 0 ≤ i ≤ r,

(∗∗)

a = ai iff there are b0,b1,b2 such that

(i) t = b0 +b1((i+1)+ap+b2 p2),
(ii) a < p,
(iii) b0 < b1,
(iv) b1 = p2m for a suitable m.

5 This nomenclature stems from Gödel’s use of β for a function with the properties (a) and (b) of
the lemma.

X.6 Theories and Decidability 173

The implication from left to right follows immediately from (∗) with

b0 := 1 · p0 + . . .+ai−1 p2i−1, b1 := p2i, and

b2 := (i+2)+ai+1 p+ . . .+ar p2(r−i)−1.

Conversely, suppose (i)–(iv) hold for b0,b1,b2 and let b1 = p2m. From (i) we obtain

t = b0 +(i+1)p2m +ap2m+1 +b2 p2m+2.

Since b0 < p2m, a < p, and i+ 1 < p, and since the p-adic representation of t is
unique, a comparison with (∗) yields m = i and a = ai.

Obviously, (iv) from (∗∗) is equivalent to

(iv)′ b1 is a square and for all d �= 1 with d|b1 we have p|d.

We define β (t, p, i) to be the uniquely determined (and hence the smallest) a for
which the right-hand side of (∗∗) (with (iv)′ instead of (iv)) holds. We extend this
definition to arbitrary triples of natural numbers by specifying:

Let β (u,q, j) be the smallest a such that there are b0,b1,b2 with

(i) u = b0 +b1((j+1)+aq+b2q2),
(ii) a < q,

(iii) b0 < b1,
(iv)′ b1 is a square, and for all d �= 1 with d|b1 we have q|d.

If no such a exists, let β (u,q, j) = 0.

Then β has the properties required in (a). The definition of β just given leads im-
mediately to an Sar-formula ϕβ (v0,v1, v2,v3) defining β . So (b) holds as well. �
We now return to the proof of Lemma 6.8, that is, to the problem of giving an Sar-
formula χP, which says that the program P passes in finitely many steps from the
configuration (0,x0, . . . ,xn) to the configuration (z,y0, . . . ,yn). As we have seen, this
statement about P is equivalent to statement (2) at the beginning of the proof. We
can formalize (2) with the aid of the formula ϕβ from the β -Function Lemma 6.11
in the following way (where we now use s, t, . . . to denote variables):

χP(x0, . . . ,xn,z,y0, . . . ,yn) :=
∃s∃p∃t(ϕβ (t, p,0,0)∧ϕβ (t, p,1,x0)∧ . . .∧ϕβ (t, p,nn+ 1,xn)

∧ϕβ (t, p,s · (n+ 2),z)∧ϕβ (t, p,s · ((n+ 2)+1),y0)∧ . . .

∧ϕβ (t, p,s · (n+ 2)+(n+ 1),yn)

∧∀i(i < s →∀u∀u0 . . .∀un∀u′∀u′0 . . .∀u′n
[(ϕβ (t, p, i · (n+ 2),u)∧ . . .∧ϕβ (t, p, i · (n+ 2)+(n+ 1),un)

∧ϕβ (t, p,(i+1) · (n+ 2),u′)∧ . . .

∧ϕβ (t, p,(i+1) · (n+ 2)+(n+ 1),u′n))
→“(u,u0, . . . ,un)→

P
(u′,u′0, . . . ,u

′
n)”])).

174 X Computability and Its Limitations

Here “(u,u0, . . . ,un) →
P

(u′,u′0, . . . ,u
′
n)” stands for a formula which describes the

direct transition from configuration (u,u0, . . . ,un) to configuration (u′,u′0, . . . ,u
′
n);

such a formula can be obtained as a conjunction ψ0∧ . . .∧ψk−1, where ψ j describes
transitions induced by instruction α j of P. For example, if α j is of the form

j LET R1 = R1 + |,
then we take

ψ j := u ≡ jj → (u′ ≡ u+1∧u′0 ≡ u0 ∧u′1 ≡ u1 +1∧u′2 ≡ u2 ∧ . . .∧u′n ≡ un).

Thus a formula χP with the desired properties has been obtained, and the proof of
Lemma 6.8 is completed. �
Finally, we note another consequence of the fact that computations of register ma-
chines can be described in N.

6.12 Theorem. Let r ≥ 1.

(a) Given an r-ary R-decidable relation Q over N, there is an Sar-formula
ϕ(v0, . . . ,vr−1) such that for all l0, . . . , lr−1 ∈ N,

Ql0 . . . lr−1 iff N |= ϕ(l0, . . . , l r−1).

(b) Given an R-computable function f : Nr → N, there is an Sar-formula
ϕ(v0, . . . ,vr−1,vr) such that for all l0, . . . , lr−1, lr ∈ N,

f (l0, . . . , lr−1) = lr iff N |= ϕ(l0, . . . , l r−1, l r),

and in particular,

N |= ∃=1vrϕ(l0, . . . , l r−1,vr).

Proof. (a) Suppose r ≥ 1 and let Q be an r-ary R-decidable relation over N.
Let P be a register program that decides Q and let Rn be the largest register men-
tioned in P. Without loss of generality, let n ≥ r− 1. Suppose αL0 , . . . ,αLm are the
print-instructions in P. Then, choosing χP as in Lemma 6.8, we have for arbitrary
l0, . . . , lr−1 ∈ N:

Ql0, . . . , lr−1 iff beginning with the configuration (0, l0, . . . , lr−1,0, . . . ,0︸ ︷︷ ︸
n+1−r

),

the program P after finitely many steps reaches a configu–
ration of the form (Li,0,m1, . . . ,mn) with 0 ≤ i ≤ m (i.e.,
a print-instruction with the empty word in R0)

iff N |= ∃vn+3 . . .∃v2n+2(

χP(l0, . . . , l r−1,0, . . . ,0,L0,0,vn+3, . . . ,v2n+2)

∨ . . .∨χP(l0, . . . , l r−1,0, . . . ,0,Lm,0,vn+3, . . . ,v2n+2)).

Thus, for ϕ(v0, . . . ,vr−1) one can take the formula

X.6 Theories and Decidability 175

∃vn+3 . . .∃v2n+2
m∨

i=0
χP(v0, . . . ,vr−1,0, . . . ,0,LLi,0,vn+3, . . . ,v2n+2).

(b) We proceed as in (a), noting that

f (l0, . . . , lr−1) = lr iff beginning with configuration (0, l0, . . . , lr−1,0, . . . ,0)
the program P after finitely many steps reaches a con-
figuration of the form (Li, lr,m1, . . . ,mn) with 0 ≤ i ≤ m.

Hence, the required formula ϕ(v0, . . . ,vr−1,vr) can be chosen as

∃vn+3 . . .∃v2n+2

m∨
i=0

χP(v0, . . . ,vr−1,0, . . . ,0,Li,vr,vn+3, . . . ,v2n+2). �

Relations and functions over N that can be described by an Sar-formula as in Theo-
rem 6.12, are said to be arithmetical. Thus 6.12 says that all R-decidable relations
and all R-computable functions over N are arithmetical.

The Theorem on the Undecidability of Arithmetic has been strengthened in the con-
text of Hilbert’s 10th Problem (from a list of problems Hilbert proposed in 1900),
which asked for a procedure that decides the set PIR of polynomials in integer coef-
ficients with integer roots (cf. Exercise 1.11). In 1970 Matiyasevich proved (cf. [30])
that PIR is not R-decidable. Since to every polynomial p with integer coefficients
one can assign effectively an existential Sar-sentence ϕp such that

p ∈ PIR iff ϕp ∈ Th(N), 6

we obtain that already the set {ϕ ∈ Th(N) | ϕ is existential} is undecidable. The
considerations by Matiyasevich show that every R-enumerable subset of N can be
written in the form

{n ∈ N | there are integers z1, . . . ,zr with p(z1, . . . ,zr) = n},

where p is a polynomial with integer coefficients. Hence, the R-enumerable subsets
of N coincide with the “N-parts” of the ranges of such polynomials.

6.13 Exercise. Let Z= (Z,+, ·,0,1) be the ring of integers (as Sar-structure). Show
that Th(Z) is not R-decidable. Hint: Use the fact that an integer is a natural number
if and only if it is the sum of four squares of integers.

6 For example, to the polynomial p = x + 2y2 − 5 one assigns the existential sentence ϕp =
∃x∃y(x+2(y · y)≡ 5 ∨ 2(y · y)≡ x+5) (ϕp also takes negative roots into account).

176 X Computability and Its Limitations

X.7 Self-Referential Statements and Gödel’s Incompleteness
Theorems

In the preceding section we have shown that arithmetic is not R-axiomatizable. Orig-
inally Gödel [14] used another method to prove this result. He showed that within
sufficiently strong axiom systems there are self-referential formulas, i.e., formu-
las which make statements about themselves. Such self-referential formulas are the
main theme of this section. We close this section by taking up our original objective
of this chapter and obtain some important results concerning the limitations of the
formal method. With this aim in mind, we shall often conduct the arguments on the
syntactic level.

In the following, we take Φ to be a set of Sar-sentences.

7.1 Definition. (a) A relation Q ⊆ Nr is representable in Φ if there is an Sar-
formula ϕ(v0, . . . ,vr−1) such that for all n0, . . . ,nr−1 ∈ N:

If Qn0 . . .nr−1, then Φ � ϕ(nn0, . . . ,nr−1);
if not Qn0 . . .nr−1, then Φ � ¬ϕ(n0, . . . ,nr−1).

In this case we say that ϕ(v0, . . . ,vr−1) represents Q in Φ .
(b) A function F : Nr → N is representable in Φ if there is an Sar-formula

ϕ(v0, . . . ,vr−1,vr) such that for all n0, . . . ,nr−1,nr ∈ N:

If F(n0, . . . ,nr−1) = nr, then Φ � ϕ(n0, . . . ,nr−1,nr);
if F(n0, . . . ,nr−1) �= nr, then Φ � ¬ϕ(n0, . . . ,nr−1,nr);
Φ � ∃=1vrϕ(n0, . . . ,nr−1,vr).

In this case we say that ϕ(v0, . . . ,vr−1,vr) represents F in Φ .

7.2 Lemma. (a) If Φ is inconsistent, then every relation over N and every function
over N is representable in Φ .

(b) If Φ ⊆ Φ ′ ⊆ LSar
0 , then the relations and functions representable in Φ are also

representable in Φ ′.
(c) Let Φ be consistent. If Φ is R-decidable, then every relation representable in

Φ is R-decidable and every function representable in Φ is R-computable.

Proof. The assertions (a) and (b) follow immediately from Definition 7.1. We
show (c) for a function F : N → N. Let F be represented in Φ by ϕ(v0,v1). In
the following way we obtain a procedure to compute F : Let n ∈ N be given. Then
Φ � ϕ(n,F (n)) and Φ � ¬ϕ(n,m) for m �= F(n); hence by the consistency of Φ ,
we have not Φ � ϕ(n,m) for m �= F(n). To determine F(n), i.e., to find k with
Φ � ϕ(n,k), we start an enumeration procedure for {ψ ∈ LSar

0 | Φ � ψ} and at
the same time produce the sentences ϕ(n,0),ϕ(n,1),ϕ(n,2), As soon as the
enumeration procedure yields a sentence ϕ(n,k), we have found k to be the value
for F(n). �

X.7 Self-Referential Statements and Gödel’s Incompleteness Theorems 177

We say that Φ allows representations if all R-decidable relations and all R-comput-
able functions over N are representable in Φ .

In a certain sense, Φ allowing representations says that Φ is rich enough to describe
how procedures operate. In the preceding section we have described the execution
of register programs in Φ = Th(N). Indeed, we have

7.3 Theorem. Th(N) allows representations.

The proof is immediate from Theorem 6.12 if one notes that for every Sar-sentence ϕ
we have (N |= ϕ iff Th(N) � ϕ) and (not N |= ϕ iff Th(N) � ¬ϕ). �
A closer analysis (not pursued here) of the considerations leading to the proof of
Theorem 6.12 shows that one can describe the execution of register programs al-
ready on the basis of Peano arithmetic, i.e., in ΦPA.Thus, one can obtain

7.4 Theorem. ΦPA allows representations. �
As an important technical means we assume in the following that an effective coding
of the Sar-formulas by natural numbers (a “Gödel numbering”) is given, and more-
over, that the Gödel numbering is surjective, i.e., that every number is the Gödel
number of some formula. We write nϕ for the Gödel number of ϕ .

In this way it is possible to translate statements about formulas into arithmetical
statements. For example, a statement about the derivability of a formula ϕ becomes
an arithmetical statement about the Gödel number of ϕ , and this in turn can be
formalized as an Sar-sentence. This idea gives us the key to construct self-referential
formulas.

The way we shall proceed originates from the liar paradox. This paradox amounts
to the fact that the statement

(∗) “I am not telling the truth now”

can neither be true nor false; for if it were true, it would have to be false, and if it
were false, it would have to be true.

Note that (∗) makes a statement about itself, and hence is an example of a self-
referential statement. In a first step we consider statements of this kind in general.
We show that within a sufficiently rich system (i.e., in a system which allows repre-
sentations), every property expressible in the system gives rise to a self-referential
sentence; more precisely:

7.5 Fixed Point Theorem. Suppose that Φ allows representations. Then, for every
ψ ∈ LSar

1 , there is an Sar-sentence ϕ such that

Φ � ϕ ↔ ψ(nnϕ).

Intuitively, ϕ says: “I have the property ψ .”

Proof. Let F : N×N→ N be given by

178 X Computability and Its Limitations

F(n,m) =

{
nχ(mm), if n = nχ for some χ ∈ LSar

1

0, otherwise.

Clearly, F is computable, and for χ ∈ LSar
1 we have

F(nχ ,m) = nχ(m).

Since Φ allows representations, F can be represented in Φ by a suitable Sar-formula
α(v0,v1,v2). We write x,y,z for v0,v1,v2. For given ψ ∈ LSar

1 we set

β := ∀z(α(x,x,z)→ ψ(z)),

ϕ := ∀z(α(nβ ,nβ ,z)→ ψ(z)).

Since β ∈ LSar
1 and ϕ = β nβ

x , we have F(nβ ,nβ) = nϕ and hence,

(1) Φ � α(nβ ,nβ ,nϕ).

Now we show the claim for ϕ and ψ , i.e.,

Φ � ϕ ↔ ψ(nϕ).

For the direction from left to right, we have by definition of ϕ that

Φ ∪{ϕ} � α(nβ ,nβ ,nϕ)→ ψ(nϕ),

by (1) therefore, that Φ � ϕ → ψ(nϕ).

On the other hand, α represents the function F in Φ , in particular

Φ � ∃=1zα(nβ ,nβ ,z);

thus by (1),

Φ � ∀z(α(nβ ,nβ ,z)→ z ≡ nϕ)

and therefore

Φ � ψ(nϕ)→∀z(α(nβ ,nβ ,z)→ ψ(z)),

that is,

Φ � ψ(nϕ)→ ϕ . �

The following theorem shows that in a system which is rich enough one cannot
speak about the truth of all its statements. Formally, we consider a consistent system
of axioms Φ that allows representations. The “true” statements correspond to the
sentences in Φ� = {ϕ ∈ LSar

0 | Φ � ϕ}, the “false” ones to the sentences ϕ with
¬ϕ ∈ Φ�. To say that one can speak of “truth” or “falsity” in Φ is to say that Φ�
(more precisely: {nϕ | ϕ ∈ Φ�}) is representable in Φ .

7.6 Lemma. Let Φ be consistent and suppose Φ allows representations. Then Φ�
is not representable in Φ .

X.7 Self-Referential Statements and Gödel’s Incompleteness Theorems 179

Proof. Suppose the assumptions of the lemma hold and let χ(v0) represent Φ� in Φ .
By the consistency of Φ we get for an arbitrary α ∈ LSar

0 :

(1) Φ � ¬χ(nnα) iff not Φ � α .

For ψ := ¬χ we choose, by Theorem 7.5, a “fixed point” ϕ ∈ LSar
0 such that

(2) Φ � ϕ ↔¬χ(nϕ).

(Intuitively ϕ says “I am not true.”) But then

Φ � ϕ iff Φ � ¬χ(nϕ) (by (2))
iff not Φ � ϕ (by (1)),

a contradiction. �
Lemma 7.6 has interesting consequences, both on the syntactical level and on the
semantical level. In semantical formulations one usually refers to Φ |= instead of Φ�.
From Lemma 7.6 we obtain Tarski’s Theorem [38] and Gödel’s First Incompleteness
Theorem [14].

7.7 Tarski’s Theorem. (a) Suppose Φ is consistent and allows representations.
Then Φ |= is not representable in Φ .

(b) Th(N) is not representable in Th(N).

Proof. Since Φ� = Φ |=, (a) follows immediately from Lemma 7.6. As Th(N) is
consistent and allows representations (cf. Theorem 7.3), (b) is a special case of (a).

�
Tarski’s Theorem is of great significance in the study of semantics. Part (b) can
be formulated succinctly as “there is no truth definition for arithmetic within arith-
metic.”

7.8 Gödel’s First Incompleteness Theorem. Let Φ be consistent and R-decidable
and suppose Φ allows representations. Then there is an Sar-sentence ϕ such that
neither Φ � ϕ nor Φ � ¬ϕ .

Proof. Suppose that for every Sar-sentence ϕ , either Φ � ϕ or Φ � ¬ϕ . Then Φ� is
complete and hence R-decidable (cf. Theorem 6.5(a)). Thus, since Φ allows repre-
sentations, Φ� is representable in Φ , a contradiction to Lemma 7.6. �
A refinement of the above argumentation leads to results concerning the consistency
of mathematics. In particular, Gödel’s Second Incompleteness Theorem, which we
shall now derive, shows that the consistency of a sufficiently rich system cannot be
proved using only the means available within the system.

In the following let Φ ⊆ LSar
0 be decidable and allow representations.

We choose an effective enumeration of all derivations in the sequent calculus asso-
ciated with Sar and define a relation H by

Hnm iff the mth derivation ends with a sequent of the form
ψ0 . . .ψk−1 ϕ , where ψ0, . . . ,ψk−1 ∈ Φ and n = nϕ .

180 X Computability and Its Limitations

Since Φ is decidable, so is H, and clearly,

Φ � ϕ iff there is m ∈ N such that Hnϕ m.

Since Φ allows representations, H can be represented in Φ by a suitable formula
ϕH(v0,v1) ∈ LSar

2 . Again we write x,y for v0,v1 and set

DerΦ(x) := ∃yϕH(x,y).

For ψ = ¬DerΦ(x) we choose with Theorem 7.5 a fixed point ϕ ∈ LSar
0 , i.e., an

Sar-sentence ϕ with

(∗) Φ � ϕ ↔¬DerΦ(nnϕ).

Intuitively ϕ says “I am not provable from Φ .”

7.9 Lemma. If Con Φ (i.e., if φ is consistent), then not Φ � ϕ .

Proof. Suppose Φ � ϕ holds. Choose m such that Hnϕ m. Then Φ � ϕH(nϕ ,m), and
so Φ � DerΦ(nϕ). From (∗) we have Φ � ¬ϕ and hence, that Φ is inconsistent. �
Since Φ � 0 ≡ 0, we have

Con Φ iff not Φ � ¬0 ≡ 0.

The Sar-sentence

ConsisΦ := ¬DerΦ(n¬0≡0)

thus expresses the consistency of Φ . Lemma 7.9 may then be formalized as

(∗∗) ConsisΦ →¬DerΦ(nϕ).

An argument which is in principle simple, though technically rather tedious, could
now be used to show that for (∗∗) the proof of Lemma 7.9 can be carried out on the
basis of Φ , i.e., one can show that

(∗∗∗) Φ � ConsisΦ →¬DerΦ(nϕ)

in case Φ ⊇ ΦPA (and if a sufficiently simple formula ϕH(x,y) to be used in DerΦ
has been chosen; cf. Exercise 7.12). Thus we obtain:

7.10 Gödel’s Second Incompleteness Theorem. Let Φ be consistent and R-decid-
able with Φ ⊇ ΦPA. Then

not Φ � ConsisΦ .

Proof. If Φ � ConsisΦ then by (∗∗∗) Φ � ¬DerΦ(nϕ). Since Φ � ϕ ↔¬DerΦ(nϕ)
(cf. (∗)), it would follow that Φ � ϕ , in contradiction to Lemma 7.9. �
For Φ = ΦPA, Gödel’s Second Incompleteness Theorem says intuitively that the
consistency of ΦPA cannot be proved on the basis of ΦPA. This result shows that
Hilbert’s program cannot be carried out in its original form. In particular, this pro-
gram aimed at a consistency proof for ΦPA with elementary, so-called finitistic
means. The concept “finitistic”, though not defined precisely (cf. [20], I, p. 32), was

X.7 Self-Referential Statements and Gödel’s Incompleteness Theorems 181

taken in a very narrow sense; in particular it was meant that finitistic proof methods
be carried out on the basis of ΦPA.

The above argument can be transferred to other systems where there is a substitute
for the natural numbers and where R-decidable relations and R-computable func-
tions are representable. In particular, it applies to systems of axioms for set theory
such as ZFC, where one uses the natural numbers as defined in Section VII.3. Then
one can give an {εε}-sentence ConsisZFC, which expresses the consistency of ZFC,
to obtain:

7.11 Theorem. If Con ZFC, then not ZFC � ConsisZFC. �
Since contemporary mathematics can be based on the ZFC axioms, and since “not
ZFC � ConsisZFC” says that the consistency of ZFC cannot be proved using only
means available within ZFC, we can formulate Theorem 7.11 as follows: If mathe-
matics is consistent, we cannot prove its consistency by mathematical means.

In a similar way Tarski’s Theorem and Gödel’s First Incompleteness Theorem can
also be transferred to axiom systems for set theory. For example, Theorem 7.8 would
then assert that for every decidable and consistent system Φ of axioms for set theory
that contains ZFC, there is an {ε}-sentence ϕ such that neither Φ � ϕ nor Φ � ¬ϕ .
Intuitively this means that there is no decidable consistent system of axioms for
mathematics which, for every mathematical statement, allows us to either prove or
disprove it. In this fact an inherent limitation of the axiomatic method is manifested.

With the results of Matiyasevich mentioned at the end of Section 6 we can formu-
late 7.11 in the following form, which is easy to remember: One can write down a
polynomial p in finitely many indeterminates with integer coefficients for which the
following holds: Mathematics is consistent if and only if p has no (integer) root. By
Theorem 7.11 we have therefore: If p has no root, then mathematics cannot prove it.

7.12 Exercise. For the (effectively given) symbol set S, fix a Gödel numbering of
the S-formulas; let nϕ be the Gödel number of ϕ . Furthermore, for n ∈ N, let n be a
variable free S-term.

For Φ ⊆ LS
0 let the S-formula der(v0) (“v0 is derivable from Φ”) satisfy the so-called

Löb axioms, i.e., for arbitrary ϕ,ψ ∈ LS,

(L1) If Φ � ϕ , then Φ � der(nϕ);
(L2) Φ � (der(nϕ)∧der(n(ϕ→ψ))→ der(nψ));
(L3) Φ � (der(nϕ)→ der(nder(nϕ))).

Show: If Φ is consistent and if there is an S-sentence ϕ0 such that

Φ � (ϕ0 ↔¬der(nϕ0)),

then not Φ � ¬der(n¬0≡0).
Hint: Show that, if (L1), (L2), (L3) hold for all ϕ,ψ ∈ LS, then also

Φ � ((der(nϕ)∧der(nψ))→ der(n(ϕ∧ψ))) and Φ � (der(nϕ0)→ der(n¬ϕ0)).

182 X Computability and Its Limitations

X.8 Decidability of Presburger Arithmetic

Theorem 6.9 on the undecidability of (first-order) arithmetic motivates the ques-
tion of whether we obtain a decidable fragment of arithmetic when we remove
addition or multiplication. In this section we show that when multiplication is re-
moved we get a decidable theory, i.e., that Th(N,+,0,1), the first-order theory of
the structure (N,+,0,1), is decidable. The result goes back to Presburger7 (1929);
so Th(N,+,0,1) is called Presburger arithmetic. When addition is removed from
first-order arithmetic one obtains Th(N, ·,1), the first-order theory of multiplication.
Skolem (1930) showed that this theory is also decidable; so Th(N, ·,1) is called
Skolem arithmetic.

In (N,+,0,1) one can, for example, express the (true) sentence “for every number
x we have that x or x+1 is even” in first-order logic by

∀x(∃y x ≡ y+ y∨∃y x+1 ≡ y+ y).

In the theory of addition, general multiplication is not available but multiplication
by a fixed natural number is: One can write 2 · x as x+ x, 3 · x as x+ x+ x, etc. In
general we indicate the n-fold sum of x by nx. A natural number m is representable
by the m-fold sum of the term 1, denoted by mm; then 0 is the term 0 and 1 the term 1.
A {+,0,1}-term t(x1, . . . ,xn) can be written (by collecting the summands xi and the
summands 1, discarding the terms 0) in the form

m0 +m1x1 + . . .+mnxn.

For every k ≥ 1 one can write the k-fold sum of t – denoted henceforth by kt –
as km0 + km1x1 + . . .+ kmnxn. Whenever we say that a term t(x1, . . . ,xn) “can be
written as”, “is presentable as” or “can be transformed into” the term t ′(x1, . . . ,xn),
we mean that for all m1, . . . ,mn,

t(N,+,0,1)[m1, . . . ,mn] = t ′(N,+,0,1)[m1, . . . ,mn].

We use similar wording with the corresponding meaning for formulas.

For formalizations we also have the <-relation and the ≤-relation at our disposal,
because x < y can be defined by ∃z(x+1+ z ≡ y) and x ≤ y by x < y∨ x ≡ y. Also
for fixed k > 1 the divisibility of x by k is expressible, namely as ∃y x ≡ ky. More
generally, for k > 1 the relation ≡k with

x1 ≡k x2 :iff x1 and x2 have the same remainder when divided by k

can be defined by a disjunction over the remainders r = 0, . . . ,k−1:

7 Mojżesz Presburger (1904–1943).

X.8 Decidability of Presburger Arithmetic 183∨
r∈[0,k−1]

(∃y1 x1 ≡ ky1 + r∧∃y2 x2 ≡ ky2 + r
)
.8

For a later purpose we note the following fact on the congruences ≡k:

8.1 Remark. For each m ≥ 1 we have n1 ≡k n2 iff mn1 ≡mk mn2.

We now extend the symbol set {+,0,1} of Presburger arithmetic by adding <
and ≡k for all k ≥ 2, obtaining

S+ := {+,0,1,<}∪{≡k| k ≥ 2}.

Correspondingly, let N+ be the S+-structure9

N+ := (N,+,0,1,<,≡2,≡3, . . .).

Rather than showing the decidability of Presburger arithmetic directly, we pro-
ceed via the decidability of Th(N+). The reason is that Th(N+) admits effective
quantifier elimination in the sense that for every S+-formula ϕ(x1, . . . ,xn) one can
construct a quantifier-free S+-formula ϕ ′(x1, . . . ,xn) that over N+ is equivalent to
ϕ(x1, . . . ,xn); in particular, for every S+-sentence ϕ there is an equivalent quantifier-
free S+-sentence ϕ ′. As we shall see, there is an algorithm that for each such sen-
tence ϕ ′ decides whether it belongs to Th(N+). Altogether one obtains a decision
procedure for Th(N+) and thus also a decision procedure for Presburger arithmetic
Th(N,+,0,1).

8.2 Theorem on Quantifier Elimination in Th(N+). For every S+-formula
ϕ(x1, . . . ,xn) one can construct a quantifier-free S+-formula ϕ ′(x1, . . . ,xn) such that

Th(N+) |= ∀x1 . . .∀xn
(
ϕ(x1, . . . ,xn)↔ ϕ ′(x1, . . . ,xn)

)
.

Presburger arithmetic itself does not admit quantifier elimination. Following Exer-
cise 8.8, the {+,0,1}-formula ∃yx ≡ y+y is an example for which a quantifier-free
{+,0,1}-formula does not exist that is equivalent in (N,+,0,1); in N+ the S+-
formula x ≡2 0 serves this purpose.

Before showing Theorem 8.2 we infer the consequence we stated: To an S+-sentence
ϕ we can now associate an equivalent quantifier-free S+-sentence ϕ ′, i.e., a Boolean
combination of variable-free atomic formulas. These are of the form s ≡ t, s < t,
s ≡k t, where each s and t is a sum of the constants 0 and 1, hence presentable in
the form m. For each formula of this form (for example, 17 ≡ 5, 5 < 17, 2 ≡3 5)
and hence for ϕ ′ the satisfaction in N+, i.e., whether it belongs to Th(N+), can be
checked effectively. Thus, invoking Theorem 8.2, we obtain the desired decidability
result:

8 In this section, for natural numbers m and l let [m, l] := {m,m+1, . . . , l}.
9 For better legibility we do not distinguish between the symbols +,0,1,<,≡2,≡3, . . . and their
interpretations over N.

184 X Computability and Its Limitations

8.3 Presburger’s Theorem. The theory Th(N+) is R-decidable, and hence so is
Presburger arithmetic Th(N,+,0,1).

The procedure of quantifier elimination used for the proof of Theorem 8.2 essen-
tially relies on three simple facts which we shortly present in the statements (a)–(c)
of Remark 8.4 below, illustrating each with an example. Then we shall give general
formulations of these facts in Lemma 8.5, Lemma 8.6, and Lemma 8.7.

8.4 Remark. (a) Negations of atomic formulas can be expressed as disjunctions
of atomic formulas. For instance, the formula ¬ x ≡3 0 can be rewritten as
x ≡3 1∨ x ≡3 2.

(b) An existential quantifier in front of inequalities can be eliminated; for example,
we can write ∃z(x < z∧ z < y) as the quantifier-free formula x+1 < y (since it
suffices that y is greater at least by two than x).

(c) Finally, existential quantifiers in front of conditions with congruences can be
eliminated. As an example consider the formula

ϕ := ∃z(x < z∧ z ≡3 r∧ z < y).

The existence of a number > m with remainder r modulo 3 is equivalent to the
existence of such a number already in the interval [m+ 1, . . . ,m+ 3]. So ϕ is
equivalent over N+ to the quantifier-free formula

(x+1 ≡3 r∧ x+1 < y)∨ (x+2 ≡3 r∧ x+2 < y)∨ (x+3 ≡3 r∧ x+3 < y).

We use these remarks to reach a decision whether the S+-sentence

(∗) ∀x(x ≡2 0∨ x+1 ≡2 0)

is true in N+ or not. In the subsequent transformations of this sentence we always
proceed to equivalent sentences.

First we replace the universal quantifier by an existential quantifier and two nega-
tions, obtaining

¬∃x¬(x ≡2 0∨ x+1 ≡2 0).

Since |= ¬(ϕ ∨ψ)↔ (¬ϕ ∧¬ψ) we can proceed to

¬∃x(¬x ≡2 0∧¬x+1 ≡2 0).

With x ≡2 1 in place of ¬x ≡2 0 and x+1 ≡2 1 in place of ¬x+1 ≡2 0 (cf. (a)) we
obtain

¬∃x(x ≡2 1∧ x+1 ≡2 1).

Now we eliminate, as described in (c) above, the existential quantifier in front of the
two congruences and obtain

¬((0 ≡2 1∧0+1 ≡2 1)∨ (1 ≡2 1∧1+1 ≡2 1)).

X.8 Decidability of Presburger Arithmetic 185

In each of the two conjunctions one member is false, so the disjunction is false and
its negation true. Thus (∗) is true in N+.

The following lemmas contain the stated more general formulations of (a), (b), and
(c). They form the core of the proof of Theorem 8.2 that we shall give afterwards.

8.5 Lemma. The negation of an atomic S+-formula over N+ can be written as a
disjunction of atomic S+-formulas.

Proof. The negation of an atomic S+-formula is of one of the forms ¬ s ≡ t, ¬ s < t,
or ¬ s ≡k t, in each case with S+-terms s and t. As equivalent formulas without
negation we can take

– s < t ∨ t < s for ¬ s ≡ t;
– s ≡ t ∨ t < s for ¬ s < t;
– s ≡k t +1∨ s ≡k t +22∨ . . .∨ s ≡k t +(k−1) for ¬ s ≡k t. �

In the sequel, we denote by
∧

iχi conjunctions of the form
∧

i∈I χi where I is a finite
nonempty set.

In the following lemma the existential quantifier in a formula ∃zψ is eliminated if ψ
is a conjunction of inequalities of a certain form.

8.6 Lemma. There is an algorithm that assigns to every S+-formula of the form

(♦) ∃z(
∧

isi < s′i + z ∧ ∧ jt
′
j + z < t j)

with z-free S+-terms 10 si,s′i, t j, t ′j a quantifier-free S+-formula with no new variables
which is equivalent to it in N+. Analogously this holds for formulas of the form
∃z(
∧

isi < s′i + z) and ∃z(
∧

jt
′
j + z < t j).

Proof. We show that (♦) is equivalent in N+ to the formula

(◦)
∧

jt
′
j < t j ∧ ∧

i, j si + t ′j +1 < t j + s′i.

(♦) holding in N+ amounts to the following claim: There is z ∈ N that is greater
than all si − s′i and smaller than all t j − t ′j; note that the numbers si − s′i and t j − t ′j
may be negative. This means, as is easily seen, that for all j we have t j − t ′j > 0 and
that for all i, j we have si − s′i < t j − t ′j −1. This in turn says that (◦) holds in N+.

For a formula ∃z
(∧

isi < s′i + z
)

the equation 0 ≡ 0 serves the purpose, for the for-
mula ∃z

(∧
jt
′
j + z < t j

)
one can take

∧
jt
′
j < t j. �

In the concluding lemma we look at the elimination of an existential quantifier where
also congruences for possibly different moduli may occur.

8.7 Lemma. There is an algorithm that assigns to every S+-formula of the form

(+) ∃z
(∧

isi < s′i + z∧∧ jt
′
j + z < t j ∧∧lu

′
l + z ≡kl ul

)
10 A term t, respectively a formula ϕ , is called z-free if the variable z does not occur in it.

186 X Computability and Its Limitations

with z-free S+-terms si,s′i, t j, t ′j,ul ,u′l a quantifier-free S+-formula equivalent to it
in N+ in which no new variables occur. Analogously this holds when there are no
inequalities of the first or the second type or when inequalities do not occur at all.

Proof. We start with a remark concerning the formula
∧

l u′l + z ≡kl ul in (+). Let K
be the smallest common multiple of the kl . Then any u′l + z ≡kl ul is equivalent
to u′l +(z+K) ≡kl ul , and we have the following: For all m: ∃z

∧
l u′l + z ≡kl ul is

equivalent to (
∧

l u′l +(m+0)≡kl ul) ∨ . . . ∨ (
∧

l u′l +(m+(K−1))≡kl ul).

Now we prove the lemma: The formula in (+) holds iff

–
∧

j(t
′
j < t j) is true,

– a natural number z exists such that, informally speaking, the maximum of the
numbers si − s′i is smaller than z, and z in turn is smaller than the minimum of
the numbers t j − t ′j, and

– the conguences
∧

l u′l + z ≡kl ul are satisfied.

We proceed by distinguishing the two cases
∧

i si < s′i and
∨

i si ≥ s′i. In the first case
the maximum of the si−s′i is < 0, in the second case it is ≥ 0. We present the desired
formula in the form

∧
j(t

′
j < t j)∧ (

∧
i si < s′i → β1)∧ (

∨
i si ≥ s′i → β2). In the first

case we use the above remark for m = 0 and put

β1 :=
∨

r∈[0,K−1]
(
∧

j
t ′j + r < t j ∧

∧
l
u′l + r ≡kl ul);

in the second case we choose as m the maximum of the si − s′i and let

β2 :=
∨

r∈[0,K−1]
(
∧

i, j
(si − s′i + r+1 < t j − t ′j ∧

∧
l
u′l + si − s′i + r ≡kl ul)),

more precisely:

β2 :=
∨

r∈[0,K−1]
(
∧
i, j

(si + t ′j + r+1 < t j + s′i ∧
∧

l

u′l + si + r ≡kl ul + s′i)).

The additional claim of the lemma for the special cases of (+) is proved similarly.
�

Proof of Theorem 8.2 Let ϕ(x1, . . . ,xn) be an S+-formula. We show how to trans-
form ϕ(x1, . . . ,xn) into a quantifier-free S+-formula ϕ ′(x1, . . . ,xn) equivalent to it in
N+. In the following we write x for x1, . . . ,xn.

For quantifier-free ϕ(x) nothing is to be done. So assume that quantifiers occur
in ϕ(x). We replace the universal quantifications ∀y by ¬∃y¬ and ensure by renam-
ing bound variables that the quantified variables y are distinct from x1, . . . ,xn.

Now let ∃zψ(x,z) be the first subformula of ϕ(x) which starts with ∃ and such that
ψ(x,z) is quantifier-free. It suffices to construct a quantifier-free S+-formula ψ ′(x)
equivalent to ∃zψ(x,z) in N+. By iterating this process we then reach the desired
quantifier-free formula ϕ ′(x).

X.8 Decidability of Presburger Arithmetic 187

By repeatedly applying the equivalence of ¬(χ1 ∧ χ2) and (¬χ1 ∨¬χ2), and of
¬(χ1 ∨ χ2) and (¬χ1 ∧¬χ2), we ensure that in ψ(x,z) the negation symbol only
occurs in front of atomic formulas. Using Lemma 8.5, negated atomic formulas are
replaced by disjunctions of atomic formulas. Thus in ψ(x,z) the negation symbol
does not occur anymore. Using Exercise 8.10, we transform ψ(x,z) into a disjunc-
tion of conjunctions of atomic formulas. Since existential quantifier and disjunction
are interchangeable, we can put ∃zψ(x,z) into the form (∃zχ1(x,z)∨ . . .∨∃zχr(x,z))
where the χ j(x,z) are conjunctions of atomic S+-formulas. Now it suffices to look
at the individual formulas ∃zχ j(x,z). So consider such a formula

∃z(ε1(x,z)∧ . . .∧ εl(x,z))

with atomic formulas εi(x,z) which are of the form s ≡ t or s < t or s ≡k t. The terms
that are not z-free can be written as

z-free term +mz;

if such a term is already of the form mz, we write it as 0+mz.

If a formula εi(x,z) is now of the form

s+mz ≡ t +m′z, resp. s+mz < t +m′z, resp. s+mz ≡k t +m′z

and, for example, m < m′, we replace εi(x,z) by

s ≡ t +(m′ −m)z, resp. s < t +(m′ −m)z, resp. t +(m′ −m)z ≡k s

(so that in view of Lemma 8.7 we put the z in congruences to the left-hand side). If
m = m′ we replace εi(x,z) by

s ≡ t, resp. s < t, resp. s ≡k t.

We place the z-free formulas εi(x,z) as members of a conjunction in front of the ex-
istential quantifier ∃z, thereby preserving the equivalence in N+. If these are already
all the formulas εi(x,z), we have reached a quantifier-free S+-formula equivalent to
∃z(ε1(x,z)∧ . . .∧ εl(x,z)) in N+. Otherwise we have arranged that in each of the
remaining εi(x,z) the variable z occurs on precisely one side, which is of the form
t +miz with z-free t.

We now arrange for a single multiple of z to appear instead of the miz’s. For this
purpose let M be the smallest common multiple of the mi. We rewrite εi(x,z), for
example of the form

s+miz ≡ t, resp. s < t +miz, resp. s+miz ≡k t

with z-free s, t, equivalently in N+ as

M
mi

s+Mz ≡ M
mi

t, resp.
M
mi

s <
M
mi

t +Mz, resp.
M
mi

s+Mz ≡ M
mi

·k
M
mi

t.

188 X Computability and Its Limitations

(For the equivalence regarding the congruences see Remark 8.1.) Thus, in each
εi(x,z) the additive multiples of z have the form Mz.

If an equation occurs among the εi(x,z), we pick the smallest i such that εi(x,z) is of
the form s+Mz≡ t. We eliminate Mz everywhere by replacing, informally speaking,
Mz by t − s, so for example an inequality s′+Mz < t ′ is replaced by s′+ t < t ′+ s.
The equation εi(x,z), i.e., s+Mz ≡ t, is replaced by s ≡M t ∧ (s ≡ t ∨ s < t). Thus
we reach a quantifier-free formula equivalent to ∃z(ε1(x,z)∧ . . .∧εl(x,z)) over N+.

We still need to consider the case that among the εi(x,z) no equation occurs, which
means that we have to find for an S+-formula ψ(x) of the form

(†) ∃z
(∧

i si < s′i +Mz ∧ ∧
j t ′j +Mz < t j ∧ ∧

l u′l +Mz ≡kl ul
)

a quantifier-free formula ψ ′(x) equivalent to (†) in N+.

If M = 1 we can apply Lemma 8.6 or Lemma 8.7. If M ≥ 2 we replace Mz by z′ and
require z′ ≡M 0, so with

∃z′
(∧

i si < s′i + z′ ∧ ∧
j t ′j + z′ < t j ∧ ∧

l u′l + z′ ≡kl ul ∧ 0+ z′ ≡M 0
)

we get a formula equivalent to (†) in N+ by invoking Lemma 8.7. �
8.8 Exercise. Show that the {+,0,1}-formula ∃yx = y + y is not equivalent in
(N,+,0,1) to a quantifier-free {+,0,1}-formula. Hint: The property of a set to be
finite or co-finite (a complement of a finite set) is useful.

8.9 Exercise. A set M ⊆ N is called ultimately periodic if some p0 exists such
that n ∈ M iff n + p0 ∈ M for all sufficiently large n. Show that M is definable
in (N,+,0,1) by a {+,0,1}-formula ϕ(x) iff M is ultimately periodic.

8.10 Exercise. Show that every quantifier-free formula ϕ in which only the con-
nectives ∧ and ∨ occur is logically equivalent to a disjunction of conjunctions of its
atomic subformulas.

8.11 Exercise. In (N,+,0,1) the <-relation is definable by x < y := ∃z(¬z ≡ 0∧
x+ z ≡ y). Show that there is no definition by a quantifier-free {+,0,1}-formula
ϕ(x,y).

X.9 Decidability of Weak Monadic Successor Arithmetic

In this section we look at results on the decidability of second-order theories of
arithmetic. We make use of concepts and results from the theory of finite automata
which we develop as far as required.

We start with a theorem which shows how severely we are constrained when aiming
at decidability results in second-order logic. For this purpose we consider the struc-
ture Nσ = (N,σ ,0) of the natural numbers with the successor function σ : n �→ n+1

X.9 Decidability of Weak Monadic Successor Arithmetic 189

that was introduced in Section III.7 in connection with Dedekind’s Theorem. This
structure is a kind of minimal framework for arithmetic.

9.1 Theorem. The second-order theory ThII(Nσ) = {ϕ L{σσσ ,0}
II -sentence |Nσ |= ϕ}

of Nσ is not R-decidable.

Proof. We use Theorem 6.9 on the undecidability of the first-order theory of the
structure N = (N,+, ·,0,1). To each first-order Sar-sentence ϕ we associate a
second-order {σσσ ,0}-sentence ϕ ′ such that

N |= ϕ iff Nσ |= ϕ ′.

If the second-order theory of Nσ were R-decidable, then so were the first-order
theory of N.

The inductive definition of the translation ϕ �→ ϕ ′ for formulas is clear once this is
done for the atomic formulas 1 ≡ x, x+ y ≡ z, and x · y ≡ z (cf. Section VIII.1). We
set (1 ≡ x)′ := σσσ0 ≡ x, and we take (x+ y ≡ z)′ to be the {σσσ ,0}-formula

ϕ+(x,y,z) := ∀X((X0x∧∀u∀v(Xuv → Xσσσuσσσv)) → Xyz).

In order to prove

N |= x+ y ≡ z[k, l,m] iff Nσ |= ϕ+[k, l,m],

we first show the direction from right to left. Suppose Nσ |= ϕ+[k, l,m]. If we set
R0 := {(i,k+ i) | i ∈ N}, the premise

X0x∧∀u∀v(Xuv → Xσσσuσσσv)

holds with R0 for X and k for x. Hence we have Nσ |= Xyz[R0, l,m] and thus R0lm,
i.e., k+ l = m.

Conversely, suppose k+ l = m and let R be a binary relation over N. Assume the
premise with R for X and k for x. Then (0,k) ∈ R, (1,k+1) ∈ R, (2,k+2) ∈ R, . . .,
hence R0 ⊆ R and thus (l,m) ∈ R.

For the formula (x · y ≡ z)′ we proceed analogously and take the formula

∀X((X00∧∀u∀v(Xuv →∃w(ϕ+(v,x,w)∧Xσσσu w))) → Xyz)

for ϕ···(x,y,z), using ϕ+(x,y,z). �
Theorem 9.1 shows that even for the structure Nσ second-order logic yields an
undecidable theory. Is there a fragment of second-order logic that extends first-order
logic such that the corresponding theory of Nσ is decidable? In this section we
present such a fragment.

For this purpose we restrict second-order logic in two respects. First we include only
second-order formulas in which all second-order variables are unary (monadic).

190 X Computability and Its Limitations

This restriction is called monadic second-order logic, MSO-logic for short. Already
in Section III.7 we used MSO-logic in connection with the structure Nσ : The in-
duction principle presented there,

∀X((X0∧∀x(Xx → Xσσσx)) → ∀yXy),

is a sentence of MSO-logic which is true in Nσ .

Let us turn to the second restriction. First we note that in Nσ the MSO-formula

ϕinit(Y) := ∃y¬Y y∧∀z(Y σσσz → Y z)

says that Y is a finite initial segment of N, hence of the form { j | j < i} for some
i ∈ N. Since a subset of N is finite if and only if it is a subset of a finite initial
segment, the MSO-formula

ϕfin(X) := ∃Y (ϕinit(Y)∧∀z(Xz → Y z))

expresses in Nσ that X is finite.

Thus in MSO-logic, interpreted in Nσ , we can quantify over finite subsets of N: For
an MSO-formula ϕ := ϕ(x1, . . . ,xn,Y1, . . . ,Ym,X), the formulas

(1) ∀X(ϕfin(X)→ ϕ) and ∃X(ϕfin(X)∧ϕ)

say, respectively, that for all finite subsets of N the formula ϕ holds, and that ϕ holds
for at least one finite subset of N.

Informally speaking, in the second restriction we want quantified set variables to
range only over finite subsets. To accomplish this we can limit ourselves to the frag-
ment of MSO-logic that consists of those formulas in which all occurring quantifiers
over unary relation variables are of one of the forms in (1). To make things easier,
we preserve the syntax of MSO-logic but change the semantics: We read ∀X . . . as
“for all finite subsets X of the domain we have . . . ”, and ∃X . . . as “there is a finite
subset X of the domain with . . . ”.

With this convention for the interpretation of set variables, monadic second-order
logic is called weak monadic second-order logic, WMSO-logic for short.11 Corre-
spondingly one calls the set of all sentences of WMSO-logic that are true in the
structure A the WMSO-theory of A; we also use the notation WMSO-Th(A).

We start with some examples to get an impression of the expressive power of
WMSO-logic over Nσ .

The relation ≤ is definable by

(2) x ≤ y iff ∀X((ϕinit(X)∧Xy) → Xx).

11 Here we do not deal with the proof of basic semantic properties, e.g., that the Coincidence
Lemma III.6.4 holds with the obvious changes regarding second-order quantifiers.

X.9 Decidability of Weak Monadic Successor Arithmetic 191

Using this, the statement “Each finite nonempty set has a maximum”, which is true
in Nσ , can be formalized by

∀X(∃xXx → ∃y(Xy∧∀z(Xz → z ≤ y))).

Also properties of divisibility can be expressed, for example the condition “x is
even” by

ϕeven(x) := ∀X((Xx∧∀z(Xσσσσσσz → Xz)) → X0).

Furthermore, the statement “For each number x we have that x or x+ 1 is even” is
expressible by

∀x(ϕeven(x)∨ϕeven(σσσx)).

The aim of this section is the following result which goes back to Büchi and Elgot
(1958) and Trakhtenbrot (1958):

9.2 Theorem. WMSO-Th(Nσ) is R-decidable.

This theorem on the so-called weak monadic successor arithmetic is the first of a
series of decidability results in which two aspects come together: They are shown
using concepts of the theory of finite automata, and apart from their significance for
the study of arithmetic theories they are also of interest for applications in computer
science. The latter aspect will be discussed at the end of the section.

The connection between formulas of weak monadic second-order logic and finite
automata is based on a simple idea: In Nσ one can represent the assignments of
the free variables of a formula by words over an appropriate alphabet. We shall see
that the sets of words that correspond to the assignments satisfying a formula can
be “defined” by finite automata. For the satisfaction of sentences of WMSO-logic
in Nσ we thus effectively obtain an equivalent condition on finite automata which
can be checked by an algorithm. From this we conclude the decidability of WMSO-
Th(Nσ).

We proceed in four steps: First we make precise the above mentioned connection
between assignments and words. Then we introduce finite automata. Next we prove
some simple facts about finite automata. Finally we show as the technical main re-
sult that to each formula ϕ we can associate a finite automaton Aϕ which defines
the set of words that represent assignments satisfying ϕ . From this we obtain The-
orem 9.2.

A. Representation of Assignments by Words

By ϕ(x1, . . . ,xm,X1, . . . ,Xn) we indicate a WMSO-formula in which at most the
variables x1, . . . ,xm,X1, . . . ,Xn occur free. An assignment of these variables in Nσ
is a tuple (k,K) = (k1, . . . ,km,K1, . . . ,Kn) with k1, . . . ,km ∈ N and (finite) subsets
K1, . . . ,Kn of N. We now establish a connection between assignments and words
over the alphabet {0,1}m+n.

192 X Computability and Its Limitations

For this purpose we identify, for r ≥ 1, the letters of the alphabet {0,1}r with 0–1-

columns. For r = 5 the column

(0
1
1
0
1

)
corresponds to the letter in {0,1}5 that has a 1

exactly at the second, third, and fifth position and a 0 at the other positions. Then a
word a0 . . .as ∈ ({0,1}r)∗ of length s+1 over the alphabet {0,1}r has the form⎛⎜⎝a01

...
a0r

⎞⎟⎠
⎛⎜⎝a11

...
a1r

⎞⎟⎠ · · ·

⎛⎜⎝as1
...

asr

⎞⎟⎠
.

We identify this word with the 0–1-scheme

a01 a11 · · · as1
...

...
. . .

...
a0r a1r · · · asr .

The empty word in ({0,1}r)∗ corresponds to the “empty" scheme. Thus the 0–1-
schemes with r rows correspond to the words over the alphabet {0,1}r. The columns
of such a scheme are the letters of the associated word; the ith row contains the ith
components of these letters. The number of columns is the length of the associated
word.

Now we turn to the connection between assignments for a WMSO-formula ϕ =
ϕ(x1, . . . ,xm,X1, . . . ,Xn) with m+n ≥ 1 and words over the alphabet {0,1}m+n. We
illustrate the idea by an example (where m = 1, n = 2). The 0–1-scheme

0 0 0 1 0 0
1 0 1 0 1 0
0 0 0 0 0 0

gives the assigment (k1,K1,K2) :=(3,{0,2,4}, /0). Why? To explain this, we number
the columns of the scheme, the first column with the smallest natural number, i.e.,
with 0, the second column with 1, and so on, labeling the last one with 5.

0 1 2 3 4 5

0 0 0 1 0 0
1 0 1 0 1 0
0 0 0 0 0 0 .

Rather than speaking of the third column we also speak of the column number 2.
The first row of the scheme tells us that the variable x1 is to be interpreted by the
number 3, because the column number 3 is the only one carrying a 1 in the first row.
The second row yields the interpretation of X1 by the set {0,2,4}, because precisely
the columns number 0, 2, and 4 have a 1 in the second row. Similarly the third row
yields the interpretation of X2 by the empty set. The 0–1-schemes

X.9 Decidability of Weak Monadic Successor Arithmetic 193

0 1 2 3 4 5 6 7

0 0 0 1 0 0 0 0
1 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0

and

0 1 2 3 4

0 0 0 1 0
1 0 1 0 1
0 0 0 0 0

lead to the same assignment (k1,K1,K2) = (3,{0,2,4}, /0).

If the word a0 . . .al ∈ ({0,1}1+2)∗ represents an assignment (k1,K1,K2), the num-
ber l has to be equal or greater than each number that occurs in {k1} ∪K1 ∪K2.
For any such l there is then exactly one word a0 . . .al which represents (k1,K1,K2).

If ζ and ζ ′ represent the assignments (k1,K1,K2), we have ζ = ζ ′
(0

0
0

)
· · ·
(0

0
0

)
or

ζ ′ = ζ
(

0
0
0

)
· · ·
(

0
0
0

)
.

For the 0-1-schemes (with m = 1,n = 2)

0 1 2 3 4

1 0 0 1 0
1 0 1 0 1
0 0 0 0 0

and

0 1 2 3 4

0 0 0 0 0
1 0 1 0 1
0 0 0 0 0

we do not know how to interpret the variable x1. According to the following defini-
tion they are not 1-admissible.

A word over {0,1}m+n, i.e., a 0–1-scheme with m+ n rows, is m-admissible, if in
each of the first m rows exactly one 1 occurs.

The m-admissible word ζ = a0 . . .al ∈ ({0,1}m+n)∗ (thus, in the terminology of 0–1-
schemes, ai is the column number i) represents the assignment (k,K) = (k1, . . . ,km,
K1, . . . ,Kn) (or induces it), if

– ki is the unique number j for which the i th component of a j, i.e., of the column
number j, has value 1,

– Ki is the set of those numbers j for which the (m+ i)-th component of a j has
value 1.

In particular, the empty word in ({0,1}m+n)∗ is m-admissible only for m = 0. Then
only set variables occur, and the empty word induces the interpretation of all these
set variables by the empty set.

If a0 . . .al ∈ ({0,1}m+n)∗ represents the assignment (k1, . . . ,km,K1, . . . ,Kn), the
number l is equal to or greater than each number occurring in {k1, . . . ,km}∪K1 ∪
·· ·∪Kn. If the words ζ and ζ ′ in ({0,1}m+n)∗ both represent (k1, . . . ,km,K1, . . . ,Kn),

then we have, as above, that ζ = ζ ′
(

0
...
0

)
· · ·
(

0
...
0

)
or ζ ′ = ζ

(
0
...
0

)
· · ·
(

0
...
0

)
.

194 X Computability and Its Limitations

The assignments that satisfy a formula ϕ(x1, . . . ,xm,X1, . . . ,Xn) in Nσ yield the fol-
lowing set of words:

W (ϕ) := {ζ ∈ ({0,1}m+n)∗ | ζ is m-admissible

and induces a tuple(k,K) with Nσ |= ϕ[k,K]}.

Let us consider an example: For the formula

(∗) ϕ(x,X) := ∀y(y < x → Xy)

(“X contains all numbers y < x”), the set W (ϕ) consists of those words over
{0,1}1+1 that have a letter with first component 1 at exactly one position and a
letter with second component 1 at all preceding positions.

We now turn to the definition of finite automata which recognize such sets of words.

B. Finite Automata

Finite automata are abstract machines – as are register machines – that either “ac-
cept” or “reject” words over a given alphabet. We use here the “non-deterministic”
version of finite automata.

Let A be an alphabet. A non-deterministic finite automaton, NFA for short, over A
is a structure of the form

A = (Q,(Ta)a∈A,q0,Q+) .

Here Q is a finite set, the set of states of A . For each letter a in A, Ta is a binary
relation Ta ⊆ Q×Q. The pairs (p,q) ∈ Ta are called a-transitions of A . Further-
more q0 is a state of Q, the initial state of A . Finally, Q+ is a subset of Q, the set of
accepting states of A .

In a graphical representation states are indicated by circles and transitions in Ta by
a-labeled arrows. The state q0 is specified by an ingoing arrow marked “start”, the
states in Q+ by double circles. The automaton A0 over the alphabet A = {0,1}
shown in Fig.X.1 has the set {q0,q1,q2} of states, the transition relations T0 =
{(q0,q0),(q1,q2)} and T1 = {(q0,q0), (q0,q1),(q1,q2)}, and the set Q+ of accept-
ing states consisting only of q2, i.e., Q+ = {q2}.

q0start q1 q2

0,1

1 0,1

Fig. X.1

X.9 Decidability of Weak Monadic Successor Arithmetic 195

For an NFA A over A we say that from state p the state q is reachable via the word
ζ = a1 . . .an (or: reachable by scanning the word ζ = a1 . . .an) if in A there is a
path from p to q labeled with the sequence a1 . . .an of letters, i.e., if a sequence
(p0, . . . , pn) of states exists with

p0 = p, (pi−1, pi) ∈ Tai for i = 1, . . .n, pn = q.

Such a sequence of states is also called a run from p to q via the word ζ .

The NFA A accepts the word ζ if from q0 some state in Q+ is reachable via ζ .
Hence A does not accept the word ζ if each run from q0 via the word ζ ends
in a state of Q \Q+ or if there is no complete run from q0 via ζ due to the lack
of appropriate transitions. The set W (A) recognized by A consists of the words
accepted by A . A set W of words over the alphabet A is NFA-recognizable if W =
W (B) for some NFA B over A.

The NFA A0 presented above accepts precisely the words over {0,1} that have at
least two letters and where the penultimate letter is 1. If W denotes the set of these
words, then we have W (A0) =W ; in particular, the set W is NFA-recognizable.

As a second example we consider the set W (ϕ) of words defined by the formula
ϕ(x,X) := ∀y(y< x→Xy) mentioned above in (∗). As we saw there, W (ϕ) consists
of the words over {0,1}1+1 where in the first component (the x-component) exactly
one 1 appears and at all preceding positions a 1 occurs in the second component
(the X-component). The set W (ϕ) is NFA-recognizable as shown by the NFA A1
presented in Fig.X.2. The transition from q0 to q1 takes place if and only if in the
first component a 1 appears and before that always value 1 appeared in the second
component. The transition to q2 is taken from q0 if and only if before the first 1 in
the first component somewhere a 0 in the second component appears. From q1 a
transition to q2 is taken if and only if in the first component after the first 1 that led
to q1 another 1 appears later. From q2 there is no transition to another state.

q0start

q2

q1

(
0
1

)
(

1
0

)
,
(

1
1

)
(

0
0

)
,
(

0
1

)

(
1
0

)
,
(

1
1

)

(
0
0

)
,
(

0
1

)
,
(

1
0

)
,
(

1
1

)

(
0
0

)

Fig. X.2

196 X Computability and Its Limitations

In contrast to A0 there is in A1 for each state p and each letter a of the alphabet
exactly one subsequent state q, i.e., exactly one state q with (p,q) ∈ Ta. We speak of
a deterministic finite automaton, DFA for short. In a DFA the transition relations Ta
can be represented as transition functions τa : Q → Q. A DFA over A is then also
presented in the form A = (Q,(τa)a∈A,q0,Q+).

We call finite automata (NFA or DFA) A and A ′ over the alphabet A equivalent if
they recognize the same word set W over A, i.e., if W (A) =W (A ′).

9.3 Remark. For each NFA one can construct an equivalent DFA.

Proof. For the NFA A = (Q,(Ta)a∈A,q0,Q+) we take the power set Pow(Q) of Q
as the set of states of the desired DFA A ′ equivalent to A . The set {q0} is used as
the initial state of A ′. For a ∈ A we define the transition function τa : Pow(Q) →
Pow(Q) as follows: For Z ∈ Pow(Q), i.e., for a set Z of states of A , let τa(Z) be the
set of states which in A are reachable from a state in Z by an a-transition:

τa(Z) := {q ∈ Q | ∃p ∈ Z : (p,q) ∈ Ta}.

Finally we take as the set of accepting states of A ′ the set Q+ := {R∈ Pow(Q) | R∩
Q+ �= /0}. For the deterministic finite automaton A ′ = (Pow(Q),{q0},(τa)a∈A,Q+)
it is easily shown by induction over the length of words ζ ∈A∗ that for each Z with
Z ⊆ Q:

Z is the set of states which in A are reachable from q0 via ζ
iff in A ′ from {q0} the state Z is reachable via ζ .

From this we get immediately that A and A ′ are equivalent. �
In the subsequent proofs we shall proceed, as in the preceding proof, by only pre-
senting the respective desired automaton and describing the way it works. By an
obvious induction on the length of the input words it can then be shown that the
automaton has indeed the claimed property.

We end this part by presenting an automaton which checks whether a word is m-
admissible.

9.4 Remark. Let m+ n ≥ 1. There is an NFA Am,n which recognizes the set of m-
admissible words in ({0,1}m+n)∗.

Proof. The automaton Am,n contains a state q− and for each subset I of {1, . . . ,m}
a state qI . The state q− is reached by Am,n when from the hitherto scanned initial
segment of the input word ζ it is already clear that ζ is not m-admissible. The state
qI indicates that in the j th component exactly one 1 was read so far if j ∈ I, or that
no 1 was read if j /∈ I. The initial state is q /0, and q{1,...,m} is the only accepting state.
For a letter a ∈ {0,1}m+n let Ma be the set of those i ∈ {1, . . . ,m} for which the i th
component of a has the value 1. We set

X.9 Decidability of Weak Monadic Successor Arithmetic 197

Ta :={(qI ,qI∪Ma) | I ⊆ {1, . . . ,m}, Ma ∩ I = /0}
∪{(qI ,q−) | I ⊆ {1, . . . ,m}, Ma ∩ I �= /0}.

The NFA Am,n := ({qI | I ⊆ {1, . . . ,m}}∪{q−},(Ta)a∈{0,1}m+n ,q /0,{q{1,...,m}}) ac-
cepts precisely the m-admissible words in ({0,1}m+n)∗. �

C. Elementary Facts about Finite Automata

We present some results needed in part D in order to establish the connection be-
tween automata and WMSO-logic.

9.5 Theorem. Let A be an alphabet. There is an algorithm which decides for any
given NFA A over A whether W (A) �= /0.

Proof. Let A = (Q,(Ta)a∈A,q0,Q+) be an NFA. For any set Z of states of A let
T (Z) be the set of states that are reachable from a state in Z in one step. More
formally: T : Pow(Q)→ Pow(Q) is the map with

T (Z) = {q | there is a p ∈ Z and an a ∈ A with (p,q) ∈ Ta}

for Z ⊆ Q. We define the set Zs of states inductively over s ∈ N as follows:

Z0 := {q0} and Zs+1 := Zs ∪T (Zs).

By induction on s it is easily verified that Zs is the set of states that are reachable
from q0 via a word of length ≤ s. Hence,

{q0}= Z0 ⊆ Z1 ⊆ Z2 ⊆ Z3 ⊆ ·· · ⊆ Q.

Moreover from T (Zs) = Zs we get T (Zs+i) = Zs for all i ≥ 1. Hence Z|Q|−1 is the set
of states that are reachable from q0 via a word over A. In particular, we have

W (A) �= /0 iff Q+∩Z|Q|−1 �= /0.

Since the sequence (Zs)s∈N is computable, one can easily present the desired algo-
rithm. �
We have just shown that for every alphabet A there is an algorithm deciding for each
NFA over A whether it accepts at least one word. In contrast, there is no alphabet A
for which an algorithm exists that decides for any register machine over A whether
it accepts at least one word (cf. Exercise 3.6). This indicates that NFA’s are weaker
than register machines. Indeed, this is the case: Every set of words recognizable by
an NFA is R-decidable, since a DFA equivalent to the NFA constitutes a decision
procedure. However, there are R-decidable sets that are not recognizable by any
NFA (cf. Exercise 9.13).

In the next lemma we show that for every NFA A there is an automaton which
accepts, for an m-admissible word accepted by A , all m-admissible words of at

198 X Computability and Its Limitations

most the same length that induce the same assignment, more precisely (denoting
by l(ζ) the length of the word ζ):

9.6 Lemma. Let 0̂ be the letter in {0,1}m+n that has 0 in each component. For ev-
ery automaton A over {0,1}m+n one can construct an automaton A over {0,1}m+n

such that for all ζ ∈ ({0,1}m+n)∗ we have:

ζ ∈W (A) iff there is a ζ ′ ∈W (A) with l(ζ ′)≥ l(ζ) and ζ ′ = ζ 0̂ . . . 0̂.

In particular, we have W (A)⊆W (A).

Proof. Let A = (Q,(Ta)a∈{0,1}m+n ,q0,Q+). The desired NFA A has to accept a
word ζ iff ζ can be extended, by adding letters 0̂ at the end, to a word that is
accepted by A . Therefore a state q should be accepting if the set Q(q) of states that
are reachable from q via a word of {0̂}∗ contains a state of Q+. Hence we define

A := (Q,(Ta)a∈{0,1}m+n ,q0,{q ∈ Q | Q(q)∩Q+ �= /0}).

We still have to show that for q ∈ Q the set Q(q) can be computed effectively. We
have q′ ∈ Q(q) iff q′ can be reached by A from q via a word of {0̂}∗, i.e., if the NFA
Aq,q′ = (Q,T0̂,q,{q′}) over the alphabet {0̂} (with initial state q, accepting state q′,
and the transition relation T0̂ of A) accepts such a word. We obtain

q′ ∈ Q(q) iff W (Aq,q′) �= /0,

hence by Theorem 9.5 the set Q(q) is determined effectively. �
Now we show that the sets recognized by finite automata over a given alphabet A
are closed under complement and intersection (and thus also under union).

9.7 Remark. Let A be an alphabet.

(a) For an NFA A = (Q,(Ta)a∈A,q0,Q+) one can construct an NFA A ′ with
W (A ′) = A∗ \W (A).

(b) For NFA’s A 1 = (Q1,(T 1
a)a∈A,q1

0,Q
1
+) and A 2 = (Q2,(T 2

a)a∈A,q2
0,Q

2
+)

one can construct an NFA A with W (A) =W (A 1)∩W (A 2).

Proof. (a) A DFA A = (Q,(τa)a∈A,q0,Q+) has, for each input word ζ , exactly one
state q that is reachable from q0 via the word ζ . If this state q is in Q+ the word ζ is
accepted, else ζ is not accepted. Thus the set A∗ \W (A) is recognized by the DFA
(Q,(τa)a∈A,q0,Q\Q+). The claim for NFAs now follows with Remark 9.3.

(b) We set
A := (Q1 ×Q2,(Ta)a∈A,(q1

0,q
2
0),Q

1
+×Q2

+)

with
Ta := {((p1, p2),(q1,q2)) | (p1,q1) ∈ T 1

a and (p2,q2) ∈ T 2
a }.

X.9 Decidability of Weak Monadic Successor Arithmetic 199

By induction on the length of words ζ ∈ A∗ it is easy to show that in A from state
(p1, p2) a state (q1,q2) is reachable via ζ iff for i = 1,2 in A i from state pi the
state qi is reachable via ζ . This immediately yields the claim. �

D. From Formulas to Finite Automata, Proof of Theorem 9.2

The bridge from weak monadic logic to finite automata is provided by the following
theorem:

9.8 Theorem. For each formula ϕ(x1, . . . ,xm,X1, . . . ,Xn) of WMSO-logic over Nσ
one can construct an NFA Aϕ over the alphabet {0,1}m+n with

W (Aϕ) =W (ϕ),

i.e., for all ζ ∈ ({0,1}m+n)∗

Aϕ accepts ζ ⇐⇒ ζ is m-admissible, and for the assignment (k,K)

induced by ζ we have Nσ |= ϕ[k,K].

For the proof of this theorem it is convenient to work with a relational symbol set
rather than with the symbol set {σσσ ,0}. Instead of σ we use Rσ = {(k,k+1) | k ∈N},
the graph of the function σ , and we use the unary relation R0 = {0} instead of 0. In
Section VIII.1 it was shown how to transform a {σσσ ,0}-formula into an equivalent
{Rσ ,R0}-formula.

With this preparation we can prove the theorem by induction on {Rσ ,R0}-formulas
ϕ(x1, . . . ,xm,X1, . . . ,Xn). For this it suffices (and we use this tacitly in the atomic
case and in the steps for negation and first-order quantification) to present an au-
tomaton A 0

ϕ which works correctly for m-admissible words, i.e., such that for each
m-admissible word ζ ∈ ({0,1}m+n)∗ and the assignment (k,K) induced by ζ we
have:

A 0
ϕ accepts ζ iff Nσ |= ϕ[k,K].

The desired automaton Aϕ is then obtained as the “intersection automaton” of A 0
ϕ

and Am,n according to Remark 9.7(b). Here Am,n is the automaton presented in
Remark 9.4 that accepts precisely the m-admissible words over {0,1}m+n.

In the atomic case ϕ(x1, ...,xm,X1, ...,Xn) is of one of the forms

xi ≡ x j, Rσ xix j, R0xi, Xix j .

Then the induction steps for the propositional connectives (we consider ¬ and ∧)
and for the quantifiers ∃xi and ∃Xi remain to be carried out.

We use x1 ≡ x2 as a typical case of atomic formulas xi ≡ x j. In Fig. X.3 we present an
automaton which checks for each m-admissible word ζ = a0 . . .al in ({0,1}m+n)∗
whether there is an ai for which the first two components have value 1. The other
components of ai can be arbitrary.

200 X Computability and Its Limitations

q0start q1

(
1
1
∗

)

Fig. X.3

Here the non-labeled arrows stand for the transitions with letters of {0,1}m+n and
the arrow with

(
1
1∗

)
for the 2(m−2)+n many transitions with letters in {0,1}m+n where

the first two components have value 1.

Following this pattern it is now easy to deal with the atomic formulas Rσ xix j, R0xi,
and Xix j. We encourage the reader to find NFA’s for these cases.

In the induction step for the propositional connectives ¬ and ∧ the claim is obtained
immediately with Remark 9.7.

We finish the proof of Theorem 9.8 with the induction steps for the quantifiers ∃xi
and ∃Xi. For this we show the following lemma:

9.9 Lemma. (a) Suppose the NFA A over the alphabet {0,1}(m+1)+n recognizes
the set W (ϕ) for the WMSO-formula ϕ(x1, . . . ,xm+1,X1, . . . ,Xn). From A one can
construct an NFA A ′ over the alphabet {0,1}m+n such that

W (A ′) =W (χ)

for the WMSO-formula χ(x1, . . . ,xm,X1, . . . ,Xn) := ∃xm+1ϕ .
(b) Suppose the NFA A over the alphabet {0,1}m+(n+1) recognizes the set W (ϕ)
for the WMSO-formula ϕ(x1, . . . ,xm,X1, . . . ,Xn+1). From A one can construct an
NFA A ′ over the alphabet {0,1}m+n such that

W (A ′) =W (χ)

for the WMSO-formula χ(x1, . . . ,xm,X1, . . . ,Xn) := ∃Xn+1ϕ .

Proof. First we show claim (b). It suffices to present an NFA A 0 with W (A 0) ⊆
W (χ) which accepts for each ζ ∈W (χ) a word of the form ζ 0̂ . . . 0̂. By Lemma 9.6
we then obtain the claim W (A ′) =W (χ) for the NFA A ′ = A 0.

Suppose the NFA
A = (Q,(Ta)a∈A,q0,Q+)

over the alphabet {0,1}m+(n+1) accepts the word set

W (ϕ(x1, . . . ,xm,X1, . . . ,Xn+1)).

The NFA A 0 will check for a word ζ = a0 . . .al over {0,1}m+n whether ζ can be
expanded, by adding a (m+(n+ 1))-th component in its letters, to a word ζ ′ that

X.9 Decidability of Weak Monadic Successor Arithmetic 201

is accepted by the automaton A . The component to be added to ζ will yield the
assignment for Xn+1.

The set of states, the initial state and the set of accepting states of the NFA A 0

coincide with those of A . To specify the transition relation we write the letters of
{0,1}m+(n+1) in the form (a

0) and (a
1), with a∈{0,1}m+n. Instead of a (a

0)-transition
and a (a

1)-transition (p,q) of A we use the respective a-transition (p,q) in A 0.
More formally: For a ∈ {0,1}m+n we define the corresponding transition relation in
A 0 by

T 0
a := {(p,q) ∈ Q×Q | there is i ∈ {0,1} with (p,q) ∈ T(a

i)
}.

A run of A 0 on a word ζ ∈ ({0,1}m+n)∗ is accepting iff the sequence of states of this
run is also the sequence of states of a run of A accepting a word in ({0,1}m+(n+1))∗
that is generated by adding a last component to each letter in ζ . By the assumption
W (A) =W (ϕ) we obtain that W (A 0)⊆W (χ).

We still have to show that for any ζ ∈W (χ), A 0 accepts a word of the form ζ 0̂ . . . 0̂.
Let ζ ∈ ({0,1}m+n)∗ be a word from W (χ) of length l that represents the assignment
(k1, . . . ,km,K1, . . . ,Kn). Thus

Nσ |= χ[k1, . . . ,km,K1, . . . ,Kn].

Since χ = ∃Xn+1ϕ , there is Kn+1 with Nσ |= ϕ[k1, . . . ,km,K1, . . . ,Kn,Kn+1]. Now
let ζ ′ ∈ ({0,1}m+(n+1))∗ be a word of length ≥ l that represents the assignment
(k1, . . . ,km,K1, . . . ,Kn,Kn+1). For the word ζ0 ∈ ({0,1}m+n)∗ resulting from ζ ′ by
deleting the last component in each letter, we have ζ0 ∈W (A 0), and ζ0 has the form
ζ 0̂ . . . 0̂.

Regarding (a): The proof works analogously to the proof of (b). We only present
here the corresponding automaton A 0. It has the same set of states, the same initial
state, and the same set of accepting states as A . To specify the transition relations of
A 0 we write the letters of {0,1}(m+1)+n in the form

(a
0
b

)
and

(a
1
b

)
, with a ∈ {0,1}m

and b ∈ {0,1}n. The automaton A 0 contains the (a
b)-transition (p,q) if A has the(a

0
b

)
-transition (p,q) or the

(a
1
b

)
-transition (p,q). More formally: If we again denote

the transition relations in A 0 with upper index 0, we define for a ∈ {0,1}m and
b ∈ {0,1}n

T 0
(a

b)
:= {(p,q) ∈ Q×Q | there is i ∈ {0,1} with (p,q) ∈ T(a

i
b

)}. �

With Theorem 9.8 we now prove Theorem 9.2 on the decidability of the theory
WMSO-Th(Nσ).

Proof of Theorem 9.2. Let x1 be a fixed variable. For a sentence ϕ of WMSO-logic
over the symbol set {σσσ ,0} we have ϕ = ϕ(x1). By the analogue of the Coincidence
Lemma III.4.6 for WMSO-logic (see footnote on p. 190) we obtain:

202 X Computability and Its Limitations

Nσ |= ϕ iff there is an i ∈ N with Nσ |= ϕ[i]
iff W (ϕ(x1)) �= /0 .

So for the automaton Aϕ over the alphabet {0,1} constructed according to Theo-
rem 9.8 we have:

Nσ |= ϕ iff W (Aϕ) �= /0.

This yields the desired decision procedure for WMSO-Th(Nσ): From ϕ we con-
struct the automaton Aϕ and decide, using the algorithm of Theorem 9.5, whether
W (Aϕ) �= /0. �

E. From Finite Automata to Formulas

Theorem 9.8 shows that for each WMSO-formula ϕ there is an automaton which
accepts precisely those words that represent an assignment satisfying ϕ in Nσ . In
short, finite automata are at least as expressive as WMSO-logic for Nσ . The next
result shows that automata are not more expressive than WMSO-logic, more pre-
cisely:

9.10 Theorem. For each NFA A over the alphabet {0,1}m+n there is a WMSO-
formula ϕ(x1, . . . ,xm,X1, . . . ,Xn) such that for each assignment (k̄, K̄) we have:

Nσ |= ϕ[k̄, K̄] iff there is an m-admissible word ζ ∈W (A)

inducing the assignment (k̄, K̄).

Proof. Let A = (Q,(Ta)a∈{0,1}m+n ,q0,Q+). We can assume that Q = {0, . . . ,N} for
some N ∈ N and q0 = 0. We set

ϕ(x1, . . . ,xm,X1, . . . ,Xn) := ∃Z0 . . .∃ZN∃y(ψuniq ∧ψinit ∧ψtrans ∧ψacc).

Here ψuniq, ψinit, ψtrans, and ψacc are WMSO-formulas that we are about to define.
The set variable Zi (for i = 0, . . . ,N) serves to specify those positions where A is
in state i. The individual variable y indicates the number of steps carried out by
A . (Regarding definability of the ≤-relation and thus of the <-relation cf. item (2)
before Theorem 9.2.)

– The formula ψuniq says that the number y of steps is at least as great as the
numbers in {x1, . . . ,xm}∪X1 ∪ . . .Xn and that exactly for the numbers ≤ y the
automaton is in a state which moreover is unique:

ψuniq :=
∧

1≤i≤m

xi ≤ y∧
∧

1≤i≤n

∀x(Xix → x ≤ y)∧

∀x(x ≤ y ↔
∨

0≤ j≤N

Z jx)∧∀x(x ≤ y →
∧

0≤ j< j′≤N

(¬Z jx∨¬Z j′x)).

– The formula ψinit says that the run starts in state q0 (= 0):

ψinit := Z00.

X.9 Decidability of Weak Monadic Successor Arithmetic 203

– The formula ψtrans says that the steps from one state to the next are carried out
according to the transitions of A ; it is defined as

∀x(x < y →
∨

a=

⎛⎝ a1
...

am+n

⎞⎠∈A

∨
0≤ j, j′≤N
(j, j′)∈Ta

(Z jx∧
∧

1≤i≤m
ai=1

xi = x ∧
∧

1≤i≤m
ai=0

¬xi = x

∧
∧

m+1≤i≤m+n
ai=1

Xi−mx∧
∧

m+1≤i≤m+n
ai=0

¬Xi−mx ∧ Z j′σx).

– The formula ψacc says that the run is accepting:

ψacc :=
∨

j∈Q+

Z jy.

From this we obtain the equivalence claimed in the statement of the theorem. �
The connection between finite automata and WMSO-logic also holds when one con-
siders finite domains instead of the domain of the natural numbers; in that case one
represents finite words by finite structures. For this approach see, e.g., [37, 40].

F. Further Results

We mention two results that are substantial strengthenings of Theorem 9.2 on the
decidability of WMSO-Th(Nσ) and have interesting applications in computer sci-
ence. The first result, proved by Büchi (1962), is the analogue of Theorem 9.2 for
full monadic second-order logic in which set quantifiers refer to arbitrary sets of
natural numbers. The resulting theory of Nσ is denoted by MSO-Th(Nσ).

9.11 Theorem. MSO-Th(Nσ) is R-decidable.

Again the proof uses the method of transforming formulas into automata, now into
finite automata that work over infinite words a0a1a2 . . . where the ai are letters of
a finite alphabet. An appropriate model of automaton is that of a Büchi automaton,
an NFA which accepts an infinite word if there is a run on this word that infinitely
often assumes an accepting state.

In computer science, non-terminating systems (such as control systems or commu-
nication protocols) can sometimes be modeled by Büchi automata, in the sense that
the infinite runs of a system S correspond to the runs of a Büchi automaton A (S). If
the desired properties of S can be formalized by an MSO-formula ϕ , then the cor-
rectness of the system can be phrased as an inclusion problem: The set of runs of the
automaton A (S) is contained in the set of runs described by ϕ . The theory of Büchi
automata yields an algorithmic solution of this problem. This is the methodological
core of so-called model-checking as an approach to verification (cf. [2]).

Another generalization is obtained when using a structure with two successor func-
tions instead of the successor structure Nσ . A natural example of such a structure is

204 X Computability and Its Limitations

the infinite binary tree, formally the structure T2 := ({0,1}∗,σ0,σ1) with the func-
tions σ0 : ζ �→ ζ 0 and σ1 : ζ �→ ζ 1. Rabin (1969) showed the following result:

9.12 Theorem. MSO-Th(T2) is R-decidable.

This as well can be proved by transforming MSO-formulas into finite automata, in
this context in the form of so-called tree automata (cf., e.g., [40]). Rabin’s Theo-
rem provides algorithmic solutions both for deciding mathematical theories and for
numerous problems in computer science (program verification, program synthesis).

9.13 Exercise. Let A= {1}. We identify a word 1n over A with the natural number
n and a set W ⊆ A∗ with the corresponding set MW of natural numbers. Show that a
word set W ⊆ A∗ is NFA-recognizable if and only if MW is ultimately periodic (for
this notion see Exercise 8.9). Hence the set {1n | n is a square}, for example, is not
NFA-recognizable.

9.14 Exercise. From the closure of the class of NFA-recognizable word sets under
complement and under intersection (cf. Remark 9.7) one also obtains the closure
under union. Show this closure property by a direct construction.

9.15 Exercise. Weak second-order logic (with quantifications over finite relations,
also of arity greater than 1) was introduced already in Exercise IX.1.7. Show the
following sharpening of Theorem 9.1: The weak second-order theory of Nσ is not
R-decidable.

9.16 Exercise. In this exercise you are asked to deduce the decidability of Pres-
burger arithmetic (Theorem 8.3) from the decidability of the WMSO-theory of Nσ
(Theorem 9.2). In order to do so, proceed from quantifiers over natural numbers to
quantifiers over finite sets of natural numbers: Associate with each natural number
k the reverse binary representation B(k) of k; for example associate with the number
26 the word 01011, and read this word as the representation of a finite set, i.e., the set
{1,3,4}. In general, consider for the reverse binary representation B(k) = b0 . . .bm
of k the set M(k) = {i ∈N | bi = 1}. The number 0 is represented by the empty word
which corresponds to the empty set (M(0) = /0).
(a) Show that a relation definable in Presburger arithmetic is also definable in the

WMSO-theory of Nσ in the sense that for each {+,0,1}-formula ϕ(x1, . . . ,xn)
one can find a formula ϕ̂(X1, . . . ,Xn) of WMSO-logic over Nσ such that for all
k1, . . . ,kn ∈ N

(N,+,0,1) |= ϕ[k1, . . . ,kn] iff Nσ |= ϕ̂[M(k1), . . . ,M(kn)].

Hint: To show this, use the relational symbol set Sr instead of the symbol set
S = {+,0,1} where Sr contains the ternary relation symbol R+ for the addition
relation over N and the unary relation symbols R0,R1 for the singleton sets {0},
{1}, respectively (see Section 8.1), and then use induction on the construction
of Sr-formulas.

(b) Conclude that Presburger arithmetic, i.e., Th(N,+,0,1), is R-decidable.

Chapter XI
Free Models and Logic Programming

In general, the following statement is false:

(∗) If Φ � ∃xϕ , then there is a term t with Φ � ϕ t
x .

We get a counterexample for S = {R} with unary R, Φ = {∃xRx}, and ϕ = Rx.

The main subject of this chapter are results showing that (∗) – or variants of (∗) –
hold under certain conditions on Φ and ϕ . The corresponding proofs start from the

Statement (∗) says that an existential proposition ∃xϕ which holds (under the as-
sumptions of Φ) has a “concrete” solution t. Are there efficient algorithms for find-
ing such solutions? This question leads to the fundamentals of logic programming,
a subject which plays an important role in certain areas of computer science (data
structures, knowledge-based systems). So this chapter establishes a bridge between
central problems in logic and questions oriented to applications.

The techniques are mainly based on an analysis of quantifier-free formulas. This
motivates the study of so-called propositional logic, the logic of connectives to be
treated in Section 4 below.

To emphasize the aspect of effectiveness we formulate many results and proofs us-
ing the derivation relation �, but we recommend following the arguments on the
semantic level, i.e., using the equivalent consequence relation |=.

XI.1 Herbrand’s Theorem

We use Herbrand’s Theorem to prove statement (∗) from the above in case Φ con-
sists of universal sentences and ϕ is an existential sentence.

205© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

https://doi.org/10.1007/978-3-030-73839-6_11
H.-D. Ebbinghaus et al., Mathematical Logic, Graduate Texts in Mathematics 291,

term structures introduced in Section V.1. These structures turn out to be free and
therefore have algebraically important properties.

http://crossmark.crossref.org/dialog/?10.1007/978-3-030-73839-6_11&domain=pdf

206 XI Free Models and Logic Programming

In Section V.1 we have assigned to each set Φ of formulas its term interpretation
IΦ = (TΦ ,β Φ). For this purpose we have introduced an equivalence relation ∼ on
the set T S of S-terms as follows:

t ∼ t ′ :iff Φ � t ≡ t ′.

For t ∈ T S we have denoted the equivalence class of t modulo ∼ by t and set:

T Φ := {t | t ∈ T S};

for n-ary R ∈ S: RTΦ
t1 . . . tn :iff Φ � Rt1 . . . tn;

for n-ary f ∈ S: fT
Φ
(t1, . . . , tn) := f t1 . . . tn;

for c ∈ S: cT
Φ

:= c ;

and finally, β Φ(x) := x.

Writing ϕ(n
x | n

t) instead of ϕ t1 . . . tn
x1 . . .xn

we obtained (cf. Lemma V.1.7):

1.1 Reminder. (a) For all t: IΦ(t) = t .
(b) For all atomic formulas ϕ:

IΦ |= ϕ iff Φ � ϕ .

(c) For all formulas ϕ and pairwise distinct variables x1, . . . ,xn:

– IΦ |= ∃x1 . . .∃xnϕ iff there are S-terms t1, . . . , tn with IΦ |= ϕ(n
x | n

t);

– IΦ |= ∀x1 . . .∀xnϕ iff for all S-terms t1, . . . , tn, IΦ |= ϕ(n
x | n

t).

In formulas of the form ∃x1 . . .∃xnϕ and formulas of the form ∀x1 . . .∀xnϕ we as-
sume throughout that x1, . . . ,xn are pairwise distinct.

In analogy to LS
k (cf. p. 24), for k ∈ N, we define the set

T S
k := {t ∈ T S | var(t)⊆ {v0, . . . ,vk−1}}.

We consider the subset T Φ
k of T Φ ,

T Φ
k := {t | t ∈ T S

k },

that consists of the term classes t with t ∈ T S
k . To ensure in case k = 0 the existence

of such a term, i.e., that T S
k is nonempty, we assume from now on:

If k = 0, then S contains at least one constant.

The set T Φ
k is the universe of a substructure TΦ

k of TΦ since it is S-closed in TΦ . In
fact, if c ∈ S, then c ∈ T S

k and thus c ∈ T Φ
k ; and if f ∈ S is n-ary and a1, . . . ,an ∈ T Φ

k ,
say a1 = t1, . . . ,an = tn for suitable terms t1, . . . , tn ∈ T S

k , then fT
Φ
(a1, . . . ,an) =

fT
Φ
(t1, . . . , tn) = f t1 . . . tn ∈ T Φ

k .

Let β Φ
k be an assignment in TΦ

k with

(+) β Φ
k (vi) := β Φ(vi) (= vi) for i < k

XI.1 Herbrand’s Theorem 207

and for i ≥ k, say,

β Φ
k (vi) :=

{
v0 if k �= 0,
c if k = 0,

where c is a constant from S in case k = 0. Finally, let

IΦ
k := (TΦ

k ,β Φ
k).

By (+) and the Coincidence Lemma III.4.6 we have the following for t ∈ T S
k and

ϕ ∈ LS
k :

(TΦ ,β Φ
k)(t) = (TΦ ,β Φ)(t) = t (cf. Reminder 1.1(a)),

(TΦ ,β Φ
k) |= ϕ iff (TΦ ,β Φ) |= ϕ ,

respectively. Since TΦ
k ⊆ TΦ , we conclude, using Lemma III.5.7:

1.2 Lemma. (a) IΦ
k (t) = t for t ∈ T S

k , and therefore tT
Φ
0 = t for t ∈ T S

0 .
(b) For quantifier-free ψ ∈ LS

k: IΦ |= ψ iff IΦ
k |= ψ ..

(c) For universal ψ ∈ LS
k: If IΦ |= ψ , then IΦ

k |= ψ ,
hence in case k = 0: If TΦ |= ψ , then TΦ

0 |= ψ . �
The next lemma is the main step towards Herbrand’s Theorem, the main goal of
this section; it is the first result of the form (∗) mentioned at the beginning of this
chapter.

1.3 Lemma. For a set Φ ⊆ LS
k of universal formulas in prenex normal form the

following are equivalent:

(a) Φ is satisfiable.
(b) The set Φ0 is satisfiable where

Φ0 := {ϕ(m
x |m

t) | ∀x1 . . .∀xmϕ ∈ Φ , ϕ quantifier-free and t1, . . . , tm ∈ T S
k }.

Proof. From (a) we obtain (b) since ∀x1 . . .∀xmϕ |= ϕ(m
x | m

t) for t1, . . . , tm ∈ T S
k .

For the direction from (b) to (a), an easy argument using the Compactness Theo-
rem VI.2.1 shows that it suffices to consider finite S. So let S be finite and let Φ0
be satisfiable and therefore consistent. Since Φ0 ⊆ LS

k , free(Φ0) is finite. Therefore
(cf. Lemma V.2.1 and Lemma V.2.2) there is Θ with Φ0 ⊆Θ ⊆ LS which is nega-
tion complete and contains witnesses. By Henkin’s Theorem V.1.10, IΘ is a model
of Θ , in particular IΘ |= Φ0. Since Φ0 contains only quantifier-free formulas from
LS

k , the interpretation IΘ
k is a model of Φ0 (by Lemma 1.2(b)). Hence for all formulas

∀x1 . . .∀xmϕ ∈ Φ with quantifier-free ϕ we have:

for all t1, . . . , tm ∈ T S
k : IΘ

k |= ϕ(m
x |m

t).

Thus, with IΘ
k (ti) = ti (cf. Lemma 1.2(a)) and the Substitution Lemma III.8.3, we

get:

208 XI Free Models and Logic Programming

for all t1, . . . , tm ∈ T S
k : IΘ

k
t1 . . . tm
x1 . . .xm

|= ϕ .

Since TΘ
k = {t | t ∈ T S

k }, we obtain IΘ
k |= ∀x1 . . .∀xmϕ . Thus IΘ

k is a model of Φ . �

1.4 Herbrand’s Theorem.1 Let k ∈ N, and let the symbol set S contain a constant
in case k = 0. For formulas ∀x1 . . .∀xmϕ and ∃y1 . . .∃ynψ from LS

k with quantifier-
free ϕ,ψ and pairwise distinct variables x1, . . . ,xm and y1, . . . ,yn, the following are
equivalent:

(a) ∀x1 . . .∀xmϕ � ∃y1 . . .∃ynψ .
(b) There are j ≥ 1 and terms t11, . . . , t1n, . . . , t j1, . . . , t jn ∈ T S

k with

∀x1 . . .∀xmϕ � ψ(
n
y | n

t1)∨ . . .∨ψ(
n
y | n

t j).
2

(c) There are i, j ≥ 1, terms s11, . . . ,s1m, . . . ,si1, . . . ,sim and t11, . . . , t1n, . . . , t j1, . . . ,
t jn ∈ T S

k with

ϕ(m
x | m

s1)∧ . . .∧ϕ(m
x | m

si) � ψ(
n
y | n

t1)∨ . . .∨ψ(
n
y | n

t j).

Proof. Since ∀x1 . . .∀xmϕ � ϕ(m
x |m

s) and ψ(
n
y | n

t) � ∃y1 . . .∃ynψ , we easily get (b)
from (c) and (a) from (b). Therefore we only have to show that (a) implies (c). So
let ∀x1 . . .∀xmϕ � ∃y1 . . .∃ynψ . Thus the set {∀x1 . . .∀xmϕ, ¬∃y1 . . .∃ynψ} is not
satisfiable, and neither is the set {∀x1 . . .∀xmϕ, ∀y1 . . .∀yn¬ψ}. With the previous
lemma we obtain that

{ϕ(m
x |m

s) | s1, . . . ,sm ∈ T S
k }∪{¬ψ(

n
y | n

t) | t1, . . . , tn ∈ T S
k }

is not satisfiable either. By the Compactness TheoremVI.2.1 this holds for a finite
subset; hence there are i, j ≥ 1 and terms s11, . . . ,s1m, . . . ,si1, . . . ,sim and t11, . . . , t1n,
. . . , t j1, . . . , t jn ∈ T S

k so that

{ϕ(m
x | m

s1), . . . ,ϕ(
m
x | m

si)}∪{¬ψ(
n
y | n

t1), . . . ,¬ψ(
n
y | n

t j)}
is not satisfiable. Thus we have

ϕ(m
x | m

s1)∧ . . .∧ϕ(m
x | m

si) |= ψ(
n
y | n

t1)∨ . . .∨ψ(
n
y | n

t j),

and therefore (c) holds. �
As special cases of Lemma 1.3 and Lemma 1.4 we get:

1.5 Corollary. Let ∀x1 . . .∀xnϕ ∈ LS
k with ϕ quantifier-free.

(a) The following are equivalent:

(i) Sat ∀x1 . . .∀xnϕ .

(ii) Sat {ϕ(n
x | n

t) | t1, . . . , tn ∈ T S
k }.

1 Jacques Herbrand (1908–1931).
2 Here, e.g.,

n
t1 stands for t11, . . . , t1n.

XI.2 Free Models and Universal Horn Formulas 209

(b) The following are equivalent:

(i) � ∃x1 . . .∃xnϕ .
(ii) There are j ≥ 1 and terms t11, . . . , t1n, . . . , t j1, . . . , t jn ∈ T S

k with

� ϕ(n
x | n

t1)∨ . . .∨ϕ(n
x | n

t j). �

In general, the disjunctions in Corollary 1.5(b)(ii) and in Herbrand’s Theorem 1.4
consist of several members (cf. Exercise 1.7). In the next section we present a special
but important case in which we may ensure j = 1. The following exercise shows that
Corollary 1.5(b) does not hold for arbitrary formulas.

1.6 Exercise. Let S = {R,c} with unary R and ϕ = ∀x(Ry∨¬Rx). Show:
(a) � ∃yϕ .
(b) For j ≥ 1 and arbitrary t1, . . . , t j ∈ T S, not � ϕ(y | t1)∨ . . .∨ϕ(y | t j).

1.7 Exercise. Show that Theorem 1.4 and Corollary 1.5 cannot be strengthened by
claiming j = 1 at the appropriate places.

XI.2 Free Models and Universal Horn Formulas

Let Φ be a set of formulas. In general, the term interpretation IΦ is not a model
of Φ . (This is why in Chapter V we have enlarged Φ to a negation complete set
of formulas containing witnesses.) However, if IΦ is a model of Φ , then IΦ is
a distinguished model of Φ , a so-called free model. For instance, IΦ is a model
of Φ if Φ consists of atomic formulas (cf. Reminder 1.1(b)). The same holds for
other sufficiently “simple” sets of formulas which are important in algebra and of
central interest in logic programming: for sets of universal Horn formulas. They
allow (cf. Theorem 2.7) a positive answer to the question raised at the beginning of
this chapter about the existence of satisfying terms.

Throughout, let S be a fixed symbol set.

For a set Φ of S-formulas we have defined the term interpretation IΦ = (TΦ ,β Φ)
in such a way that an atomic formula ϕ holds in IΦ if and only if Φ � ϕ (cf. Re-
minder 1.1(b)). So, if R ∈ S is n-ary and if t1, . . . , tn ∈ T S, we have:

If Φ � Rt1 . . . tn then RTΦ
t1 . . . tn; if not Φ � Rt1 . . . tn then not RTΦ

t1 . . . tn.

And similarly:

If Φ � t1 ≡ t2 then t1 = t2; if not Φ � t1 ≡ t2 then t1 �= t2.

So, if ϕ is atomic and neither Φ � ϕ nor Φ � ¬ϕ , then IΦ is a model of ¬ϕ .
Therefore, we see that in the definition of IΦ we have chosen the “positive atomic

210 XI Free Models and Logic Programming

information” only if it is required by Φ . In this sense IΦ is a minimal model.From
an algebraic point of view the minimality is reflected in the fact that IΦ is free:

2.1 Theorem. Let IΦ |= Φ . Then IΦ (= (TΦ ,β Φ)) is a free model of Φ , i.e., IΦ

is a model of Φ , and if I= (A,β) is another model of Φ , then

π(t) := I(t) for t ∈ T S

defines a map from T Φ to A which is a homomorphism from TΦ to A, i.e.,

(i) for n-ary R ∈ S and a1, . . . ,an ∈ T Φ :

If RTΦ
a1 . . .an, then RAπ(a1) . . .π(an);

(ii) for n-ary f ∈ S and a1, . . . ,an ∈ T Φ :

π(fT
Φ
(a1, . . . ,an)) = fA(π(a1), . . . ,π(an));

(iii) for c ∈ S: π(cTΦ
) = cA.

Proof. Assume the hypotheses of the theorem. First we show that π is well-defined:
If t, t ′ ∈ T S with t = t ′ , then Φ � t ≡ t ′, by I |= Φ therefore I(t) = I(t ′). For the
proof that π is a homomorphism we only show (i). So let a1, . . . ,an ∈ T Φ , say ai = ti
with suitable ti ∈ T S for 1 ≤ i ≤ n. Now, if RTΦ

a1 . . .an, i.e., RTΦ
t1 . . . tn, then Φ �

Rt1 . . . tn. Since I |= Φ , we get I |= Rt1 . . . tn, i.e., RAI(t1) . . .I(tn), and by definition
of π finally RAπ(a1) . . .π(an). �
If Φ is a set of S-sentences with IΦ |= Φ , i.e., TΦ |= Φ , algebraists call the struc-
ture TΦ a free model of Φ over {vn | n ∈N}. Similarly, one can show that IΦ

k is free
over {vn | n < k}. We do not present the details of the definitions here (however, see
Exercise 2.9).

Next, we show that for a set Φ of universal Horn formulas the interpretation IΦ is
a model of Φ . This will lead us to concrete applications of Theorem 2.1. We define
universal Horn formulas to be formulas which are both universal and Horn formulas
(cf. Exercise III.4.16):

2.2 Definition. Formulas which are obtained using the following calculus are called
universal Horn formulas:

(1)
(¬ϕ1 ∨ . . .∨¬ϕn ∨ϕ) if n ∈ N and ϕ1, . . . ,ϕn,ϕ are atomic

(2)
(¬ϕ0 ∨ . . .∨¬ϕn)

if n ∈ N and ϕ0, . . . ,ϕn are atomic

(3)
ϕ,ψ

(ϕ ∧ψ)
(4)

ϕ
∀xϕ .

The decisive restriction which distinguishes universal Horn formulas from universal
formulas is expressed in (1), allowing only a single unnegated atom as member
of the disjunction. Thus (Pc∨Pd) and (¬Px∨Py∨ x ≡ y) are not universal Horn

XI.2 Free Models and Universal Horn Formulas 211

formulas and – as we shall see in Exercise 2.8 – not even logically equivalent to
universal Horn formulas.

2.3 Lemma. For k ∈ N the following holds:

(a) Every universal Horn formula in LS
k is logically equivalent to a conjunction of

formulas in LS
k of the form

(H1) ∀x1 . . .∀xmϕ
(H2) ∀x1 . . .∀xm(ϕ0 ∧ . . .∧ϕn → ϕ)
(H3) ∀x1 . . .∀xm(¬ϕ0 ∨ . . .∨¬ϕn)

with atomic ϕ and ϕi.
(b) Every universal Horn formula in LS

k is logically equivalent to a universal Horn
formula from LS

k in prenex normal form.
(c) If ϕ is a universal Horn formula and if x1, . . . ,xn are pairwise distinct, then,

for t1, . . . , tn ∈ T S, the formula ϕ(n
x | n

t) is also universal Horn.

Proof. (a) follows from the fact that for n ≥ 1 the formula (¬ϕ1 ∨ . . .∨¬ϕn ∨ϕ)
is logically equivalent to (ϕ1 ∧ . . .∧ϕn → ϕ) and the formula ∀x(ϕ ∧ψ) logically
equivalent to (∀xϕ ∧∀xψ). Part (b) follows similarly and (c) can easily be proved
by induction on universal Horn formulas. �
Now we show:

2.4 Theorem. Let Φ be a consistent set of formulas and ψ a universal Horn for-
mula with Φ � ψ . Then IΦ |= ψ .

With Theorem 2.1 we get:

2.5 Corollary. Let Φ be a consistent set of universal Horn formulas. Then IΦ is a
free model of Φ . �
And with Lemma 1.2(c) we conclude:

2.6 Corollary. Let S contain a constant and let Φ be a consistent set of universal
Horn sentences. Then TΦ

0 is a model of Φ . �
Proof of Theorem 2.4. If ψ is atomic, Reminder 1.1(b) gives:

(∗) IΦ |= ψ iff Φ � ψ .

Now we prove the theorem by induction on rk(ψ) using Definition 2.2.

(1): Let ψ = (¬ϕ1 ∨ . . .∨¬ϕn ∨ϕ) and let Φ � ψ . The case n = 0 is covered by (∗).
Let n > 0. We have to show that IΦ |= (ϕ1 ∧ . . .∧ϕn → ϕ). So assume that IΦ |=
(ϕ1 ∧ . . .∧ϕn). Then Φ � ϕ1, . . . ,Φ � ϕn by (∗). Since Φ � (ϕ1 ∧ . . .∧ϕn → ϕ), we
also have Φ � ϕ and, again by (∗), we get IΦ |= ϕ .

(2): Let ψ = (¬ϕ0 ∨ . . .∨¬ϕn) and let Φ � ψ . Then Φ � ¬(ϕ0 ∧ . . .∧ϕn). Sup-
pose IΦ is not a model of (¬ϕ0 ∨ . . .∨¬ϕn). Then IΦ |= ϕi for i = 0, . . . ,n, hence
Φ � ϕi for i = 0, . . . ,n by (∗), i.e., Φ � (ϕ0 ∧ . . .∧ϕn). Thus Φ is not consistent
which contradicts the hypothesis.

212 XI Free Models and Logic Programming

(3): For ψ = (ϕ1 ∧ϕ2), where ϕ1 and ϕ2 are universal Horn formulas, the claim
follows immediately from the induction hypothesis for ϕ1 and ϕ2.

(4): Let ψ = ∀xϕ and Φ � ∀xϕ . Then Φ � ϕ t
x for all t ∈ T S. Since ϕ t

x is a universal
Horn formula (cf. Lemma 2.3(c)) and since rk(ϕ t

x) = rk(ϕ)< rk(ψ), the induction
hypothesis gives IΦ |= ϕ t

x for all t ∈ T S, and Reminder 1.1(c) yields IΦ |= ∀xϕ . �
As an example we consider the axiom system Φgrp for the class of all groups as
{◦,−1,e}-structures (cf. the remark following Corollary III.5.8). It consists of uni-
versal Horn sentences. Hence, by Corollary 2.5, TΦgrp is a free model, the free group
over {vn | n∈N}. If we set Φab := Φgrp∪{∀x∀yx◦y≡ y◦x}, TΦab is the free abelian
group over {vn | n ∈ N}.

Sentences of the form ∀x1 . . .∀xr t1 ≡ t2 are also called equations. So equations are
universal Horn sentences. The axioms of Φgrp and Φab are equations. Many classes
of structures studied in algebra can be axiomatized by equations and therefore have
free models (see also Exercise 2.10).

For the axiom system Φgrp we have Φgrp � ∃zz ◦ x ≡ y. A “solution” is provided
by y ◦ x−1 (a term in the free variables of ∃zz ◦ x ≡ y). An analogous fact holds in
general; it is contained in the following strengthening of Herbrand’s Theorem 1.4:

2.7 Theorem. Let k ∈ N and S contain a constant in case k = 0. Furthermore, let
Φ ⊆ LS

k be a consistent set of universal Horn formulas. Then the following are
equivalent for every formula in LS

k of the form ∃x1 . . .∃xn(ψ0 ∧ . . .∧ψl) with atomic
ψ0, . . . ,ψl :

(i) Φ � ∃x1 . . .∃xn(ψ0 ∧ . . .∧ψl).
(ii) IΦ

k |= ∃x1 . . .∃xn(ψ0 ∧ . . .∧ψl).

(iii) There are t1, . . . , tn ∈ T S
k with Φ � (ψ0 ∧ . . .∧ψl)(

n
x | n

t).

Proof. Obviously, (iii) implies (i) and (i) implies (ii). We show how to obtain (iii)
from (ii). Let IΦ

k |= ∃x1 . . .∃xn(ψ0 ∧ . . .∧ψl), i.e., for suitable terms t1, . . . , tn ∈ T S
k

we have IΦ
k |= (ψ0 ∧ . . .∧ ψl)(

n
x | n

t). Since (ψ0 ∧ . . .∧ ψl)(
n
x | n

t) is a quantifier-

free formula from LS
k , Lemma 1.2(b) yields IΦ |= (ψ0 ∧ . . .∧ψl)(

n
x | n

t). Therefore

IΦ |= ψi(
n
x | n

t) for i = 0, . . . , l, and as the ψi are atomic we get Φ � ψi(
n
x | n

t), and so

altogether Φ � (ψ0 ∧ . . .∧ψl)(
n
x | n

t). �
If in part (i) we replace the derivation relation � by the consequence relation |=, we
see that the validity of Φ |= ∃x1 . . .∃xn(ψ0 ∧ . . .∧ψl) can be checked by a single
interpretation, namely IΦ

k .

In mathematics and its applications one is usually interested not only in the deriva-
tion of an existential formula but also in the presentation of concrete terms satisfying
it. In view of the formal character of the sequent calculus we see that in the cases
covered by Theorem 2.7 it is possible to find concrete solutions in a systematic way.
Thus one can think of a programming language where, for a given problem, a pro-
grammer only has to formalize in first-order language the hypotheses (as universal

XI.3 Herbrand Structures 213

Horn formulas) and the “query” (as an existential formula); then, by systematically
applying the sequent calculus, the computer searches for terms satisfying the exis-
tential formula, i.e., solving the given problem. The area in which this approach is
pursued is called logic programming, the most popular programming language in
this context being PROLOG (Programming in Logic).

The central idea in this subject is often expressed by the following equation:

algorithm = logic + control

“Logic” here refers to the static (the declarative) aspects of the problem, e.g., its
adequate formalization. “Control” stands for the part concerned with the strategies
for applying rules of derivation which therefore characterizes the dynamic (the pro-
cedural) aspect.

We shall deal with the fundamentals of logic programming in Sections 6 and 7.
In Sections 4 and 5 we consider rules of derivation which are more suitable for
logic programming than the rules of the sequent calculus that primarily follow the
proof patterns used by mathematicians. In many concrete applications the equality
symbol does not appear in the formalizations. This will simplify the exposition. The
next section contains some preliminary results for equality-free formulas.

2.8 Exercise. Let S := {P,c,d} with unary P and Φ := {(Pc∨Pd)}. Show that not
IΦ |= Φ and conclude that (Pc∨Pd) is not logically equivalent to a universal Horn
sentence. Using Exercise III.4.16, show that it is not even logically equivalent to a
Horn sentence. Prove this last statement also for (¬Pc∨Pd ∨ c ≡ d).

2.9 Exercise. Show: Every at most countable group G (as {◦,−1,e}-structure) is a
homomorphic image of TΦgrp (i.e., there is a homomorphism from TΦgrp onto G).
Similarly, show that for k ∈ N every group G generated by at most k elements is a
homomorphic image of TΦgrp

k .

2.10 Exercise. Let Φ := {∀x1 . . .∀xni ti ≡ ti′ | i ∈ N} be a set of equations in the
language LSgrp of group theory. Show:
(a) Φgrp ∪Φ is satisfiable.
(b) The structure TΦgrp∪Φ is a model of Φgrp ∪Φ , the so-called free group over

{vn | n ∈ N} with defining relations ti ≡ t ′i (i ∈ N).
(c) The set {t | t ∈ T S and Φgrp ∪ Φ � t ≡ e} is the universe of a normal sub-

group U of TΦgrp (the equivalence classes are taken with respect to Φgrp). We
have TΦgrp∪Φ ∼= TΦgrp/U.

XI.3 Herbrand Structures

A formula is called equality-free if the equality symbol does not occur in it. Our
first goal is to show that no non-trivial equations are derivable from equality-free

214 XI Free Models and Logic Programming

formulas. This allows us to present the term interpretations IΦ in an especially
simple form in case Φ consists of equality-free formulas.

3.1 Theorem. If Φ is a consistent set of equality-free S-formulas, then the following
holds for all terms t1, t2 ∈ T S:

(∗) If Φ � t1 ≡ t2 then t1 = t2.

The crucial part in the proof is the following lemma:

3.2 Lemma. For an S-interpretation I= (A,β) let I′ = (A′,β ′) be the S-interpre-
tation given by

(1) A′ := T S;
(2) for n-ary f ∈ S and t1, . . . , tn ∈ T S:

fA
′
(t1, . . . , tn) := f t1 . . . tn;

(3) for c ∈ S: cA
′

:= c;
(4) for n-ary R ∈ S and t1, . . . , tn ∈ T S:

RA′
t1 . . . tn :iff RAI(t1) . . .I(tn);

(5) β ′(x) := x for all variables x.

Then the following holds:

(i) for all t ∈ T S: I′(t) = t;
(ii) for all universal and equality-free formulas ψ ∈ LS:

If I |= ψ then I′ |= ψ .

Proof of Lemma 3.2. Part (i) follows immediately from the definitions. – (ii): Every
equality-free atomic formula ϕ is of the form Rt1 . . . tn; so by (4) we have

I′ |= ϕ iff I |= ϕ .

Now we can show the implication in (ii) by induction on rk(ψ). For ψ = ∀xϕ , for

example, we argue as follows: If I |= ∀xϕ , then for all t ∈ T S we have I
I(t)

x |= ϕ ,
hence I |= ϕ t

x , so by induction hypothesis I′ |= ϕ t
x (note that rk(ϕ t

x) < rk(ψ)).
Since I′(t) = t we have I′ t

x |= ϕ . Therefore I′ t
x |= ϕ holds for all t ∈ T S (= A′),

and so I′ |= ∀xϕ . �
Proof of Theorem 3.1. Suppose Φ satisfies the hypotheses of the theorem. Further-
more, let Φ � t1 ≡ t2.

First, we consider the case where Φ consists of universal formulas and choose a
model I of Φ . Then, by Lemma 3.2(ii), we have I′ |=Φ . Since Φ � t1 ≡ t2 it follows
that I′ |= t1 ≡ t2, and therefore t1 = I′(t1) = I′(t2) = t2 (cf. Lemma 3.2(i)).

In the general case, applying the Compactness Theorem VI.2.1, we first replace Φ
by a finite subset Φ0 with Φ0 � t1 ≡ t2. Let ϕ0 be the conjunction of the formulas
from Φ0. Then ϕ0 is satisfiable and equality-free, and we have ϕ0 � t1 ≡ t2. By the

XI.3 Herbrand Structures 215

Theorem on the Skolem Normal Form (cf. VIII.4.5 and the proof given there) there
is a satisfiable, universal, equality-free ψ with ψ � ϕ0. By ϕ0 � t1 ≡ t2 we therefore
have ψ � t1 ≡ t2. So, by the case of universal formulas already considered, t1 = t2
holds. �
Now let Φ be consistent and equality-free. For the equivalence relation

t1 ∼ t2 iff Φ � t1 ≡ t2

on T S, given by Φ , the previous theorem yields

t1 ∼ t2 iff t1 = t2.

So t = {t}. For simplicity we identify t and t and get:

3.3 Remark. Let Φ be a consistent set of equality-free S-formulas. Then the fol-
lowing holds for the term interpretation IΦ = (TΦ ,β Φ):

(a) T Φ = T S.
(b) For n-ary f ∈ S and t1, . . . , tn ∈ T S:

fT
Φ
(t1, . . . , tn) = f t1 . . . tn.

(c) For c ∈ S: cT
Φ
= c.

(d) For n-ary R ∈ S and t1, . . . , tn ∈ T S:

RTΦ
t1 . . . tn iff Φ � Rt1 . . . tn.

(e) For every variable x: β Φ(x) = x. �

We now consider the case where Φ is a set of sentences, assuming throughout that S
contains a constant. The substructure TΦ

0 of TΦ from Remark 3.3, consisting of
variable-free terms, is a Herbrand structure in the following sense.

3.4 Definition. An S-structure A is called Herbrand structure if

(i) A = T S
0 .

(ii) For n-ary f ∈ S and t1, . . . , tn ∈ T S, fA(t1, . . . , tn) = f t1 . . . tn.
(iii) For c ∈ S, cA = c.

We note:

3.5 Remark. For a consistent set Φ of equality-free sentences, TΦ
0 is a Herbrand

structure. �
3.6 Remark. For a Herbrand structure A and t ∈ T S

0 we have tA = t. �
For a Herbrand structure the interpretation of the function symbols and constants is
fixed. However, Definition 3.4 says nothing about the interpretation of the relation
symbols; it can be chosen “freely.”

3.7 Theorem. Let Φ be a satisfiable set of universal and equality-free sentences.
Then Φ has a Herbrand model, i.e., a model which is a Herbrand structure.

216 XI Free Models and Logic Programming

Proof. Let I = (A,β) be an interpretation with I |= Φ . For the corresponding inter-
pretation I′ = (A′,β ′) (see Lemma 3.2) we have that I′ |= Φ and therefore A′ |= Φ .
By definition of A′, T S

0 is the universe of a substructure B′ of A′. B′ is a Herbrand
structure and also a model of Φ as Φ consists of universal sentences. �
The minimality of the term structure mentioned in the previous section (before The-
orem 2.1) is reflected in the following characterization of TΦ

0 .

3.8 Theorem. Let Φ be a consistent set of universal and equality-free Horn sen-
tences. Then the following holds:

(a) The structure TΦ
0 is a Herbrand model of Φ .

(b) For every Herbrand model A of Φ and every n-ary R ∈ S, RTΦ
0 ⊆ RA.

Therefore TΦ
0 is called the minimal Herbrand model of Φ .

Proof. (a): The structure TΦ
0 is a Herbrand structure (cf. Remark 3.5) and a model

of Φ (cf. Corollary 2.6).

(b): Let A be a Herbrand model of Φ and let R ∈ S be n-ary. For t1, . . . , tn ∈ T S
0 (= A)

we have by definition (cf. Remark 3.3(d)):

RTΦ
0 t1 . . . tn iff Φ � Rt1 . . . tn.

Assume RTΦ
0 t1 . . . tn. Since A |= Φ , we have A |= Rt1 . . . tn, i.e., RAt1 . . . tn. �

We finish this section by restating Theorem 2.7 in terms of the Herbrand struc-
ture TΦ

0 :

3.9 Theorem. Let Φ be a consistent set of equality-free universal Horn sentences.
Then the following are equivalent for every Horn sentence ∃x1 . . .∃xn(ψ0 ∧ . . .∧ψl)
with atomic ψ0, . . . ,ψl :

(i) Φ � ∃x1 . . .∃xn(ψ0 ∧ . . .∧ψl).
(ii) TΦ

0 |= ∃x1 . . .∃xn(ψ0 ∧ . . .∧ψl).

(iii) There are t1, . . . , tn ∈ T S
0 with Φ � (ψ0 ∧ . . .∧ψl)(

n
x | n

t). �

XI.4 Propositional Logic

In propositional logic we consider formulas which are built up from atoms, the
so-called propositional variables, only using connectives. The propositional vari-
ables are interpreted by the truth-values T (for “true”) and F (for “false”) (cf. Sec-
tion III.2).

4.1 Definition. Let Aa be the alphabet {¬,∨,),(}∪{p0, p1, p2, . . .}. We define the
formulas of the language of propositional logic (the propositional formulas) to be
the strings over Aa which are obtained by means of the following rules:

XI.4 Propositional Logic 217

pi
(i ∈ N), α

¬α ,
α,β

(α ∨β) .

Again, (α∧β),(α → β), and (α ↔ β) are abbreviations for ¬(¬α∨¬β), (¬α∨β),
and (¬(α ∨ β)∨¬(¬α ∨¬β)), respectively. For propositional variables we often
use the letters p,q,r, . . . , for propositional formulas the letters α,β , By PF we
denote the set of propositional formulas. For α ∈ PF let pvar(α) be the set of propo-
sitional variables occurring in α ,

pvar(α) := {p | p occurs in α}.

Furthermore, for n ≥ 1 we set

PFn := {α ∈ PF | pvar(α)⊆ {p0, . . . , pn−1}}.

A (propositional) assignment is a map b : {pi | i ∈N}→ {T,F}. The other semantic
notions are defined as in the first-order case:

The truth-value α[b] of a propositional formula α under the assignment b is defined
inductively by3

pi[b] := b(pi)

¬α[b] := ¬̇(α[b])
(α ∨β)[b] := ∨̇(α[b],β [b])

(cf. Section III.2 for the definition of ¬̇ and ∨̇). If α[b] = T we say that b is a model
of α or satisfies α . The assignment b is a model of the set of formulas Δ ⊆ PF if b
is a model of each formula in Δ .

Similar to the Coincidence Lemma III.4.6 of first-order logic, the truth-value α[b]
depends only on the assignment of the propositional variables occurring in the for-
mula α:

4.2 Coincidence Lemma of Propositional Logic. Let α be a propositional for-
mula and let b and b′ be assignments with b(p) = b′(p) for all p ∈ pvar(α). Then
α[b] = α[b′].

The easy proof is left to the reader. �
By this lemma, for α ∈ PFn+1 and b0, . . . ,bn ∈ {T,F} it makes sense to write

α[b0, . . . ,bn]

for the truth-value α[b] where b is any assignment for which b(pi) = bi for i ≤ n. If
α[b0, . . . ,bn] = T , we say that “b satisfies α .”

We define:

– α is a consequence of Δ (written: Δ |= α) :iff every model of Δ is a model
of α;

– α is valid (written: |= α) :iff α holds under all assignments;

3 Inductive proofs and definitions on propositional formulas can be justified as those for first-order
logic in Section II.4.

218 XI Free Models and Logic Programming

– Δ is satisfiable (written: Sat Δ) :iff there is an assignment which is a model
of Δ ;

– α is satisfiable (written: Sat α) :iff Sat {α};
– α and β are logically equivalent :iff |= (α ↔ β).

Some essential aspects of logic programming can better be explained on the level
of propositional logic; we will do so in the next section. The results obtained there
have to be transferred to first-order language. Let us consider a technique for such
a transfer. It is based on the intuitively evident fact that an equality-free formula
such as ((Rxy∧Ry f x)∨ (¬Rzz∧Rxy)) has the “same models” as the propositional
formula ((p0 ∧ p1)∨ (¬p2 ∧ p0)).

Let S be an at most countable symbol set containing at least one relation symbol.
Then the set

AS := {Rt1 . . . tn | R ∈ S n-ary, t1, . . . , tn ∈ T S}
of equality-free atomic S-formulas is countable. Furthermore let

π0 : AS →{pi | i ∈ N}
be a bijection. We extend π0 to a map π which is defined on the set of S-formulas
which are both equality-free and quantifier-free, by setting:

π(ϕ) := π0(ϕ) for ϕ ∈ AS

π(¬ϕ) := ¬π(ϕ)
π(ϕ ∨ψ) := (π(ϕ)∨π(ψ)).

Then the following holds:

4.3. The map ϕ �→ π(ϕ) is a bijection from the set of equality-free and quantifier-
free S-formulas onto PF.

Proof. We define a map ρ : PF → LS by

ρ(p) := π−1
0 (p)

ρ(¬α) := ¬ρ(α)

ρ(α ∨β) := (ρ(α)∨ρ(β)).

By induction on ϕ and α , respectively, one can easily show:

ρ(π(ϕ)) = ϕ for equality-free and quantifier-free ϕ,
π(ρ(α)) = α for α ∈ PF.

Hence π is a bijection and ρ = π−1. �
4.4 Lemma. If Φ ∪{ϕ,ψ} is a set of equality-free and quantifier-free S-formulas,
then the following holds:
(a) Sat Φ iff Sat π(Φ).
(b) Φ |= ϕ iff π(Φ) |= π(ϕ).
(c) ϕ and ψ are logically equivalent iff π(ϕ) and π(ψ) are logically equivalent.

XI.4 Propositional Logic 219

Proof. Since (b) follows immediately from (a) and (c) follows immediately from
(b), we only have to show (a). For the implication from left to right let I be an
S-interpretation with I |= Φ . We define a propositional assignment b by

b(pi) :=

{
T if I |= ρ(pi)

F otherwise

for i ∈ N. Using induction on propositional formulas one can easily show that for
all α ∈ PF

α[b] = T iff I |= ρ(α).

Since I |= Φ the assignment b is a model of π(Φ).

For the other direction, let π(Φ) be satisfiable and b be a model of π(Φ). It suffices
to find an S-interpretation I with

(∗) I |= ϕ iff π(ϕ)[b] = T

for all ϕ ∈ AS. Then a proof by induction shows that I |= Φ . We define I= (A,β)
by (cf. Lemma 3.2):

A := T S;
fA(t1, . . . , tn) := f t1 . . . tn for n-ary f ∈ S and t1, . . . , tn ∈ T S;

cA := c for c ∈ S;
β (x) := x;

PAt1 . . . tn :iff π(Pt1 . . . tn)[b] = T for n-ary P ∈ S and t1, . . . , tn ∈ T S.

Then obviously (∗) holds. �
Lemma 4.4 depends essentially on the fact that the equality symbol does not occur
in Φ . If we drop this hypothesis we get a counterexample to Lemma 4.4(a) taking a
unary relation symbol P and setting π(Pv0) := p0, π(Pv1) := p1, π(v0 ≡ v1) := p2
and Φ := {Pv0,¬Pv1,v0 ≡ v1}.

In addition, we can use the connection built in Lemma 4.4 to transfer properties of
first-order logic to propositional logic. We show this for the Compactness Theorem
(for a purely propositional proof see Exercise 4.11).

4.5 Compactness Theorem for Propositional Logic. A set of propositional for-
mulas is satisfiable if and only if each of its finite subsets is satisfiable.

Proof. We set S := {P} with unary P and define π0 on AS = {Pvi | i ∈ N} by
π0(Pvi) := pi for i ∈ N. Then the following holds for arbitrary Δ ⊆ PF:

Sat Δ iff Sat π−1(Δ) (by Lemma 4.4(a))
iff for every finite subset Φ0 of π−1(Δ), Sat Φ0

(by the Compactness Theorem VI.2.1 for first-order logic)
iff for every finite subset Δ0 of Δ , Sat Δ0 (by Lemma 4.4(a)). �

220 XI Free Models and Logic Programming

In a similar way, Exercise 4.10 should encourage the reader to transfer the Theo-
rem on the Disjunctive and on the Conjunctive Normal Form to propositional logic.
A propositional formula is in disjunctive normal form (written: in DNF), if it is a
disjunction of conjunctions of propositional variables or negated propositional vari-
ables; it is in conjunctive normal form (written: in CNF), if it is a conjunction of
disjunctions of propositional variables or negated propositional variables. For ex-
ample, the formulas

(p∨q∨ (¬r∧q∧¬p)) and ((¬p∧ r)∨ (q∧¬r∧¬q)∨ r)

are in disjunctive normal form, and the formula

((p∨¬r)∧ (¬q∨ r∨q))

is in conjunctive normal form (note that we saved brackets in the iterated conjunc-
tions and iterated disjunctions).

We prove the Theorem on the Disjunctive and on the Conjunctive Normal Form
for propositional logic directly. We do so by discussing the question raised in Sec-
tion III.2 and showing that every extensional connective can be defined by means
of ¬ and ∨ within propositional logic.

The connective “and” is defined by the formula α := ¬(¬p0∨¬p1) (and hence by ¬
and ∨) in the sense that

for all b0,b1 ∈ {T,F}:
...∧ (b0,b1) = α[b0,b1].

The same is true for every extensional connective:

4.6 Theorem. Let n ≥ 0. For every truth-function h : {T,F}n+1 → {T,F} there is
a formula α ∈ PFn+1 defining h in the sense that

h(b0, . . . ,bn) = α[b0, . . . ,bn] for all b0, . . . ,bn ∈ {T,F}.

The formula can be chosen to be in DNF or in CNF – as desired.

Proof. First, we explain the idea of the proof for the example of the binary truth-
function h with the truth-table

h
T T F
T F T
F T F
F F T

We get a formula in DNF defining h as follows: The second and the fourth row of the
table give the truth-value T ; the arguments there are described by the conjunctions
(p0 ∧¬p1) and (¬p0 ∧¬p1), respectively. Their disjunction

(p0 ∧¬p1)∨ (¬p0 ∧¬p1)

is a formula in DNF defining h.

XI.4 Propositional Logic 221

The first and the third row of the table give the truth-value F ; the formulas (¬p0 ∨
¬p1) and (p0 ∨¬p1) say that these arguments are excluded. Their conjunction

(¬p0 ∨¬p1)∧ (p0 ∨¬p1)

is a formula in CNF defining h.

Now let h : {T,F}n+1 →{T,F} be an arbitrary truth-function. We set −T := F and
−F := T . For a propositional variable p let pT := p and pF := ¬p. Finally, for
“arguments” b0, . . . ,bn ∈ {T,F} let

αb0,...,bn := pb0
0 ∧ . . .∧ pbn

n

(“we are in the row with the arguments b0, . . . ,bn”),

β b0,...,bn := p−b0
0 ∨ . . .∨ p−bn

n

(“we are not in the row with the arguments b0, . . . ,bn”).

Then the following holds for all b′0, . . . ,b
′
n ∈ {T,F}:

(1) αb0,...,bn [b′0, . . . ,b
′
n] = T iff b0 = b′0 and . . . and bn = b′n

and

(2) β b0,...,bn [b′0, . . . ,b
′
n] = T iff b0 �= b′0 or . . . or bn �= b′n.

The following formulas αD in DNF and αC in CNF define h:

αD :=

{p0 ∧¬p0, if h(b0, . . . ,bn) = F for all b0, . . . ,bn ∈ {T,F},∨{αb0,...,bn | b0, . . . ,bn ∈ {T,F}, h(b0, . . . ,bn) = T}, otherwise;

αC :=

{p0 ∨¬p0, if h(b0, . . . ,bn) = T for all b0, . . . ,bn ∈ {T,F},∧{β b0,...,bn | b0, . . . ,bn ∈ {T,F}, h(b0, . . . ,bn) = F}, otherwise.

We show this for the formula αD, i.e., we prove:

for all b0, . . . ,bn ∈ {T,F}, h(b0, . . . ,bn) = αD[b0, . . . ,bn].

If h(b0, . . . ,bn) = T , then αb0,...,bn is a member of the disjunction αD. By (1) we
have αb0,...,bn [b0, . . . ,bn] = T , therefore αD[b0, . . . ,bn] = T. Conversely, assume that
αD[b0, . . . ,bn] = T , then (by definition of αD) there are truth-values b′0, . . . ,b

′
n ∈

{T,F} such that h(b′0, . . . ,b
′
n) = T and αb′0,...,b′n [b0, . . . ,bn] = T . By (1) it follows

that b′0 = b0, . . . ,b′n = bn and so h(b0, . . . ,bn) = T . �
As a corollary we easily obtain:

4.7 Theorem on the Disjunctive and on the Conjunctive Normal Form. Every
propositional formula is logically equivalent to a formula in disjunctive normal form
and to a formula in conjunctive normal form.

Proof. Let α be a propositional formula in PFn+1. We choose the truth-function
h : {T,F}n+1 → {T,F} with h(b0, . . . ,bn) = α[b0, . . . ,bn] for b0, . . . ,bn ∈ {T,F}.

222 XI Free Models and Logic Programming

By Theorem 4.6 there are a formula in DNF and a formula in CNF, each of which
defines h and hence is logically equivalent to α . �
4.8 Corollary. For n ≥ 0 there are exactly 2(2

n+1) pairwise logically nonequivalent
formulas in PFn+1.

Proof. Two formulas α and β in PFn+1 are logically equivalent if and only if
α[b0, . . . ,bn] = β [b0, . . . ,bn] for all b0, . . . ,bn ∈ {T,F}, i.e., if they define the
same (n + 1)-ary truth-function. By Theorem 4.6 the number of pairwise logi-
cally nonequivalent formulas in PFn+1 is equal to the number of truth-functions
h : {T,F}n+1 →{T,F}, hence equal to 2(2

n+1). �
4.9 Exercise. In Theorem 4.6 we have shown that every truth-function can be de-
fined with ¬̇ and ∨̇. Prove the corresponding statement if ¬̇ and ∨̇ are replaced by
(a) ¬̇ and

...∧;
(b)

...
: {T,F}×{T,F}→ {T,F} with truth-table

...

T T F
T F T
F T T
F F T

We say that the sets {¬̇, ∨̇}, {¬̇, ...∧}, {...} are functionally complete.

4.10 Exercise. Transfer the theorems about DNF and CNF of first-order logic to
propositional logic using Lemma 4.4.

4.11 Exercise. Prove the Compactness Theorem 4.7 of propositional logic directly.
Hint: Let Δ ⊆ PF, and assume that every finite subset of Δ is satisfiable. Call a
sequence (b0, . . . ,bn) of truth-values good if every finite subset of Δ has a model b
with b(pi) = bi for i ≤ n. Show that there are arbitrarily long good sequences and in-
fer the existence of an assignment b satisfying every finite subset of Δ , and hence Δ
itself.

4.12 Exercise. Let the sequent calculus Sa of propositional logic consist of the
rules analogous to (Assm), (Ant), (PC), (Ctr), (∨A), and (∨S). For the resulting
derivation relation �a of propositional logic show the following Adequacy Theorem:
For all Δ ⊆ PF and all α ∈ PF: Δ �a α iff Δ |= α .

XI.5 Propositional Resolution

In this section we study techniques for “quickly” testing the satisfiability of propo-
sitional formulas of a certain type. Partly these techniques are preliminary versions
of methods in logic programming to be considered in the next section.

XI.5 Propositional Resolution 223

If we want to test whether α ∈PFn+1 is satisfiable using the definition of the relation
of satisfaction, in the worst case we have to calculate the truth-value α[b0, . . . ,bn]
for 2n+1 tuples (b0, . . . ,bn) ∈ {T,F}n+1. For n = 5, 10, 20 these are already 64,
2048, 2 097 152 tuples, respectively. As we mentioned in Section X.3, the following
question is equivalent to the “P = NP”-problem of theoretical computer science: Is
it possible to test the satisfiability of propositional formulas with a register program
which, for suitable k ∈ N, gives the answer for formulas of length ≤ n in at most nk

steps?

For subclasses of formulas one can give fast algorithms. For instance, one can easily
test the satisfiability of formulas in DNF: For α = (β0 ∨ . . .∨βr), α is satisfiable if
and only if for some i with 0 ≤ i ≤ r the formula βi is satisfiable. For a formula βi =
(λ0∧ . . .∧λs), where the λ j are propositional variables or negations of propositional
variables, we have that βi is satisfiable if and only if for no propositional variable p,
both p and ¬p occur among λ0, . . . ,λs.

Since a formula α is valid if and only if ¬α is not satisfiable, every algorithm
for proving satisfiability gives an algorithm for proving validity. Furthermore, for
each α in CNF or in DNF one can immediately give a DNF or CNF, respectively,
for ¬α . For instance, for the formula in CNF

α = (p∨¬q∨ r)∧ (¬p∨ s∨ t ∨ r)∧q,

the negation ¬α is logically equivalent to

(¬p∧q∧¬r)∨ (p∧¬s∧¬t ∧¬r)∨¬q.

Therefore the fast test for satisfiability of formulas in DNF mentioned above gives
a fast test for validity of formulas in CNF .

We now show that there is a fast test for satisfiability also of special formulas in
CNF, the so-called propositional Horn formulas. For the following definition, see
Exercise III.4.16 or Definition 2.2.

5.1 Definition. The formulas which can be obtained by means of the following cal-
culus are called (propositional) Horn formulas.

(1)
(¬q1 ∨ . . .∨¬qn ∨q)

for n ∈ N,

(2)
(¬q0 ∨ . . .∨¬qn)

for n ∈ N,

(3)
α,β

(α ∧β) .

Every Horn formula is a formula in conjunctive normal form, where the members of
the conjunction are of the form (1) or (2). If, in (1), we distinguish the cases n = 0
and n > 0, every member of the conjunction has the form (PH1), (PH2), or (PH3):

224 XI Free Models and Logic Programming

(PH1) q
(PH2) (q0 ∧ . . .∧qn → q)
(PH3) (¬q0 ∨ . . .∨¬qn).

Horn formulas of the form (PH1) or (PH2) are called positive, those of the form
(PH3) negative.

Henceforth, let Δ be a set of positive Horn formulas. This set is satisfiable: The
assignment b with b(q) = T for all propositional variables q is a model of Δ . In ad-
dition to this maximal assignment satisfying Δ (maximal in the sense that a maximal
number of propositional variables get the truth-value T) we want to give a minimal
assignment bΔ satisfying Δ . For this purpose we interpret the formulas of the form
(PH1) and (PH2) as rules:

(PH1) requires: “T is assigned to q”,
(PH2) requires: “If T is assigned to q0, . . . ,qn, then also to q”.

We use this dynamic interpretation of formulas to “construct” bΔ . So we consider
the calculus with the rules

(T1)
q

if q ∈ Δ

(T2)
q0, . . . ,qn

q
if (q0 ∧ . . .∧qn → q) ∈ Δ ,

and for a propositional variable p we set:

bΔ (p) = T :iff p is derivable in the calculus with the rules (T1) and (T2).

5.2 Lemma. The assignment bΔ is a minimal modelof Δ , i.e.,

(a) bΔ is a model of Δ .
(b) For every assignment b which is a model of Δ and for every propositional

variable q:
If bΔ (q) = T , then b(q) = T .

Proof. (a): For example, if the formula (q0 ∧ . . .∧ qn → q) is in Δ and we have
(q0∧ . . .∧qn)[bΔ] = T , then the variables q0, . . . ,qn are derivable in the calculus (by
definition of bΔ). Hence, so is q (cf. (T2)). Therefore bΔ (q) = T .

(b): Let b be a model of Δ . By definition of bΔ it suffices to show that b(q) = T
for every derivable q. This can easily be proved by induction over the calculus: For
instance, if we get q by rule (T1), then q ∈ Δ and so b(q) = T , since b is a model
of Δ . �
We drop the hypothesis that Δ is a set of positive Horn formulas and show:

5.3 Theorem. Let Δ be a set of Horn formulas of the form (PH1), (PH2), or (PH3),
and let Δ+ and Δ− be the set of positive and negative formulas in Δ , respectively.
Then the following are equivalent:

XI.5 Propositional Resolution 225

(a) Δ is satisfiable.
(b) For all α ∈ Δ−, Δ+∪{α} is satisfiable.
(c) The assignment bΔ+

is a model of Δ .

Proof. The directions from (a) to (b) and from (c) to (a) are trivial. We show how
to get (c) from (b). By Lemma 5.2(a), bΔ+

is a model of Δ+. Let α ∈ Δ−, say,
α = (¬q0 ∨ . . .∨¬qn). Since we assume (b), there is an assignment b which is a
model of Δ+ ∪{¬q0 ∨ . . .∨¬qn}, and therefore there is some i ∈ {0, . . . ,n} with
b(qi) = F . Since b is a model of Δ+, Lemma 5.2(b) shows that bΔ+

(qi) = F and
hence, (¬q0 ∨ . . .∨¬qn)[bΔ+

] = T . �
Now we are ready to give a fast algorithm for testing satisfiability of Horn formulas,
the underlining algorithm.

Let α be a Horn formula. By the remarks following Definition 5.1, α is a conjunc-
tion of formulas β of the form (PH1), (PH2), or (PH3). Let Δ be the set of these β ,
i.e., the set of members of the conjunction α .

The rules (U1) and (U2) of the underlining algorithm correspond to the rules (T1)
and (T2) above:

(U1) Underline in α all occurrences of a propositional variable q which is itself a
member of the conjunction α .

(U2) If in a member (q0 ∧ . . .∧ qn → q) of the conjunction α the propositional
variables q0, . . . ,qn are already underlined, then underline all occurrences of q
in α .

The algorithm terminates when none of the two rules can be applied anymore. If α
contains, say, r distinct propositional variables, this happens after at most r steps.
Then just those variables q are underlined for which bΔ+

(q) = T . Hence (cf. Theo-
rem 5.3) α is satisfiable if and only if in no member (¬q0 ∨ . . .∨¬qn) of the con-
junction all propositional variables are underlined.

We illustrate the algorithm with two examples. First, let

α = (¬p∨¬q)∧ (p → q)∧ (p∧ r → q)∧ r.

With (U1) we get:

(¬p∨¬q)∧ (p → q)∧ (p∧ r → q)∧ r.

Now we cannot apply any of the rules (U1), (U2). Therefore, α is satisfiable and the
minimal assignment b for α is given by

b(s) =

{
T for s = r
F otherwise.

Now let

α = (¬p∨¬q∨¬s)∧¬t ∧ (r → p)∧ r∧q∧ (u → s)∧u

with propositional variables p, q, r, s, t, and u. Step by step we get:

226 XI Free Models and Logic Programming

(¬p∨¬q∨¬s)∧¬t ∧ (r → p)∧ r∧q∧ (u → s)∧u (with(U1))
(¬p∨¬q∨¬s)∧¬t ∧ (r → p)∧ r∧q∧ (u → s)∧u (with(U2))
(¬p∨¬q∨¬s)∧¬t ∧ (r → p)∧ r∧q∧ (u → s)∧u (with(U1))
(¬p∨¬q∨¬s)∧¬t ∧ (r → p)∧ r∧q∧ (u → s)∧u (with(U1))
(¬p∨¬q∨¬s)∧¬t ∧ (r → p)∧ r∧q∧ (u → s)∧u (with(U2)).

So α is not satisfiable, since all variables in (¬p∨¬q∨¬s) are underlined. In fact,
not even the formula

α0 = (¬p∨¬q∨¬s)∧ (r → p)∧ r∧q∧ (u → s)∧u,

which can be obtained from α by keeping only (¬p∨¬q∨¬s) from the negative
members of the conjunction, is satisfiable.

In the algorithm which we will study later under the name Horn resolution, the
underlining algorithm is run “backwards”: For example, let α be a Horn formula
with only one negative member (¬q0 ∨ . . .∨¬qn) in the conjunction; if we want
to prove that α is not satisfiable using the underlining algorithm, we have to show
that all variables in {¬q0, . . . ,¬qn} (i.e., q0, . . . ,qn) will finally be underlined. If
(r0 ∧ . . .∧ r j → q) (or if q) is a member of the conjunction α and if q = qi, by rule
(T2) (or by rule (T1)) it suffices to show that each variable in

(∗)
{¬q0, . . . ,¬qi−1,¬r0, . . . ,¬r j,¬qi+1, . . . ,¬qn}

(or {¬q0, . . . ,¬qi−1,¬qi+1, . . . ,¬qn})

ends up being underlined.

Now this argument can be repeated and applied to the set in (∗). It will turn out
that α is not satisfiable if in this way one can reach the empty set in finitely many
steps. (Then none of the variables remains to be shown to be underlined.) In the case
of

α0 = (¬p∨¬q∨¬s)∧ (r → p)∧ r∧q∧ (u → s)∧u

we can reach the empty set as follows:

{¬p,¬q,¬s}
{¬p,¬q,¬u} (since (u → s) ∈ Δ+)
{¬p,¬q} (since u ∈ Δ+)
{¬p} (since q ∈ Δ+)
{¬r} (since (r → p) ∈ Δ+)
/0 (since r ∈ Δ+).

The idea underlying this algorithm can be extended to arbitrary formulas in CNF; in
this way one arrives at the resolution method due to J. A. Robinson (1965). There,
formulas in CNF are given in set theoretic notation. For instance, one identifies a
disjunction (α0 ∨ . . .∨αn) with the set {α0, . . . ,αn} of its members. In this way
the formulas (¬p0 ∨ p1 ∨¬p0), (¬p0 ∨¬p0 ∨ p1), and (p1 ∨¬p0) coincide with

XI.5 Propositional Resolution 227

the set {¬p0, p1}. Obviously, disjunctions which lead to the same set are logically
equivalent. We introduce the notation in a more precise way.

A literal is a formula of the form p or ¬p. For literals we write λ ,λ1, A finite,
possibly empty set of literals is called a clause. We use the letters K,L,M, . . . for
clauses and K, . . . for (not necessarily finite) sets of clauses.

For a formula α in CNF,

α = (λ00 ∨ . . .∨λ0n0)∧ . . .∧ (λk0 ∨ . . .∨λknk),

let

K(α) :=
{{λ00, . . . ,λ0n0}, . . . ,{λk0, . . . ,λknk}

}
be the set of clauses associated with α .

This transition from a formula to its set of clauses motivates the following defini-
tions:

5.4 Definition. Let b be an assignment, K a clause and K a set of clauses.

(a) b satisfies K (or K holds under b) :iff there is λ ∈ K with λ [b] = T .
(b) K is satisfiable :iff there is an assignment which satisfies K.
(c) b satisfies K :iff b satisfies K for all K ∈ K.
(d) K is satisfiable :iff there is an assignment which satisfies K.

Thus, an assignment b satisfies a clause {λ0, . . . ,λn} iff (λ0 ∨ . . .∨λn)[b] = T . The
empty clause is not satisfiable. Therefore, if /0 ∈ K, K is not satisfiable. On the other
hand, the empty set of clauses is satisfiable.

Furthermore, we see immediately: If /0 /∈ K and K �= /0, then b satisfies the set K if
and only if b is a model of

∧
K∈K

∨
λ∈K λ . Consequently, a formula α in CNF and

its set of clauses K(α) hold under the same assignments.

With the resolution method one can check whether a set K of clauses (and therefore,
whether a formula in CNF) is satisfiable. This method is based on a single rule and,
therefore, has certain advantages for computer implementation. The rule allows the
formation of so-called resolvents.

We extend the notation pF := ¬p to literals by setting (¬p)F := p.

5.5 Definition. Let K1 and K2 be clauses. The clause K is called a resolvent of K1
and K2 if there is a literal λ with λ ∈ K1 and λ F ∈ K2 such that

(K1 \{λ})∪ (K2 \{λ F})⊆ K ⊆ K1 ∪K2.
4

For K1 = {¬r, p,¬q,s, t} and K2 = {p,q,¬s}, {¬r, p,s, t,¬s} is a resolvent of K1
and K2, as are {¬r, p,¬q, t,q} and {¬r, p,¬q,s, t,q,¬s}.

Adding a resolvent to a set of clauses does not change its satisfiability:

4 The results that follow remain valid if in addition we require that K = (K1 \{λ})∪ (K2 \{λ F}).
For the purposes of logic programming, however, it is better to give the definitions as done here.

228 XI Free Models and Logic Programming

5.6 Resolution Lemma. Let K be a set of clauses, K1,K2 ∈ K, and K a resolvent
of K1 and K2. Then for every assignment b the following holds:

b satisfies K∪{K} iff b satisfies K.

Proof. The direction from left to right is trivial. For the other direction let b satisfy
the set K. We have to show that b satisfies the clause K. Since K is a resolvent of K1
and K2, there is a literal λ with λ ∈ K1, λ F ∈ K2, and (K1 \ {λ})∪ (K2 \ {λ F}) ⊆
K ⊆ K1 ∪K2. There are two cases:

λ [b] = F : Since K1 holds under b, there is λ ′ ∈ K1, λ �= λ ′, with λ ′[b] = T . Since
λ ′ ∈ K, K is satisfied by b.

λ [b] = T : Then λ F [b] = F , and we argue similarly with K2 and λ F . �
We now show that an arbitrary set K of clauses is not satisfiable if and only if,
by forming resolvents and starting from the clauses in K, one can get to the empty
clause in finitely many steps. For this purpose we introduce for i ∈N the set Resi(K)
of clauses, which can be obtained from K in at most i steps.

5.7 Definition. For a set K of clauses let

Res(K) := K∪{K | there are K1,K2 ∈ K such that K is a resolvent of K1 and K2.

For i ∈ N define Resi(K) inductively by

Res0(K):=K

Resi+1(K):=Res(Resi(K)).

Finally, set

Res∞(K) :=
⋃

i∈N Resi(K).

Hence, Res∞(K) consists of those clauses which, starting from the clauses in K, can
be obtained by building finitely many resolvents.

Now the result which was already stated several times can be phrased as follows:

5.8 Resolution Theorem. For a set K of clauses,

K is satisfiable iff /0 /∈ Res∞(K).

Proof. First, let K be satisfiable. Then, by the Resolution Lemma 5.6, Res(K) is satis-
fiable as well. From this we get immediately by induction that Resi(K) is satisfiable
for all i and therefore /0 /∈ Resi(K). Hence /0 /∈ Res∞(K).

Conversely, assume towards a contradiction that /0 /∈ Res∞(K) and K is not satisfi-
able. Since K is a nonempty set of clauses, we get that K is not satisfiable if and
only if {∨λ∈K λ | K ∈ K} is not satisfiable. By the Compactness Theorem 4.5 we
can assume that K is finite. For m ∈ N we set

Rm := {K ∈ Res∞(K) | K ⊆ PFm}.

XI.5 Propositional Resolution 229

In particular, R0 = /0 or R0 = { /0}; but /0 /∈ Res∞(K) and therefore R0 = /0. We
choose n ∈ N such that K ⊆ PFn for all K ∈ K, i.e., in the clauses of K only the
propositional variables p0, . . . , pn−1 and their negations occur. Since this property is
preserved by forming resolvents we easily obtain, by induction on i, that K ⊆ PFn
for all K ∈ Resi(K), i.e., for all K ∈ Res∞(K). In particular, K⊆ Res∞(K) =Rn, and
therefore Rn is not satisfiable (as K was assumed to be unsatisfiable).

We set

l := min{m |Rm is not satisfiable}
and distinguish two cases:

l = 0: Then R0 is not satisfiable which contradicts R0 = /0.

l = k+1: By minimality of l, the set Rk is satisfiable. Since in Rk only the variables
p0, . . . , pk−1 occur, there are b0, . . . ,bk−1 ∈ {T,F} with

(1) (b0, . . . ,bk−1) satisfies Rk.

Since Rk+1 is not satisfiable, there is a clause KT for the assignment (b0, . . . ,bk−1,T)
such that

(2) KT ∈Rk+1 and (b0, . . . ,bk−1,T) does not satisfy KT ,

and for the assignment (b0, . . . ,bk−1,F) there is a clause KF such that

(3) KF ∈Rk+1 and (b0, . . . ,bk−1,F) does not satisfy KF .

By (2) and (3) we have

(4) pk /∈ KT and ¬pk /∈ KF .

We show

(5) ¬pk ∈ KT and pk ∈ KF .

Namely, if ¬pk /∈ KT , then (with (4)) KT ⊆ PFk and therefore KT ∈ Rk. But with
(b0, . . . ,bk−1) also (b0, . . . ,bk−1,T) would satisfy the clause KT – a contradiction to
(2). Similarly one can show that pk ∈ KF .

By (5), K := (KT \{¬pk})∪(KF \{pk}) is a resolvent of KT and KF , which belongs
to Rk by (4). By (1), (b0, . . . ,bk−1) satisfies the clause K, i.e., (b0, . . . ,bk−1) satisfies
a literal from (KT \{¬pk})∪ (KF \{pk}), which contradicts (2) or (3). �
We illustrate the resolution method by an example, introducing a transparent nota-
tion at the same time. Let

α = (q∨¬r)∧¬p∧ (p∨ r)∧ (¬q∨ p∨¬r).

Then

K(α) = {{q,¬r},{¬p},{p,r},{¬q, p,¬r}}.

The “resolution tree” in Figure XI.1 shows that K(α) and therefore α is not sat-
isfiable: The nodes with no upper neighbors are clauses from K(α), the remaining

230 XI Free Models and Logic Programming

�
��

�
��

�
��

�
��

�
��

�
��

�
��
�����

{q,¬r} {p,r} {¬q, p,¬r} {p,r}

{p,q} {¬q, p}

{p} {¬p}

/0

Fig. XI.1

nodes are resolvents of their respective upper neighbors.

If every clause in K contains only literals from {p0, . . . , pn−1}∪{¬p0, . . . ,¬pn−1},
then in every resolvent at most these literals occur. From this we easily get for
such K (we leave the details to the reader): Res22n(K) = Res∞(K). Therefore, if K is
(and, hence, all Resi(K) are) finite, we get an answer to the question of whether K
is satisfiable in finitely many steps.

On the other hand, if K is infinite, it is possible that infinitely many resolvents can
be formed by passing from some Resi(K) to Resi+1(K) or that

Res0(K)⊂ Res1(K)⊂

In these cases, if K is satisfiable, we can form infinitely many resolvents without
getting an answer to the question of whether K is satisfiable or not. For instance, the
satisfiable set of clauses

{{p0}}∪{{¬pi, pi+1} | i ∈ N}
admits the resolution tree in Figure XI.2.

Even for unsatisfiable infinite K we may obtain the empty clause (and with it the
answer “K is not satisfiable”) in finitely many steps only by an appropriate choice
of resolvents. For example, Figure XI.2 also is a resolution tree for the unsatisfiable
set of clauses

{{p0},{¬p0}}∪{{¬pi, pi+1} | i ∈ N}
in which /0 does not occur.

Now we return to the special case of Horn formulas, which was, in fact, the starting
point of our considerations.

We call a clause of the form {q} or {¬q0, . . . ,¬qn,q} positive, one of the form
{¬q1, . . . ,¬qn} negative. A negative clause can be empty, a positive clause cannot.

XI.5 Propositional Resolution 231

�
��

�
��

�
��

�
��

�
��

�
��

�

�

�

{p0} {¬p0, p1}

{p1} {¬p1, p2}

{p2} {¬p2, p3}

{p3}

Fig. XI.2

Positive clauses correspond to positive Horn formulas and nonempty negative
clauses to negative Horn fomulas. For negative clauses we use the letters N,N1,

In the following we only deal with a single negative clause at a time. Because of
Theorem 5.3 this is not an essential restriction.

5.9 Definition. Let P be a set of positive clauses and let N be negative.

(a) A sequence N0, . . . ,Nk of negative clauses is a Horn- (short: H-) resolution of
P and N if there are K0, . . . ,Kk−1 ∈P so that N = N0 and Ni+1 is a resolvent
of Ki and Ni for i < k.

(b) A negative clause N ′ is called H-derivable from P and N if there is an H-
resolution N0, . . . ,Nk of P and N with N′ = Nk.

We often represent the H-resolution in (a) as in Figure XI.3 on the next page.

As motivated by our treatment of the “backwards” version of the underlining algo-
rithm, we get:

5.10 Theorem on the H-Resolution. For a set P of positive clauses and a negative
clause N the following are equivalent:

(a) P∪{N} is satisfiable.
(b) /0 is not H-derivable from P and N.

Proof. First, let b be an assignment satisfying P∪{N}. By the Resolution Lemma
5.6 we have for every H-resolution N0, . . . ,Nk of P and N:

b satisfies N0, b satisfies N1, . . . , b satisfies Nk;

therefore in particular Nk �= /0. Hence /0 is not H-derivable from P and N.

For the direction from (b) to (a) we note that the clauses in P correspond to a set Δ
of positive Horn formulas. We show:

232 XI Free Models and Logic Programming

�
��

�

�

�

�
��

�
��

�
��

�

�

�

�
��

�
��

K0 N0

K1 N1

N2

Kk−1 Nk−1

Nk

Fig. XI.3

(∗) If k ∈ N and bΔ (q1) = . . . = bΔ (qk) = T , then /0 is H-derivable from P and
{¬q1, . . . ,¬qk}.

Then we are done: In fact, if /0 is not H-derivable from P and N and if, say, N =
{¬q1, . . . ,¬qk}, then (∗) shows that there is an i with bΔ (qi) = F . So bΔ is a model
of P∪{N}.

We obtain (∗) by proving, using induction on l, that (∗) holds provided each qi
can be obtained in ≤ l steps by means of the calculus with the rules (T1) and
(T2) associated with Δ (cf. the considerations leading to Lemma 5.2): Suppose

the last step in the derivation of qi is of the form
ri1 . . .ri ji

qi
(i.e., a step accord-

ing to (T1) if ji = 0, and according to (T2) if ji > 0). In particular, the clauses
{¬ri1, . . . ,¬ri ji ,qi} belong to P. Furthermore, by definition of bΔ , bΔ (ris) = T for
i = 1, . . . ,k and s = 1, . . . , ji. By the induction hypothesis, /0 is H-derivable from P
and N′ := {¬r11, . . . ,¬r1 j1 , . . . ,¬rk1, . . . ,¬rk jk}. Let �

/0
denote such a derivation.

Then Figure XI.4 represents an H-derivation of /0 from P and {¬q1, . . . ,¬qk}. �
For an application in Section 7 we rephrase the previous theorem in a form which
is closer to the Resolution Theorem 5.8. For this purpose we modify the operation
Res so that only those resolvents are included which are of the form as permitted in
Theorem 5.10:

For a set K of clauses let

HRes(K) := K ∪{N | N is a negative clause and there are a positive K1 ∈ K and
a negative N1 ∈ K such that N is a resolvent of K1 and N1}.

XI.6 First-Order Resolution (without Unification) 233

�
��

�
��

�

�

�

�
��

�
��

�

�

�

�
��

�
��

{¬r11, . . . ,¬r1 j1 ,q1} {¬q1, . . . ,¬qk}

{¬r21, . . . ,¬r2 j2 ,q2} {¬r11, . . . ,¬r1 j1 ,¬q2, . . . ,¬qk}

{¬r11, . . . ,¬r1 j1 ,¬r21, . . . ,¬r2 j2 ,¬q3, . . . ,¬qk}

{¬r11, . . . ,¬r1 j1 , . . . ,¬rk1, . . . ,¬rk jk}

/0

Fig. XI.4

Again let HRes0(K) := K, HResi+1(K) := HRes(HResi(K)), and HRes∞(K) :=⋃
i∈N HResi(K). Then Theorem 5.10 can be phrased as follows:

5.11 Theorem. For a set P of positive clauses and a negative clause N,

P∪{N} is satisfiable iff /0 /∈ HRes∞(P∪{N}).
Proof. An easy induction on i ∈ N shows that for a negative clause N′:

N′ ∈ HResi(P∪{N}) iff there is an H-derivation of N′

from P and N of length ≤ i.

From this we get the claim immediately with Theorem 5.10. �
5.12 Exercise. For K := {{p0, p1, p2}}∪{{¬pi} | i ≥ 1} show:
(a) Res∞(K) = Res2(K);
(b) Res2(K)\Res1(K) and Res1(K)\K are finite.
(c) K is satisfiable.

XI.6 First-Order Resolution (without Unification)

To conclude this chapter, we transfer to first-order language the resolution methods
which we have introduced for propositional logic. Thereby, Herbrand’s Theorem
will play an important role. As expected, it will turn out that the corresponding al-
gorithms are more complex, since, in addition to the propositional structure, term
instantiations also have to be considered. In the present section we prove that in
principle this transfer is possible. In the next section, we learn how to carry out

234 XI Free Models and Logic Programming

the term instantiations in a goal-directed and efficient manner. We will be led to an
analogue of the propositional Horn resolution. It forms the core of the algorithm
taken by a computer which runs a program written in PROLOG. We shall not go
into refinements of the method or details of the implementation which should in-
crease efficiency; for such details see [1, 29]. Essential limitations of the method are
indicated in Exercise X.4.4.

At the end of Section 2 we mentioned that a programmer, who wants to write a
program in PROLOG for a certain type of problem, has to formalize the assumptions
as universal Horn formulas and the “queries” as existential formulas. The following
examples illustrate this approach.

First, we give a very simple example. Let the relation symbols M, F , and D be unary
and S := {M,F,D}. Let an S-structure A be given. We interpret the elements of A
as inhabitants of a town, MA and FA as the subsets of male and female inhabitants,
respectively, and finally, let DAa mean that a has a driver’s license. Then we consider
the question

(1) Are there male inhabitants which have a driver’s license?

For each a ∈ A we choose a constant ca. Then the following set Φ of atomic Horn
sentences contains the “positive” information about A:

Φ := {Mca | a ∈ MA}∪{Fca | a ∈ FA}∪{Dca | a ∈ DA}.

We show that question (1) is equivalent to

(2) Φ � ∃x(Mx∧Dx) ?

Hence, it can be written in a form which, by the introductory remarks, can be trans-
lated into a logic program (which, in case of a positive answer, should be able to list
all male inhabitants with a driver’s license).

To show the equivalence of (1) and (2) it suffices to prove

(3) A |= ∃x(Mx∧Dx) iff Φ � ∃x(Mx∧Dx).

Because of (A,(a)a∈A) |= Φ the direction from right to left holds. The definition of
Φ immediately gives

(4)
If M′A,F ′A,D′A ⊆ A, and (A,M′A,F ′A,D′A,(a)a∈A) |= Φ ,
then MA ⊆ M′A,FA ⊆ F ′A, and DA ⊆ D′A.

If we identify the term ca with a, (4) says that (A,(a)a∈A) is the minimal Herbrand
model of Φ , so, by Theorem 3.8, it is the term structure TΦ

0 of Φ . Therefore, from
(A,(a)a∈A) |= ∃x(Mx∧Dx) we get, by Theorem 3.9, that Φ � ∃x(Mx∧Dx).

An example from graph theory: In a directed graph G= (G,RG) we call two vertices
a,b ∈ G connected if there are n ∈ N and a0, . . . ,an ∈ G with

a = a0,b = an and RGaiai+1 for i < n.

We set

XI.6 First-Order Resolution (without Unification) 235

CG := {(a,b) | a and b are connected in G}.

If, say, G is the set of towns of a country and RGab means that a certain airline offers
service from a to b without stopover, then CGab holds if and only if it is possible to
fly from a to b with this airline (all stopovers lying in the home country). Let agents
of a company live in the towns a and b who can use this airline free of charge.
We show how, for instance, the questions “Is it possible for the agent living in a to
fly to b free of charge?” and “Is there a town to which both agents can get free of
charge?” can be written as logic programs. So, we are dealing with the following
two questions:

(G,RG,CG) |=Cxy[a,b] ?
(G,RG,CG) |= ∃z(Cxz∧Cyz)[a,b] ?

For each a ∈ G we introduce a constant ca and let Φ0 be the “positive” atomic
information of the structure (G,RG,(a)a∈G):

Φ0 := {Rcacb | a,b ∈ G,RGab}.

Furthermore, we set

Φ1 := Φ0 ∪{∀xCxx,∀x∀y∀z(Cxy∧Ryz →Cxz)}.

Then Φ1 is a set of universal Horn sentences. We show that the questions from above
can be phrased in the form

Φ1 �Ccacb ? and Φ1 � ∃z(Ccaz∧Ccbz) ?

i.e., in a form, in which they can (by the introductory remarks) be written as logic
programs. We set G1 := (G,RG,CG,(a)a∈G). Then we have to show

(1) G1 |=Ccacb iff Φ1 �Ccacb.

(2) G1 |= ∃z(Ccaz∧Ccbz) iff Φ1 � ∃z(Ccaz∧Ccbz).

We argue similarly to the previous example: Because of G1 |= Φ1, the left-hand
sides in (1) and (2) follow immediately from the right-hand sides. We now prove the
other directions and note first:

(3)
If R′G,C′G ⊆ G×G and (G,R′G,C′G,(a)a∈G) |= Φ1,
then RG ⊆ R′G and CG ⊆C′G.

Indeed, the definition of Φ0 immediately gives RG ⊆R′G. Furthermore, by definition
of CG, we have to show for n ∈ N and a0, . . . ,an ∈ G with RGaiai+1 for i < n that
C′Ga0an. This is easily obtained from the axioms in Φ1 by induction on n.

Now, if for a ∈ G we identify the term ca with a, then (3) together with Theorem 3.8
shows that G1 is the Herbrand structure TΦ1

0 . Therefore, by Theorem 3.9, the right-
hand sides in (1) and (2) follow from the left-hand sides.

Of course, one normally expects not only an answer to the question of whether a
and b are connected in (G,RG), but, in the positive case, also a specification of the
paths from a to b. We indicate how this can be realized.

236 XI Free Models and Logic Programming

We consider the symbol set S := {R,P, f}∪ {ca | a ∈ G}, where P is ternary and
f is binary. For a,b,d,e ∈ G with RGab, RGbd, RGda, and RGae say, the term
f f f f cacbcdcace represents in an obvious way the path from a, passing through b, d,
and a, to e. In general, let Pxyv say that v represents a path from x to y. We set

Φ2 := Φ0 ∪{∀xPxxx,∀x∀y∀u∀z(Pxyu∧Ryz → Pxz f uz)}.

The reader should verify (as above in the proof of (1) and (2)) that the following
holds for any term t ∈ T S

0 :

Φ2 � Pcacbt iff t represents a path from a to b in (G,RG).

Now we expect that, given the question “Φ2 � ∃vPcacbv ?”, a logic program pro-
vides all terms t ∈ T S

0 which represent a path from a to b.

In the examples, as in most applications of logic programming, the equality sym-
bol does not occur. Therefore, in the remainder of this chapter we restrict ourselves
to equality-free formulas without emphasizing this explicitly in each case. (Exer-
cise 6.11 shows how to make use of the results and techniques also for formulas
with equality.)

In order to transfer the propositional resolution methods to the first-order language
we make use of the connection given by Lemma 4.4 between propositional logic and
quantifier-free first-order formulas, and of Herbrand’s Theorem 1.4. First, however,
we need some more terminology.

Throughout let S be an at most countable symbol set containing a constant.

6.1 Definition.
(a) Let ϕ be a formula of the form ∀x1 . . .∀xnψ with quantifier-free ψ . Then for

arbitrary (!) pairwise distinct variables y1, . . . ,yl and for terms t1, . . . , tl , the

formula ψ(
l
y | l

t) is called an instance of ϕ . If ψ(
l
y | l

t) is a sentence we also call
it a ground instance of ϕ .

(b) Let GI(ϕ) be the set of ground instances of ϕ .
(c) For a set Φ of formulas ϕ of the form above let GI(Φ) :=

⋃
ϕ∈Φ GI(ϕ).

For a sentence ϕ := ∀x1 . . .∀xmψ with quantifier-free ψ and terms t1, . . . , tm ∈ T S
0

the formula ψ(
m
x |m

t) is a ground instance of ϕ .

We choose a bijection π0 : AS → {pi | i ∈ N} from the set of (equality-free) atomic
formulas onto the set of propositional variables. Let π be the extension of π0 to the
set of quantifier-free formulas given before 4.3.

6.2 Definition. A set Ψ of quantifier-free formulas is propositionally satisfiable if
π(Ψ) is satisfiable.

By Lemma 4.4 the following obviously holds:

6.3 Lemma. If Ψ is a set of quantifier-free formulas,then

Ψ is satisfiable iff Ψ is propositionally satisfiable. �

XI.6 First-Order Resolution (without Unification) 237

Herbrand’s Theorem in the form of Lemma 1.3 yields the following (for simplicity,
we restrict ourselves to sentences):

6.4 Theorem. For a set Φ of equality-free sentences of the form ∀x1 . . .∀xmψ with
quantifier-free ψ the following are equivalent:

(a) Φ is satisfiable.
(b) GI(Φ) is propositionally satisfiable.

Proof. We only have to notice that the ground instances of ∀x1 . . .∀xmψ can be writ-
ten in the form ψ(

m
x |m

t) with t1, . . . , tm ∈ T S
0 . �

In the situation of the previous theorem we can apply the resolution method to the
set of formulas given in (b). Note, however, that in general the set GI(∀x1 . . .∀xmψ)
of formulas is infinite. (The limitations of the resolution method for infinite sets
have been discussed at the end of the previous section.)

We give a few examples. For the sake of clarity and legibility, we work here and
in the following with clauses consisting of atomic and negated atomic first-order
formulas, and we do not pass to their images under π . In fact, Lemma 6.3 says
that we can deal with atomic formulas as we do with propositional variables. We
transfer the notation and terminology in a natural manner. So literals are now atomic
or negated atomic formulas; and for a literal ψ we have

ψF =

{
¬ψ if ψ is atomic,
ϕ if ψ = ¬ϕ.

For a clause K let
KF := {ψF | ψ ∈ K}.

6.5 Example. Let S := {R,g,c} with binary R and unary g. The satisfiability of the
sentence

∀z∀y(Rcy∧¬Rzgz)

is equivalent to the propositional satisfiability of

{Rct1 ∧¬Rt2gt2 | t1, t2 ∈ T S
0 },

i.e., to the satisfiability of the set of clauses{{Rct} | t ∈ T S
0

}∪{{¬Rtgt} | t ∈ T S
0

}
.

Thus, the resolution tree

�
��

�
��

{Rcgc} {¬Rcgc}

/0

shows that ∀z∀y(Rcy∧¬Rzgz) is not satisfiable.

238 XI Free Models and Logic Programming

6.6 Example. Let S := {Q,R,g,c} with unary Q and R, g,c as in the previous ex-
ample. The sentence

∀x∀y((Rxy∨Qx)∧¬Rxgx∧¬Qy)

is not satisfiable, since its set of clauses{{Rt1t2,Qt1} | t1, t2 ∈ T S
0

}∪{{¬Rtgt} | t ∈ T S
0

}∪{{¬Qt} | t ∈ T S
0

}
admits the resolution tree in Figure XI.5 leading to /0.

�
��

�
��

�
��

�
��

{Rcgc,Qc} {¬Rcgc}

{¬Qc} {Qc}

/0

Fig. XI.5

It is clear that we could also have chosen the ground instances corresponding to
x := ggc and y := gggc and then, in a similar way, we would have obtained the tree
in Figure XI.6.

�
��

�
��

�
��

�
��

{Rggcgggc,Qggc} {¬Rggcgggc}

{¬Qggc} {Qggc}

/0

Fig. XI.6

In complicated cases it is certainly important to use terms as simple as possible. We
consider corresponding methods and heuristics in the next section.

Theorem 6.4 refers to universal formulas in prenex normal form. However, in The-
orem VIII.4.5 we saw how to assign to an arbitrary formula a universal formula
in prenex normal form equivalent to it for satisfiability (Theorem on the Skolem
Normal Form). In this way the resolution method becomes applicable to arbitrary
(equality-free) formulas. We illustrate this by the following example.

6.7 Example. Let S := {R} with binary R. The formula

ϕ := (∃x∀yRxy∧∀z∃u¬Rzu)

XI.6 First-Order Resolution (without Unification) 239

is logically equivalent to the formula in prenex normal form

∃x∀z∃u∀y(Rxy∧¬Rzu).

Choosing a unary function symbol g and a constant c we get the {R,g,c}-sentence
(cf. the proof of Theorem VIII.4.5)

∀z∀y(Rcy∧¬Rzgz),

which is equivalent to ϕ for satisfiability, and which we found out to be unsatisfiable
using the resolution method (see Example 6.5). So ϕ is not satisfiable.

The Horn resolution for propositional logic given in the previous section can be
transferred to universal Horn formulas.

By Lemma 2.3(a), universal Horn formulas are logically equivalent to a conjunction
of formulas of the form (H1), (H2), or (H3):

(H1) ∀x1 . . .∀xmϕ
(H2) ∀x1 . . .∀xm(ϕ0 ∧ . . .∧ϕn → ϕ)
(H3) ∀x1 . . .∀xm(¬ϕ0 ∨ . . .∨¬ϕn)

with atomic ϕ and ϕi.

Horn formulas of the form (H1) or (H2) are called positive, those of the form (H3)
negative. So the positive and negative propositional Horn formulas correspond, by
virtue of π , to the quantifier-free positive and negative Horn formulas, respectively.
For a set Φ of universal Horn formulas let Φ+ and Φ− stand for the subsets of
positive and negative formulas, respectively. Since instances of positive and negative
Horn formulas are again positive and negative, respectively, we have GI(Φ+) =
(GI(Φ))+.

6.8 Lemma. Let Φ be a satisfiable set of universal Horn sentences of the form
(H1), (H2), or (H3), and let ∃x1 . . .∃xm(ψ0 ∧ . . .∧ψl) be a sentence with atomic
ψ0, . . . ,ψl .

(a) For t1, . . . , tm ∈ T S
0 ,

Φ � (ψ0 ∧ . . .∧ψl)(
m
x |m

t) iff Φ+ � (ψ0 ∧ . . .∧ψl)(
m
x |m

t).

(b) Φ � ∃x1 . . .∃xm(ψ0 ∧ . . .∧ψl) iff Φ+ � ∃x1 . . .∃xm(ψ0 ∧ . . .∧ψl).

Proof. (a): For t1, . . . , tm ∈ T S
0 we get the equivalence of the following statements:

(1) Φ � (ψ0 ∧ . . .∧ψl)(
m
x |m

t).

(2) Φ ∪{(¬ψ0 ∨ . . .∨¬ψl)(
m
x |m

t)} is not satisfiable.

(3) GI(Φ)∪{(¬ψ0 ∨ . . .∨¬ψl)(
m
x |m

t)} is not propositionally satisfiable
(cf. Theorem 6.4).

(4) GI(Φ+)∪{(¬ψ0 ∨ . . .∨¬ψl)(
m
x |m

t)} is not propositionally satisfiable.

240 XI Free Models and Logic Programming

By Theorem 6.4, since Φ is satisfiable so is GI(Φ). Hence, we get the equivalence of
(3) and (4) immediately from (GI(Φ))+ = GI(Φ+) with Theorem 5.3. If we choose
the set Φ+ for Φ and note that (Φ+)+ = Φ+, then the equivalence of (1) and (4)
shows that statement (4) is equivalent to

(5) Φ+ � (ψ0 ∧ . . .∧ψl)(
m
x |m

t).

By Theorem 3.9, (b) follows immediately from (a). �
In the following considerations we restrict ourselves to sets Φ of positive universal
Horn sentences; the previous lemma shows that this is not an essential restriction.
For this case, the Horn resolution can easily be transferred to first-order language.

6.9 Theorem. Let Φ be a set of positive universal Horn sentences. Furthermore,
let ∃x1 . . .∃xm(ψ0 ∧ . . .∧ψl) be a sentence with atomic ψ0, . . . ,ψl .

(a) For t1, . . . , tm ∈ T S
0 the following are equivalent:

(i) Φ � (ψ0 ∧ . . .∧ψl)(
m
x |m

t)
(ii) There is an H-derivation of the empty clause /0 from GI(Φ) and the for-

mula (¬ψ0∨ . . .∨¬ψl)(
m
x |mt) (more exactly: from the clauses correspond-

ing to GI(Φ) and the clause {¬ψ0(
m
x |m

t), . . . ,¬ψl(
m
x |m

t)}).

(b) The following are equivalent:

(i) Φ � ∃x1 . . .∃xm(ψ0 ∧ . . .∧ψl)
(ii) There are t1, . . . , tm ∈ T S

0 such that there exists an H-derivation of /0 from

GI(Φ) and (¬ψ0 ∨ . . .∨¬ψl)(
m
x |m

t).

Proof. (a): We argue as in the proof of Lemma 6.8 and get the equivalence of the
following statements for t1, . . . , tm ∈ T S

0 :

(1) Φ � (ψ0 ∧ . . .∧ψl)(
m
x |m

t).

(2) Φ ∪{(¬ψ0 ∨ . . .∨¬ψl)(
m
x |m

t)} is not satisfiable.

(3) GI(Φ)∪{(¬ψ0 ∨ . . .∨¬ψl)(
m
x |m

t)} is not propositionally satisfiable.
(4) There is an H-derivation of the empty clause from GI(Φ) and

(¬ψ0∨ . . .∨¬ψl)(
m
x |mt) (cf. Theorem 5.10: since Φ is a set of positive universal

Horn sentences, the clauses corresponding to the sentences from GI(Φ) are
positive).

Again, (b) follows, by Theorem 3.9, from (a). �
6.10 Example. Let S := {R,T,a,b,c,d,e} with binary relation symbols R,T and
constants a,b,c,d,e, and let

Φ := {Rab, Rcb, Rbd, Rde, ∀x∀y(Rxy → T xy), ∀x∀y(T xy∧Tyz → T xz)}.

Then Φ � ∃x(Rcx∧Rax∧T xe), since GI(Φ)∪{¬Rcb∨¬Rab∨¬T be} is not propo-
sitionally satisfiable, as is shown by the H-resolution tree in Figure XI.7.

XI.6 First-Order Resolution (without Unification) 241

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

{Rcb} {¬Rcb,¬Rab,¬T be}

{Rab} {¬Rab,¬T be}

{¬T bd,¬T de,T be} {¬T be}

{¬Rbd,T bd} {¬T bd,¬T de}

{Rbd} {¬Rbd,¬T de}

{¬Rde,T de} {¬T de}

{Rde} {¬Rde}

/0

Fig. XI.7

6.11 Exercise. This exercise shows how to extend the results of this section to for-
mulas containing the equality symbol: Suppose the binary relation symbol E does
not occur in the symbol set S. We set S′ := S∪{E}. To each S-formula ϕ we assign
the S′-formula ϕ∗, which we get from ϕ by replacing all atomic subformulas t1 ≡ t2
by Et1t2. Furthermore, let ΨE ⊆ LS′

0 be the set of the axioms for equality,

ΨE :={∀xExx,∀x∀y(Exy → Eyx),∀x∀y∀z(Exy∧Eyz → Exz)}
∪{∀x1 . . .∀xn∀y1 . . .∀yn(Ex1y1 ∧ . . .∧Exnyn ∧Rx1 . . .xn

→ Ry1 . . .yn) | R ∈ S n-ary}
∪{∀x1 . . .∀xn∀y1 . . .∀yn(Ex1y1 ∧ . . .∧Exnyn

→ E f x1 . . .xn f y1 . . .yn) | f ∈ S n-ary}.

So ΨE consists of universal Horn sentences. If the S∪ {E}-structure (A,EA) is a
model of ΨE , define the S-structure A/E , the quotient structure of (A,EA) by EA, as
follows:

242 XI Free Models and Logic Programming

A/E := {a | a ∈ A}, where a denotes the equivalence class of a mod EA;

RA/E := {(a1, . . . ,an) | a1, . . . ,an ∈ A, RAa1 . . .an};

f A/E (a1, . . . ,an) := f A(a1, . . . ,an).

Finally, for an assignment β in (A,EA) let β/E be the assignment in A/E with
β/E (x) := β (x).

Show: For every ϕ ∈ LS: ((A,EA),β) |= ϕ∗ iff (A/E ,β/E) |= ϕ .
Conclude: For Φ ∪{ϕ} ⊆ LS: Φ � ϕ iff {ψ∗ | ψ ∈ Φ}∪ΨE � ϕ∗.

XI.7 Logic Programming

Consider the situation given by the hypotheses of Theorem 6.9:

If Φ � ∃x1 . . .∃xm(ψ0 ∧ . . .∧ψl), then an algorithm, which systematically produces

all H-derivations from GI(Φ) and (¬ψ0 ∨ . . .∨¬ψl)(
m
x |m

t) for all terms t1, . . . , tm ∈
T S

0 , will finally yield an H-derivation of /0 from GI(Φ) and (¬ψ0 ∨ . . .∨¬ψl)(
m
x |m

t)

for certain terms t1, . . . , tm ∈ T S
0 . Then Φ � (ψ0 ∧ . . .∧ψl)(

m
x |m

t), i.e., we have found
a “solution” t1, . . . , tm for the existential formula.

PROLOG programs do not simply work through the terms from T S
0 in a fixed order,

independently of the problem, but they search for suitable terms in a “goal-directed”
manner, at the same time aiming at efficient substitutions as indicated after Exam-
ple 6.6. The guiding idea here is to choose the terms “as general as possible and as
special as necessary.” We begin by expressing the notion of substitution in a suitable
form.

7.1 Definition. A substitutor is a map σ : V → T S from the set V of variables to the
set of S-terms such that σ(x) = x for almost all x.

For a substitutor σ there are n ∈ N and pairwise distinct variables x1, . . . , xn with
σ(x) = x for all x �= x1, . . . ,xn. We write ti := σ(xi) for i = 1, . . . ,n. For t ∈ T S and
ϕ ∈ LS we set

tσ := t t1 . . . tn
x1 . . .xn

and ϕσ := ϕ t1 . . . tn
x1 . . .xn

(= ϕ(n
x | n

t))

(by Lemma III.8.4, tσ and ϕσ are well-defined). Accordingly, we sometimes write
t1 . . . tn
x1 . . .xn

for σ . In particular, σ(x) = xσ .

Let ι be the substitutor with ι(x) = x for all x, the so-called identity substitutor. For
substitutors σ and τ let στ : V → T S denote the substitutor with x(στ) := (xσ)τ .
For a clause K (of atomic or negated atomic formulas) let Kσ := {ϕσ | ϕ ∈ K}.
From simple properties of the substitution we immediately obtain:

XI.7 Logic Programming 243

7.2. (a) tι = t and ϕι = ϕ for all t ∈ T S and ϕ ∈ LS.
(b) t(στ) = (tσ)τ and ϕ(στ) = (ϕσ)τ for all t ∈ T S and quantifier-free ϕ ∈ LS.
(c) (ρσ)τ = ρ(στ) for substitutors ρ,σ ,τ .

(b) and (c) justify the use of parenthesis free notations such as ϕρστ .

We call a substitutor ξ a renaming if ξ is a bijective map from V onto V . If ξ is a
renaming, so is the inverse map ξ−1 : V →V , and we have ξ ξ−1 = ξ−1ξ = ι .

7.3 Definition. Let K1 and K2 be clauses. A renaming ξ is called a separator of K1
and K2 if free(K1ξ)∩ free(K2) = /0.

For example, ξ = v4v5v2v3
v2v3v4v5

is a separator of {Pv0v2,Pv3v2} and {Qv1,Pv2v3}.

The following example will serve to explain the strategy of carefully handling term
instantiations; it anticipates, in a concrete case, the general considerations, which
form the subject of the remainder of this section. Thereby it also indicates the course
we take and the goal we want to reach.

7.4 Example. Let S := {P,R, f ,g,c} with ternary P, binary R and unary f ,g and let

Φ := {∀x∀y(Pxyc → Ryg f x),∀x∀yP f xyc}
We look for a proof that Φ � ∃x∃yR f xgy, as well as for a solution (all solutions) t1
and t2 of this existential problem. To apply the method of H-resolutions from The-
orem 6.9 in a more goal-directed manner and to keep the term instantiations as
general as possible, we first represent Φ by the “unsubstituted” clauses

K1 := {¬Pxyc,Ryg f x} and K2 := {P f xyc}
and ∃x∃yR f xgy by the clause

N1 := {¬R f xgy}.
Then, we try to prepare K1 and N1 for resolution by a specialization (as weak as
possible) of the occurring terms.

For this purpose we choose a separator of K1 and N1, say ξ1 := uvxy
xyuv . Then

K′
1 := K1ξ1 = {¬Puvc,Rvg f u}.

With the substitutor σ1 := f x f u
v y we get

K′
1σ1 = {¬Pu f xc,R f xg f u} and N1σ1 = {¬R f xg f u}.

Now N2 := {¬Pu f xc} is a resolvent of K′
1σ1 and N1σ1.

For the separator ξ2 := zx
xz of K2 and N2 we have

K′
2 := K2ξ2 = {P f zyc},

and with the substitutor σ2 := f z f x
u y we get

K′
2σ2 = {P f z f xc} and N2σ2 = {¬P f z f xc},

and /0 is a resolvent of K′
2σ2 and N2σ2.

244 XI Free Models and Logic Programming

In Figure XI.8 this derivation is represented schematically.

�
��

�
��

�
��

�
��

K1 N1

K2 N2

/0

ξ1 σ1

ξ2 σ2

i.e.,

�
��

�
��

�
��

�
��

{¬Pxyc,Ryg f x} {¬R f xgy}

{P f xyc} {¬Pu f xc}

/0

u v x y
x y u v f x f u

v y

z x
x z f z f x

u y

Fig. XI.8

Now [R f xgy]σ1σ2 = R f xg f f z. Indeed we have (and the following considerations
will show this in general):

Φ � R f xg f f z
and therefore

Φ � ∀x∀zR f xg f f z.

So the existential problem ∃x∃yR f xgy has “xσ1σ2 and yσ1σ2”, i.e., “x and f f z” as
a “family of solutions.” In particular, x = gc and y = f f c (for x = gc and z = c) is a
solution in T S

0 .

By the substitutor σ1, the formulas Rvg f u in K′
1 and ¬R f xgy in N1 were made equal

(except for ¬) “in the most efficient manner.” In the sense of the following consid-
erations, σ1 can be called a general unifier of {Rvg f u,R f xgy} (cf. Example 7.7(a)).

7.5 Definition. Let K be a clause. K is called unifiable :iff there is a substitu-
tor σ for which Kσ has a single element. In this case σ is called a unifier of K.

So the empty clause is not unifiable.

7.6 Lemma on the Unifier. The following algorithm, the so-called unification al-
gorithm, decides for every clause K whether it is unifiable and, in the positive case,
yields a general unifier of K, i.e., a unifier η of K for which the following holds:

If σ is a unifier of K, then there is a substitutor τ with σ = ητ .

We call the general unifier produced as output of the algorithm the general unifier
of K.

Starting with (UA1), the unification algorithm is carried out step by step.

(UA1) If K is empty or K contains atomic as well as negated atomic formulas or
if the formulas in K do not all contain the same relation symbol, then stop
with the answer “K is not unifiable.”

(UA2) Set i := 0 and σ0 := ι .
(UA3) If Kσi contains a single element, stop with the answer “K is unifiable and

σi is a general unifier.”

XI.7 Logic Programming 245

(UA4) If Kσi contains more than one element, let ψ1 and ψ2 be two distinct literals
in Kσi (say the first two with respect to a fixed order, e.g., the lexicographic
order). Determine the first place where the words ψ1 and ψ2 differ. Let §1
and §2 be the letters at this place in ψ1 and ψ2, respectively.

(UA5) If the (different) letters §1 and §2 are function symbols or constants, stop
with the answer “K is not unifiable.”

(UA6) One of the letters §1,§2 is a variable x, say §1. Determine the term t which
starts with §2 in ψ2 (t can be a variable; by Exercise II.4.9 t exists and is
uniquely determined).

(UA7) If x occurs in t, stop with the answer “K is not unifiable.”
(UA8) Set σi+1 := σi

t
x and i := i+1.

(UA9) Go to (UA3).

Proof. We have to show that the unification algorithm stops for every clause K and
gives the right answer to the question “Is K unifiable?”, and, in the positive case,
yields a general unifier.

If the algorithm stops at (UA1), then obviously K is not unifiable. Therefore we
may assume that K is a nonempty clause whose literals are all atomic or all negated
atomic formulas that, moreover, contain the same relation symbol.

The algorithm will stop for K after finitely many steps: Since applying (UA8) causes
the variable x to disappear (x does not occur in t!), the only possible loop from (UA3)
to (UA9) can be passed through only as often as there are different variables in K.

If the algorithm stops at (UA3), K is unifiable. Therefore, if K is not unifiable, it
can stop only after (UA5) or (UA7). Thus the algorithm yields the right answer in
case K is not unifiable.

Now let K be unifiable. We will show:

(∗)
If τ is a unifier of K, then for every value i reached by the algorithm
there is τi with σiτi = τ .

Then we are done: If k is the last value of i, then the clause Kσk is unifiable since
Kσkτk = Kτ; so the algorithm cannot end with (UA5) or (UA7). (If it would end,
e.g., with (UA7), there would be two different literals in Kσk of the form . . .x ∼ and
. . . t −− where t �= x and x occurs in t; after any substitutions are carried out, there
would always be terms of different length starting at the places corresponding to x
and t respectively, and hence K would not be unifiable.) Therefore the algorithm
must end with (UA3), i.e., σk is a unifier and by (∗) a general unifier of K.

We prove (∗) by induction on i.

For i = 0 we set τ0 := τ . Then σ0τ0 = ιτ0 = τ . In the induction step let σiτi = τ and
suppose the value i+1 has been reached. By (UA8) we have σi+1 = σi

t
x . Next, we

observe (Kσiτi has a single element!):

(1) xτi = tτi.

We define τi+1 by

246 XI Free Models and Logic Programming

yτi+1 :=

{
yτi if y �= x,
x if y = x.

Since x does not occur in t, we have

(2) tτi+1 = tτi.

Now t
xτi+1 = τi; namely, if y �= x, then y(t

xτi+1) = yτi+1 = yτi, and if y = x, we
have y(t

xτi+1) = tτi+1 = tτi = xτi = yτi (cf. (1) and (2)).

Altogether:

σi+1τi+1 = (σi
t
x)τi+1 = σi(

t
xτi+1) = σiτi = τ

and we have finished the induction step. �
7.7 Examples. Let S be as in Example 7.4.

(a) Let K := {Rvg f u,R f xgy}. The unification algorithm yields successively σ0 = ι ,

σ1 =
f x
v , σ2 = f x f u

v y and the answer: “K is unifiable and f x f u
v y is a general

unifier.”

(b) Let K := {P f zyc,Pu f xc}. The algorithm yields σ0 = ι , σ1 =
f z
u , σ2 = f z f x

u y

and the answer: “K is unifiable and f z f x
u y is a general unifier.”

(c) Let K := {Ry f y,Rzz}. We get σ0 = ι , σ1 =
z
y (or σ1 =

y
z) and the answer: “K is

not unifiable.”

The crux of the resolution in Example 7.4 is expressed in the following notion:

7.8 Definition. Let K,K1, and K2 be clauses. K is a unification resolvent (written:
U-resolvent) of K1 and K2 if there is a separator ξ of K1 and K2, and there are
M1,L1 ⊆ K1 and M2,L2 ⊆ K2 with the following properties:

(i) L1 and L2 are not empty.
(ii) L1ξ ∪LF

2 is unifiable.
(iii) K1 = M1∪L1, K2 = M2∪L2, and K = (M1ξ ∪M2)η , where η is the general

unifier of L1ξ ∪LF
2 .

Schematically, we represent this “U-resolution” by

�
��

�
��

K1 K2

K

ξ η

Since substitutions do not change anything in ground clauses (i.e., in variable free
clauses) and since a unifiable ground clause has only one element (with ι as general
unifier), we see immediately:

XI.7 Logic Programming 247

7.9 Remark. For ground clauses K,K1, and K2 the following holds: K is a resolvent
of K1 and K2 iff K is a U-resolvent of K1 and K2. �
In Example 7.4 we had K1 = {¬Pxyc,Ryg f x} and N1 = {¬R f xgy}. Let ξ1 be the
separator uvxy

xyuv of K1 and N1 chosen there; hence K1ξ1 = {¬Puvc,Rvg f u}. Then
for L1 := {Ryg f x} and L2 := {¬R f xgy} the clause L1ξ1 ∪LF

2 (= {Rvg f u,R f xgy})

is unifiable, and σ1 = f x f u
v y is its general unifier. Thus N2 = {¬Pu f xc} is a U-

resolvent of K1 and N1.

With the following lemma we establish the connection between resolvents and U-
resolvents. It gives us the key to Theorem 7.14 on the U-resolution.

7.10 Compatibility Lemma. Let K1 and K2 be clauses. Then:
(a) Every resolvent of a ground instance of K1 and a ground instance of K2 is a

ground instance of a U-resolvent of K1 and K2.
(b) Every ground instance of a U-resolvent of K1 and K2 is a resolvent of a ground

instance of K1 and a ground instance of K2.

Proof. (a) Let Kiσi be a ground instance of Ki (i = 1,2) and K a resolvent of K1σ1
and K2σ2, i.e., for suitable M1,M2 and ϕ0,

K1σ1 = M1 ∪{ϕ0}, K2σ2 = M2 ∪{ϕF
0 }, K = M1 ∪M2.

We set

M′
i := {ϕ ∈ Ki | ϕσi ∈ Mi} (i = 1,2),

L1 := {ϕ ∈ K1 | ϕσ1 = ϕ0}, L2 := {ϕ ∈ K2 | ϕσ2 = ϕF
0 }.

Then we have

(∗)
Ki = M′

i ∪Li (i = 1,2),
M′

i σi = Mi (i = 1,2),
L1σ1 = LF

2 σ2 = {ϕ0}.
Let ξ be a separator of K1 and K2 and σ the substitutor with

xσ :=

{
xξ−1σ1 if x ∈ free(K1ξ),
xσ2 otherwise.

As free(K1ξ)∩ free(K2) = /0 , we obtain

(+) ϕσ = ϕσ2 for ϕ ∈ K2.

Therefore,

(L1ξ ∪LF
2)σ = L1ξ ξ−1σ1 ∪LF

2 σ = L1σ1 ∪LF
2 σ2 = {ϕ0},

hence σ is a unifier of L1ξ ∪ LF
2 . Let η be the general unifier and σ = ητ . Then

K∗ := (M′
1ξ ∪M′

2)η is a U-resolvent of K1 and K2. Finally, K is a ground instance
of K∗; namely K∗τ = (M′

1ξ ∪M2
′)σ = M′

1σ1 ∪M′
2σ2 = M1 ∪M2 = K.

248 XI Free Models and Logic Programming

Thus we proved (a). For future purposes we note the following strengthening: Since,
for a given finite set Y of variables, we can choose the separator ξ of K1 and K2 such
that free(K1ξ)∩Y = /0, we have shown:

(∗∗)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

If K1 and K2 are clauses and K1σ1 and K2σ2 ground instances of
K1 and K2 respectively, and if

�
��

�
��

K1σ1 K2σ2

K

is a resolution, then for every finite set Y of variables there are
K∗, ξ ,η , and τ so that

�
��

�
��

K1 K2

K∗

ξ η

is a U-resolution and K = K∗τ as well as yητ = (yσ =)yσ2 for
y ∈ Y .

(b) Let K be a U-resolvent of K1 and K2, say K = (M1ξ ∪M2)η , Ki = Mi ∪ Li

(i = 1,2) and (L1ξ ∪LF
2)η = {ϕ0}, where ξ is a separator of K1 and K2, and η the

general unifier of L1ξ ∪LF
2 .

Furthermore, let Kσ be a ground instance of K. We set

σ1 := ξ ησ and σ2 := ησ .

We can assume that K1σ1 and K2σ2 are ground clauses (otherwise replace σ by στ
where τ(x) ∈ T S

0 for x ∈ free(K1σ1 ∪K2σ2), and note that Kστ = Kσ , since Kσ is
a ground instance). Hence the claim follows from

Kσ is a resolvent of K1σ1 and K2σ2.

In fact, we only have to note that

K1σ1 = M1σ1 ∪L1σ1 = M1σ1 ∪{ϕ0σ},
K2σ2 = M2σ2 ∪L2σ2 = M2σ2 ∪{ϕF

0 σ},
and

M1σ1 ∪M2σ2 = (M1ξ ∪M2)ησ = Kσ . �
As for the resolution, we now introduce the sets UResi(K) of clauses which can be
obtained from clauses in K by forming U-resolvents i times.

XI.7 Logic Programming 249

7.11 Definition. For a set K of clauses let

URes(K) := K∪{K | there are K1,K2 ∈ K such that
K is a U-resolvent of K1 and K2}.

For i ∈ N let UResi(K) be defined inductively by

URes0(K) := K

UResi+1(K) := URes(UResi(K)).
Finally,

URes∞(K) :=
⋃

i∈N UResi(K).

First, we want to establish a relationship between the operations URes and Res. For
this purpose we extend the notion of ground instance: For a clause K = {ϕ1, . . . ,ϕl}
with free(ϕi)⊆ {x1, . . . ,xm} for 1 ≤ i ≤ l let

GI(K) :=
{
{ϕ1(

m
x |m

t), . . . ,ϕl(
m
x |m

t)} | t1, . . . , tm ∈ T S
0

}
be the set of ground instances of K, and for a set K of clauses let

GI(K) :=
⋃

K∈K GI(K).

Since, by the Compatibility Lemma 7.10, the operations of forming ground in-
stances and forming U-resolvents can be interchanged, we obtain:

7.12 Lemma. For a set K of clauses the following holds:

(a) For all i ∈ N : Resi(GI(K)) = GI(UResi(K)).
(b) Res∞(GI(K)) = GI(URes∞(K)).

Proof. (b) follows immediately from (a). We show (a) by induction on i. For i = 0
we have

Res0(GI(K)) = GI(K) = GI(URes0(K)).

In the induction step we conclude as follows:

Resi+1(GI(K)) = Res(Resi(GI(K)))
= Res(GI(UResi(K))) (by induction hypothesis)
= GI(URes(UResi(K))) (by Compatibility Lemma 7.10)
= GI(UResi+1(K)). �

Since
(

/0 ∈ GI(URes∞(K)) iff /0 ∈ URes∞(K)
)
, we get from Lemma 7.12:

7.13 Main Lemma on the U-Resolution. For a set K of clauses we have:

/0 ∈ Res∞(GI(K)) iff /0 ∈ URes∞(K). �
We translate the result to sets of universal sentences. For a universal sentence ϕ of
the form

∀x1 . . .∀xm
(
(ϕ00 ∨ . . .∨ϕ0l0)∧ . . .∧ (ϕs0 ∨ . . .∨ϕsls)

)
with literals ϕi j let

250 XI Free Models and Logic Programming

K(ϕ) :=
{{ϕ00, . . . ,ϕ0l0}, . . . ,{ϕs0, . . . ,ϕsls}

}
be the set of “unsubstituted” clauses belonging to ϕ , and for a set Φ of such sen-
tences let K(Φ) be the set of clauses

⋃
ϕ∈Φ K(ϕ). Note that

(∗) GI(K(Φ)) = K(GI(Φ)).

We show:

7.14 Theorem on the U-Resolution. For a set Φ of universal sentences of the form
∀x1 . . .∀xmϕ with quantifier-free ϕ in CNF the following holds:

Φ is satisfiable iff /0 /∈ URes∞(K(Φ)).

Proof. Φ is satisfiable
iff GI(Φ) is propositionally satisfiable (by Theorem 6.4)
iff K(GI(Φ)) is satisfiable (see Definion 5.4)
iff GI(K(Φ)) is satisfiable (by (∗))
iff /0 /∈ Res∞(GI(K(Φ))) (by Resolution Theorem 5.8)
iff /0 /∈ URes∞(K(Φ)) (by Lemma 7.13). �

To illustrate Theorem 7.14, we once again consider Example 6.6: We show the un-
satisfiability of the formula

ϕ := ∀x∀y((Rxy∨Qx)∧¬Rxgx∧¬Qy)

using the U-resolution. Compare also with the resolution tree in Example 6.6.

First we proceed from ϕ to the set of clauses

K(ϕ) = {{Rxy,Qx},{¬Rxgx},{¬Qy}}.
Then the U-resolution tree in Figure XI.9 shows the unsatisfiability of ϕ .

�
��

�
��

�
��

�
��

{Rxy,Qx} {¬Rxgx}

{¬Qy} {Qx}

/0

z x
x z x gx

z y

ι y
x

Fig. XI.9

We reach the core of logic programming by combining the Horn-resolution with the
unification algorithm. First, we transfer Definition 5.9 of H-derivability:

XI.7 Logic Programming 251

7.15 Definition. Let P be a set of positive (first-order) clauses and let N be a nega-
tive clause.

(a) A sequence N0, . . . ,Nk of negative clauses is a UH-resolution from P and N if
there are K0, . . . ,Kk−1 ∈ P such that N0 = N and Ni+1 is a U-resolvent of Ki
and Ni for i < k.

(b) A negative clause N′ is said to be UH-derivable from P and N if there is a
UH-Resolution N0, . . . ,Nk from P and N with N′ = Nk.

(c) For a set K of clauses let

UHRes(K) := K ∪ {N | N is a negative clause, and there is a positive K1 ∈ K

and a negative N1 ∈ K such that N is a U-resolvent of K1 and N1}.

Furthermore, set

UHRes0(K) := K,

UHResi+1(K) := UHRes(UHResi(K)) and
UHRes∞(K) :=

⋃
i∈N UHResi(K).

7.16 Main Lemma on the UH-Resolution. For a set P of positive clauses and a
negative clause N the following holds:

/0 ∈ HRes∞(GI(P∪{N})) iff /0 ∈ UHRes∞(P∪{N})

Proof. With the Compatibility Lemma 7.10 one shows HRes∞(GI(P∪ {N})) =
GI(UHRes∞(P∪{N})). From this the claim follows immediately. �
Similarly to 7.14, we now obtain:

7.17 Theorem on the UH-Resolution. Let Φ be a set of positive universal Horn
sentences and ϕ a negative universal Horn sentence. Then:

Φ ∪{ϕ}is satisfiable iff /0 is not UH-derivable from K(Φ) and K(ϕ).

Proof. Note first that GI(K(Φ)) consists of positive and GI(K(ϕ)) of negative
clauses. The following statements are equivalent:

(1) Φ ∪{ϕ} is satisfiable.
(2) GI(K(Φ)∪K(ϕ)) = GI(K(Φ))∪GI(K(ϕ)) is propositionally satisfiable.
(3) /0 /∈ HRes∞(GI(K(Φ))∪GI(K(ϕ))).
(4) /0 /∈ UHRes∞(K(Φ)∪K(ϕ)).
(5) /0 is not UH-derivable from K(Φ) and K(ϕ).

To verify these equivalences, we give the following remarks: The equivalence of (1)
and (2) corresponds to the equivalence of the first and fourth statement in the proof
of Theorem 7.14; from (3) to (2) we get with Theorem 5.11 by using Theorem 5.3,
from (2) to (3) with the Resolution Theorem 5.8, since HRes∞(. . .) ⊆ Res∞(. . .).
The equivalence of (3) and (4) follows with Lemma 7.16, the one of (4) and (5) by
Definition 7.15. �

252 XI Free Models and Logic Programming

For illustration we consider a previous example, namely Example 7.4. Let

Φ := {∀x∀y(Pxyc → Ryg f x),∀x∀yP f xyc}.

To show that

(∗) Φ � ∃x∃yR f xgy,

i.e., that Φ ∪ {∀x∀y¬R f xgy} is unsatisfiable, it suffices to prove that there is a
UH-derivation of /0 from {{¬Pxyc,Ryg f x},{P f xyc}} and {¬R f xgy} (cf. Theo-
rem 7.17). Indeed, the resolution tree in Figure XI.8 on page 244 represents such
a UH-derivation. In Example 7.4 we also mentioned that this derivation yields a so-
lution for the existential proposition (∗). Our last aim is to show this in general and,
at the same time, prove that we get all solutions of the existential problem in this
way. Thus we will have reached our goal.

7.18 Theorem on Logic Programming. Let Φ be a set of positive universal Horn
sentences of the form

(1) ∀y1 . . .∀ylϕ or (2) ∀y1 . . .∀yl(ϕ0 ∧ . . .∧ϕs → ϕ)

with atomic ϕ,ϕ0, . . . ,ϕs, and let ∃x1 . . .∃xm(ψ0 ∧ . . . ∧ ψr) be a sentence with
atomic ψ0, . . . ,ψr. Finally, set

N := {¬ψ0, . . . ,¬ψr} and P := K(Φ)

(hence P contains the clause {ϕ} for sentences in Φ of the form (1) and the clause
{¬ϕ0, . . . ,¬ϕs,ϕ} for sentences of the form (2)). Then the following holds:

(a) Adequacy: Φ � ∃x1 . . .∃xm(ψ0∧ . . .∧ψr) iff /0 is UH-derivable from P and N.
(b) Correctness: If

�
��

�

�

�

�
��

�
��

�
��

�
��

�
��

K1 N1 = N

K2 N2

N3

Kk Nk

/0

ξ1 η1

ξ2 η2

ξk ηk

Fig. XI.10

XI.7 Logic Programming 253

is a UH-derivation of /0 from P and N then

Φ � (ψ0 ∧ . . .∧ψr)η1 . . .ηk.

(c) Completeness: If for t1, . . . , tm ∈ T S
0

Φ � (ψ0 ∧ . . .∧ψr)(
m
x |m

t),

then there is a UH-derivation of /0 from P and N of the form given in (b) and a
substitutor τ with

ti = xiη1 . . .ηkτ for i = 1, . . . ,m.

If in part (b) exactly the variables z1, . . . ,zs occur in (ψ0 ∧ . . .∧ψr)η1 . . .ηk, then
Φ � ∀z1 . . .∀zs[(ψ0 ∧ . . .∧ψr)η1 . . .ηk]; therefore Φ � (ψ0 ∧ . . .∧ψr)η1 . . .ηkτ for
every substitutor τ . Thus (b) and (c) show that the variable-free terms t1, . . . , tm with
Φ � (ψ0 ∧ . . .∧ψr)(

m
x |m

t), i.e., the solutions of the existential problem, are exactly
the “specializations” of the “families of solutions” x1η1 . . .ηk, . . . , xmη1 . . .ηk given
by the UH-derivations.

Proof. (a): This part follows immediately from Theorem 7.17 as

Φ � ∃x1 . . .∃xm(ψ0 ∧ . . .∧ψr) iff not Sat Φ ∪{∀x1 . . .∀xm(¬ψ0 ∨ . . .∨¬ψr).

(b): The proof is by induction on the length k of the derivation. For k = 1 we have

�
��

�
��

K1 N1 = N

/0

ξ1 η1

Therefore, K1ξ1η1 = NF η1, so there must be a sentence ∀y1 . . .∀ylϕ ∈ Φ such that
K1 = {ϕ} and ϕξ1η1 = ψiη1 for i = 0, . . . ,r. Since Φ � ∀y1 . . .∀ylϕ we have Φ �
ϕξ1η1 and hence Φ � ψiη1 for i = 0, . . . ,r, i.e., Φ � (ψ0 ∧ . . .∧ψr)η1.

For the induction step let k > 1 and, say, N2 = {¬χ0, . . . ,¬χt} (N2 is not empty!).
The induction hypothesis, applied to the derivation starting with K2 and N2, gives

(1) Φ � (χ0 ∧ . . .∧χt)η2 . . .ηk.

Let i ≤ r. We show

(∗) Φ � ψiη1 . . .ηk,

thus getting our claim Φ � (ψ0 ∧ . . .∧ψr)η1 . . .ηk. We distinguish two cases:

If ¬ψiη1 ∈ N2, we get (∗) immediately from (1).

Now suppose ¬ψiη1 /∈N2. Then we have to “lose” ¬ψiη1 in the resolution step lead-
ing to N2. So in Φ there is a sentence ∀y1 . . .∀yl(ϕ1∧ . . .∧ϕs → ϕ) (i.e., ∀y1 . . .∀ylϕ
in case s = 0) with K1 = {¬ϕ1, . . . ,¬ϕs,ϕ} and

(2) ϕξ1η1 = ψiη1,

254 XI Free Models and Logic Programming

(3) ¬ϕ jξ1η1 ∈ N2 for 1 ≤ j ≤ s.

Therefore by (3) and (1):

(4) Φ � ϕ jξ1η1η2 . . .ηk for 1 ≤ j ≤ s.

Since Φ � ∀y1 . . .∀yl(ϕ1 ∧ . . .∧ϕs → ϕ) we get

Φ � (¬ϕ1 ∨ . . .∨¬ϕs ∨ϕ)ξ1η1η2 . . .ηk,

thus by (4)

Φ � ϕξ1η1η2 . . .ηk.

With (2) this leads to (∗).

(c): For technical reasons we make a slightly weaker assumption on the terms:

For t1, . . . , tm ∈ T S set ρ1 := t1 . . . tm
x1 . . .xm

and N1 := N = {¬ψ0, . . . ,¬ψr}; suppose that
Φ � (ψ0 ∧ . . .∧ψr)ρ1 and that N′

1 := N1ρ1 is a ground clause.

Then, by Theorem 6.4, K(GI(Φ))∪{N1ρ1} is not propositionally satisfiable. So by
Theorem 5.10 there is an H-derivation of /0 from K(GI(Φ)) and N′

1 as shown in
Figure XI.11.

�
��

�

�

�

�
��

�
��

�
��

�
��

�
��

K′
1 N′

1 = N1ρ1

K′
2 N′

2

N′
3

K′
k N′

k

/0

Fig. XI.11

Here the K′
j and the N′

j are ground clauses and, say, K′
j = Kjσ j with suitable clauses

Kj ∈ P = K(Φ). We show: For every finite set X of variables there is a UH-
derivation as in Figure XI.12 of /0 from P and N = N1 such that there exists a
substitutor τ with

xη1 . . .ηkτ = xρ1 for x ∈ X .

XI.7 Logic Programming 255

�
��

�

�

�

�
��

�
��

�
��

�
��

�
��

K1 N1

K2 N2

N3

Kk Nk

/0

ξ1
η1

ξ2
η2

ξk
ηk

Fig. XI.12

Then, for X := {x1, . . . ,xm} we get

xiη1 . . .ηkτ = ti (1 ≤ i ≤ m),

and we are done.

We show the existence of a corresponding UH-derivation by induction on the length
of k.

For k = 1 we have the derivation

�
��

�
��

K′
1 N′

1 = N1ρ1

/0

The claim follows immediately from (∗∗) in the proof of Compatibility Lemma 7.10
by setting

K2 := N1, σ2 := ρ1, K := /0, and Y := X .

In the induction step let k ≥ 2. For the first step of the H-derivation in Figure XI.11
we choose, again with (∗∗) in Compatibility Lemma 7.10, ξ1,η1,N2, and ρ2 so that

�
��

�
��

K1 N1

N2

ξ1 η1

and

(∗) xη1ρ2 = xρ1 for x ∈ X

256 XI Free Models and Logic Programming

as well as N′
2 = N2ρ2. We apply the induction hypothesis to the part of the H-

derivation in Figure XI.11 starting with K′
2 and N′

2 and to

Y := var({xη1 | x ∈ X}).
Then we get the UH-derivation in Figure XI.13 and a substitutor τ for which

�
��

�
��

�

�

�

�
��

�
��

K2 N2

N3

Kk Nk

/0

ξ2 η2

ξk ηk

Fig. XI.13

yη2 . . .ηkτ = yρ2 for y ∈ Y ,

hence by (∗) and the definition of Y ,

xη1η2 . . .ηkτ = xη1ρ2 = xρ1 for x ∈ X .

Thus, everything is proved. �

Chapter XII
An Algebraic Characterization of Elementary
Equivalence

The greater part of our exposition so far has been devoted to the development and
investigation of first-order logic. We can justify the dominant role assumed by first-
order logic in several ways:

(a) First-order logic is in principle sufficient for mathematics.

(b) The intuitive concept of proof and the consequence relation can be adequately
described by a formal notion of proof, which is given by means of a calculus.

(c) A number of semantic results such as the Compactness Theorem and the Löwen-
heim–Skolem Theorem leads to an enrichment of mathematical methods.

However, in contrast to these positive aspects, one also has to take into account that
the limited expressive power of first-order logic often requires clumsy formulations.
In particular, it forces us to make explicit reference to set theory to an extent not
usual in mathematical practice. For this reason we were led to seek other systems
with greater expressive power but still satisfying conditions (b) and (c).

In Chapter IX we introduced a number of extensions of first-order logic (LII, L w
II ,

Lω1ω , LQ) and investigated their semantic properties. In each case we found that
not all the properties mentioned in (c) are available.

In Chapter X we obtained negative results of a more syntactic nature. For example,
we saw that for LII and for L w

II there is no possibility of adequately describing the
notion of proof by means of a calculus, nor even the possibility of listing the valid
formulas; hence in these cases we also have to make concessions concerning (b).

In the next chapter, the last one of the present book, we will show that these negative
results have a deeper reason: Having made precise the concept of a “logical system”
we shall prove in Chapter XIII that no logical system with more expressive power
than first-order logic can meet the conditions of (b) and (c).

In the present chapter we introduce a useful tool for these investigations. Recall
that two structures are elementarily equivalent if they satisfy the same first-order
sentences. We now present a purely algebraic characterization of elementary equiv-

257© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

https://doi.org/10.1007/978-3-030-73839-6_12
H.-D. Ebbinghaus et al., Mathematical Logic, Graduate Texts in Mathematics 291,

http://crossmark.crossref.org/dialog/?10.1007/978-3-030-73839-6_12&domain=pdf

258 XII An Algebraic Characterization of Elementary Equivalence

alence. This characterization is useful not only for our present purpose, but also in
other contexts. For example, it can serve to verify that two given structures A and
B are elementarily equivalent, in a simpler way than by proving directly that A and
B satisfy the same first-order sentences. This establishes one of the most important
methods to prove the completeness of theories. At the same time, one obtains a tool
to show that certain properties are not expressible in first-order logic.

XII.1 Finite and Partial Isomorphisms

In this section we provide the concepts we need in order to formulate the algebraic
characterization of elementary equivalence. We refer to a fixed symbol set S. The
domain of a map p is denoted by dom(p); its range, i.e., the set {p(x) | x∈ dom(p)},
by rg(p).

1.1 Definition. Let A and B be S-structures and let p be a map. We call p a partial
isomorphism from A to B if and only if dom(p) ⊆ A, rg(p) ⊆ B, and p has the
following properties:

(a) p is injective.
(b) p is homomorphic in the following sense:

– For n-ary P ∈ S and a1, . . . ,an ∈ dom(p),

PAa1 . . .an iff PBp(a1) . . . p(an).

– For n-ary f ∈ S and a1, . . . ,an,a ∈ dom(p),

fA(a1, . . . ,an) = a iff fB(p(a1), . . . , p(an)) = p(a).

– For c ∈ S and a ∈ dom(p),

cA = a iff cB = p(a).

We write Part(A,B) for the set of partial isomorphisms from A to B.

1.2 Examples and Remarks. (a) The empty map, i.e., the map with empty domain,
is a partial isomorphism from A to B.

(b) The map p with dom(p)= {2,3} and p(2)= 2, p(3)= 6 is a partial isomorphism
from the additive group (R,+,0) of real numbers to the additive group (Z,+,0) of
integers. However, the map q with dom(q) = {2,3} and q(2) = 1, q(3) = 2 is not a
partial isomorphism from (R,+,0) to (Z,+,0), because, for example, 2+2 �= 3 but
q(2)+q(2) = q(3).

(c) If S is relational, i.e., if S contains only relation symbols, then for a0, . . . ,ar−1 ∈A
and b0, . . . ,br−1 ∈ B the following statements are equivalent:

(∗) By setting

p(ai) := bi for i < r

XII.1 Finite and Partial Isomorphisms 259

a partial isomorphism from A to B is determined
(where dom(p) = {a0, . . . ,ar−1} and rg(p) = {b0, . . . ,br−1}).

(∗∗) For every atomic formula ψ ∈ LS
r ,

A |= ψ[a0, . . . ,ar−1] iff B |= ψ[b0, . . . ,br−1].

Proof. First we note that for i, j < r

(1)
ai = a j iff A |= vi ≡ v j[a0, . . . ,ar−1],
bi = b j iff B |= vi ≡ v j[b0, . . . ,br−1],

and that for n-ary P ∈ S and i1, . . . , in < r

(2)
PAai1 . . .ain iff A |= Pvi1 . . .vin [a0, . . . ,ar−1],
PBbi1 . . .bin iff B |= Pvi1 . . .vin [b0, . . . ,br−1].

Now, if (∗∗) holds, then by (1) and the fact that

A |= vi ≡ v j[a0, . . . ,ar−1] iff B |= vi ≡ v j[b0, . . . ,br−1],

the mapping p is well-defined and injective. Since

A |= Pvi1 . . .vin [a0, . . . ,ar−1] iff B |= Pvi1 . . .vin [b0, . . . ,br−1]

and by (2), p is also homomorphic.

Similarly, one can use (1) and (2) to deduce (∗∗) from (∗). �
(d) Note that the equivalence in (c) may no longer be true if S contains function
symbols or constants. For example, for the partial isomorphism p in (b),

not (R,+,0) |= v0 +(v0 + v0)≡ v1[2,3],

but on the other hand,

(Z,+,0) |= v0 +(v0 + v0)≡ v1[p(2), p(3)].

(e) The following example shows that even for relational S a partial isomorphism
does not in general preserve the validity of formulas with quantifiers.

Let S = {<} and let q0 be the partial isomorphism from (R,<) to (Z,<) such that
dom(q0) = {2,3} and q0(2) = 3, q0(3) = 4. Then

(R,<) |= ∃v2(v0 < v2 ∧ v2 < v1)[2,3],

but

not (Z,<) |= ∃v2(v0 < v2 ∧ v2 < v1)[q0(2),q0(3)].

If p is a partial isomorphism from (R,<) to (Z,<) such that dom(p) = {a,b} and
a < b, then we always have

(R,<) |= ∃v2(v0 < v2 ∧ v2 < v1)[a,b],

since, for example,

(R,<) |= (v0 < v2 ∧ v2 < v1)[a,b, a+b
2].

260 XII An Algebraic Characterization of Elementary Equivalence

In this case the validity of

(+) (Z,<) |= ∃v2(v0 < v2 ∧ v2 < v1)[p0(a), p0(b)]

is equivalent to the existence of a partial isomorphism q from (R,<) to (Z,<) which
extends p and has a+b

2 in its domain. For, if such a q exists, then (+) holds, since

(Z,<) |= (v0 < v2 ∧ v2 < v1)[q(a),q(b),q(a+b
2)].

Conversely, if (+) is satisfied and, say,

(Z,<) |= (v0 < v2 ∧ v2 < v1)[p(a), p(b),d],

then the extension q of p with dom(q) = {a,b, a+b
2 } and q(a+b

2) = d is such a partial
isomorphism.

This argument indicates that the truth of formulas with quantifiers is preserved un-
der partial isomorphisms, provided these admit certain extensions. It embodies the
basic idea behind the algebraic characterization of elementary equivalence: The ele-
mentary equivalence of structures amounts to the existence of extensions of certain
partial isomorphisms.

In the following definitions we introduce the algebraic notions we need. For maps
we use the set-theoretical notation, i.e., we identify a map p with its graph {(a, p(a))|
a ∈ dom(p)}. Then, for example, p ⊆ q means that q is an extension of p.

1.3 Definition. A and B are said to be finitely isomorphic (written: A∼= f B) if there
is a sequence (In)n∈N with the following properties:

(a) Every In is a nonempty set of partial isomorphisms from A to B.
(b) (Forth-property) For every p ∈ In+1 and a ∈ A there is q ∈ In such that q ⊇ p

and a ∈ dom(q).
(c) (Back-property) For every p ∈ In+1 and b ∈ B there is q ∈ In such that q ⊇ p

and b ∈ rg(q).

Informally we can express (b) and (c) as follows: partial isomorphisms in In+1 can
be extended (n+1) times; the corresponding extensions lie in In, In−1, . . . , I1, and I0,
respectively.

If (In)n∈N has the properties (a), (b), and (c), we write (In)n∈N : A∼= f B.

1.4 Definition. A and B are said to be partially isomorphic (written: A ∼=p B) if
there is a set I such that

(a) I is a nonempty set of partial isomorphisms from A to B.
(b) (Forth-property) For every p ∈ I and a ∈ A there is q ∈ I such that q ⊇ p and

a ∈ dom(q).
(c) (Back-property) For every p ∈ I and b ∈ B there is q ∈ I such that q ⊇ p and

b ∈ rg(q).

Thus, the conditions (a), (b), and (c) amount to (I)n∈N : A ∼= f B for the constant
sequence (I)n∈N.

XII.1 Finite and Partial Isomorphisms 261

If (a), (b), and (c) are satisfied for I, we write I : A∼=p B.

The following lemma lists the relations between the various notions of isomorphism.

1.5 Lemma. (a) If A∼=B, then A∼=p B.
(b) If A∼=p B, then A∼= f B.
(c) If A∼= f B and A is finite, then A∼=B.
(d) If A∼=p B and A and B are at most countable, then A∼=B.

Proof. (a) If π : A∼=B, then I : A∼=p B for I = {π}.

(b) If I : A∼=p B, then (I)n∈N : A∼= f B.

(c) Suppose (In)n∈N : A ∼= f B, and suppose A has exactly r elements, say, A =
{a1, . . . ,ar}. We choose p ∈ Ir+1. If we suitably apply the forth-property r times,
we obtain a q ∈ I1 such that a1, . . . ,ar ∈ dom(q), i.e., dom(q) = A. If rg(q) �= B
and b ∈ B with b /∈ rg(q), then by the back-property there would be a proper ex-
tension q′ of q in I0 such that b ∈ rg(q′). Since dom(q) = A, this is not possible.
Therefore rg(q) = B and thus q : A∼=B.

(d) Suppose I : A ∼=p B, A = {a0,a1, . . .} and B = {b0,b1, . . .}. Starting from an
arbitrary p0 ∈ I, by repeated application of the back- and forth-properties, we obtain
extensions p1, p2, . . . in I such that a0 ∈ dom(p1), b0 ∈ rg(p2), a1 ∈ dom(p3), b1 ∈
rg(p4), . . . , i.e., a sequence (pn)n∈N of partial isomorphisms in I such that for all n:

(1) pn ⊆ pn+1;
(2) if n is odd, say n = 2r+1, then ar ∈ dom(pn);
(3) if n is even, say n = 2r+2, then br ∈ rg(pn).

By (1), p :=
⋃

n∈N pn is a partial isomorphism from A to B. As dom(p) =A (by (2))
and rg(p) = B (by (3)), we have p : A∼=B. �
Part (d) of Lemma 1.5 is an abstract version of the following theorem of Cantor.

1.6 Theorem. Every two countable dense orderings (without endpoints) are iso-
morphic.

Here a dense ordering is a {<}-structure which is a model of Φdord, where Φdord
contains the ordering axioms (compare III.6.4) together with the following sen-
tences (“density”):

∀x∀y(x < y →∃z(x < z∧ z < y)), ∀x∃yx < y, ∀x∃yy < x.

The structures (R,<) and (Q,<) are dense orderings. By contrast, (Z,<) is not a
dense ordering.

Cantor’s theorem follows from Lemma 1.5(d) and

1.7 Lemma. If A= (A,<A) and B= (B,<B) are dense orderings, then I : A∼=p B
for I = {p | p ∈ Part(A,B),dom(p) is finite}.

Proof. Since p = /0 is in I, I �= /0. The set I satisfies the forth-property: Let p ∈ I,
dom(p) = {a1, . . . ,an} and a ∈ A. Because B is dense, there is an element b ∈ B

262 XII An Algebraic Characterization of Elementary Equivalence

which is related to p(a1), . . . , p(an) in the ordering B in the same manner as a is
related to a1, . . . ,an in the ordering A. Then the map q := p∪{(a,b)} is an extension
of p which is defined for a and lies in I. The back-property follows analogously,
using the fact that A is dense. �
1.8 Example. Suppose S = {σσ ,0} and let Φσ consist of the “successor axioms”

∀x(¬x ≡ 0 ↔∃yσ y ≡ x), ∀x∀y(σ x ≡ σ y → x ≡ y),
and for every m ≥ 1: ∀x¬σ . . .σ︸ ︷︷ ︸

m times

x ≡ x.

The structure Nσ (cf. III.7.3(2)) is a model of Φσ . We show that any two models
of Φσ are finitely isomorphic. First, we fix the following notation: For a model A
of Φσ and a ∈ A we set a(m) := σ A . . .σ A︸ ︷︷ ︸

m times

(a). For every n ∈N we define a “distance

function” dn on A×A by

dn(a,a′) :=

⎧⎪⎨⎪⎩
m if a(m) = a′ and m < 2n+1

−m if a′(m) = a and m < 2n+1

∞ otherwise.

Now suppose A and B are models of Φσ . We show that (In)n∈N : A∼= f B, where

In := {p ∈ Part(A,B) | dom(p) is finite, 0A ∈ dom(p), and
for all a,a′ ∈ dom(p), dn(a,a′) = dn(p(a), p(a′))}.

Thus, a partial isomorphism in In preserves the “dn-distances”. First, we have In �= /0
since (0A,0B) ∈ In. We sketch a proof of the forth-property for (In)n∈N (the back-
property can be proved analogously). Suppose p ∈ In+1 and a ∈ A. We distinguish
two cases, depending on whether or not the condition

(∗) There is an a′ ∈ dom(p) such that |dn(a′,a)|< 2n+1

holds. If (∗) holds and, say, a′ ∈ dom(p) with |dn(a′,a)| < 2n+1, then we choose
the b ∈ B with dn(p(a′),b) = dn(a′,a). From p ∈ In+1 it follows easily that q :=
p∪{(a,b)} is a partial isomorphism preserving the dn-distances, hence q ∈ In. If (∗)
does not hold, we choose an arbitrary element b such that dn(p(a′),b) = ∞ for all
a′ ∈ dom(p) (such an element b must exist since every model of Φσ is infinite).
Now it is easy to see that q := p∪{(a,b)} ∈ In. �
1.9 Exercise. Let S = /0. Show that any two infinite S-structures are partially iso-
morphic.

1.10 Exercise. (a) Give an example of structures which are partially isomorphic
but not isomorphic.

(b) Give an example of structures which are finitely isomorphic but not partially
isomorphic.

1.11 Exercise. Give an uncountable model of the system Φσ of axioms in Exam-
ple 1.8.

XII.2 Fraı̈ssé’s Theorem 263

1.12 Exercise. Define A to be finitely embeddable in B (written: A→ f B) if there
is a sequence (In)n∈N with the properties from Definition 1.3(a),(b). Analogously
define A to be partially embeddable in B, written: A→p B. Show:
(a) If A→ f B and A is finite, then A is embeddable in B, i.e., A is isomorphic to

a substructure of B.
(b) If A→p B and A is at most countable, then A is embeddable in B.
(c) If A is an ordering and B is a dense ordering, then A→p B.

XII.2 Fraı̈ssé’s Theorem

Using the concepts introduced in Section 1, we now formulate the main result of
this chapter.

2.1 Fraı̈ssé’s Theorem. Let S be a finite symbol set and A, B S-structures. Then

A≡B iff A∼= f B.

Note that Fraı̈ssé’s Theorem provides us with a characterization of elementary
equivalence which does not refer to the first-order language.

Before proving the theorem (in the next section) we give several examples showing
how it can be used to check the elementary equivalence of structures.

2.2 Proposition. (a) Any two dense orderings are elementarily equivalent. In par-
ticular, (R,<)≡ (Q,<).

(b) Any two {σσ ,0}-structures satisfying the axioms in 1.8 are elementarily equiv-
alent.

Proof. (a) follows from Fraı̈ssé’ Theorem 2.1, since (cf. Lemma 1.7) any two dense
orderings are partially isomorphic, and thus, also finitely isomorphic; (b) follows
analogously by means of Example 1.8. �
For applications on completeness of theories we need the following simple criterion.

2.3 Lemma. For a theory T ⊆ LS
0 the following are equivalent:

(a) T is complete, i.e., for every S-sentence ϕ either ϕ ∈ T or ¬ϕ ∈ T .
(b) Any two models of T are elementarily equivalent.

Proof. Suppose first that (a) holds, and let A and B be models of T . For any S-
sentence ϕ either ϕ ∈ T or ¬ϕ ∈ T . If ϕ ∈ T , then A |= ϕ and B |= ϕ; if ¬ϕ ∈ T ,
then A |= ¬ϕ and B |= ¬ϕ . Thus (A |= ϕ iff B |= ϕ).

Conversely, let ϕ be an S-sentence and suppose ϕ /∈ T . Since T is a theory, T |= ϕ
does not hold, and therefore, there is a model A of T ∪{¬ϕ}. By (b) every model
of T is elementarily equivalent to A, and thus is a model of ¬ϕ . Hence T |=¬ϕ and,
since T is a theory, ¬ϕ ∈ T . �
From Proposition 2.2, with the aid of Lemma 2.3 and Theorem X.6.5, we obtain:

264 XII An Algebraic Characterization of Elementary Equivalence

2.4 Proposition. (a) The theory Φ |=
dord of dense orderings is complete and R-

decidable. Thus, for example, Φ |=
dord = Th(R,<).

(b) The theory Φ |=
σ of successor structures is complete and R-decidable. Thus, for

example, Φ |=
σ = Th(N,σ). �

In preparation for the proof of Fraı̈ssé’s Theorem we show that we can restrict our-
selves to relational symbol sets. (A direct proof for arbitrary finite symbol sets is
sketched in Exercise 3.15.)

Let S be an arbitrary symbol set. As done before Theorem VIII.1.3, we choose, for
each n-ary f ∈ S, a new (n+ 1)-ary relation symbol F and, for each c ∈ S, a new
unary relation symbol C. Let Sr consist of the relation symbols from S together with
the new relation symbols; thus Sr is relational. For an S-structure A, let Ar be the
Sr-structure obtained from A, replacing functions and constants by their graphs (as
in Section VIII.1).

When defining partial isomorphisms we treated functions and constants in such a
way (cf. Definition 1.1) that for arbitrary structures A and B,

Part(A,B) = Part(Ar,Br).

From this we obtain

(∗) A∼= f B iff Ar ∼= f B
r.

In Corollary VIII.1.4 we showed that

(∗∗) A≡B iff Ar ≡Br.

Thus, in proving Fraı̈ssé’s Theorem, we can restrict to relational symbol sets. For,
if A and B are given, it follows from

Ar ≡Br iff Ar ∼= f B
r

by (∗) and (∗∗) that

A≡B iff A∼= f B.

2.5 Exercise. Show that for S = /0 the theory {ϕ≥n | n ≥ 2}|= of infinite sets is
complete and R-decidable.

2.6 Exercise. Let S = {Pn | n ∈ N} be a set of unary relation symbols. Define the
S-structures A and B as follows: A :=N, B :=N∪{∞}, PA

n := {m | m ∈N,m ≥ n},
PB

n := {m | m ∈N,m ≥ n}∪{∞}. Show that A≡B but not A∼= f B. Thus Fraı̈ssé’s
Theorem is, in general, not true for infinite symbol sets. Note, on the other hand, that
for arbitrary S and S-structures A,B we have (A≡B iff for every finite S0 ⊆ S,
A|S0 ≡B|S0), and therefore (A≡B iff for every finite S0 ⊆ S, A|S0

∼= f B|S0).

XII.3 Proof of Fraı̈ssé’s Theorem 265

XII.3 Proof of Fraı̈ssé’s Theorem

In the sequel we prove Fraı̈ssé’s Theorem. Let S be a fixed finite, relational symbol
set.

For a formula ϕ we define the quantifier rank qr(ϕ) of ϕ to be the maximum number
of nested quantifiers occurring in it:

qr(ϕ) := 0, if ϕ atomic;
qr(¬ϕ) := qr(ϕ);

qr(ϕ ∨ψ) := max{qr(ϕ),qr(ψ)};
qr(∃xϕ) := qr(ϕ)+1.

For example, the formula ¬∃x(∀yRxz∧Qy)∧∀zQz has quantifier rank 2. The for-
mulas of quantifier rank zero are the quantifier-free formulas.

One direction of Fraı̈ssé’s Theorem follows from

3.1. If A∼= f B then A≡B.

In order to prove 3.1 we must show for every S-sentence ϕ that

A |= ϕ iff B |= ϕ .

We obtain this by applying the following lemma, taking r = 0, n = qr(ϕ), and an
arbitrary p ∈ In (note that In �= /0).

3.2 Lemma. Let (In)n∈N : A∼= f B. Then for every formula ϕ:

(∗) If ϕ ∈ LS
r , qr(ϕ)≤ n, p ∈ In and a0, . . . ,ar−1 ∈ dom(p), then

A |= ϕ[a0, . . . ,ar−1] iff B |= ϕ[p(a0), . . . , p(ar−1)].

Informally, Lemma 3.2 says that partial isomorphisms from In preserve formulas of
quantifier rank ≤ n. It makes precise the idea discussed in 1.2(e) that formulas with
quantifiers are preserved under partial isomorphisms, provided these isomorphisms
admit certain extensions.

Proof of Lemma 3.2. We show (∗) by induction on formulas ϕ . Suppose ϕ ∈ LS
r ,

qr(ϕ)≤ n, p ∈ In and a0, . . . ,ar−1 ∈ dom(p).

(i) For atomic ϕ the result was proved in 1.2(c).

(ii) If ϕ = ¬ψ , then
A |= ϕ[a0, . . . ,ar−1] iff not A |= ψ[a0, . . . ,ar−1]

iff not B |= ψ[p(a0), . . . , p(ar−1)] (ind. hypothesis)
iff B |= ϕ[p(a0), . . . , p(ar−1)].

(iii) For ϕ = ψ0 ∨ψ1 the argument is analogous.

266 XII An Algebraic Characterization of Elementary Equivalence

(iv) Suppose ϕ = ∃xψ . Since ϕ ∈ LS
r , the variable vr does not occur free in ϕ . Thus

|= ∃xψ ↔ ∃vrψ vr
x , and therefore, we may assume that x = vr. Because qr(ϕ) =

qr(∃xψ)≤ n, we have qr(ψ)≤ n−1. The claim is now obtained from the following
chain of equivalent statements:

(a) A |= ϕ[a0, . . . ,ar−1].
(b) There is a ∈ A such that A |= ψ[a0, . . . ,ar−1,a].
(c) There is a ∈ A and q ∈ In−1 such that q ⊇ p, a ∈ dom(q), and

A |= ψ[a0, . . . ,ar−1,a].
(d) There is a ∈ A and q ∈ In−1 such that q ⊇ p, a ∈ dom(q), and

B |= ψ[p(a0), . . . , p(ar−1),q(a)].
(e) There is b ∈ B and q ∈ In−1 such that q ⊇ p, b ∈ rg(q), and

B |= ψ[p(a0), . . . , p(ar−1),b].
(f) There is b ∈ B such that B |= ψ[p(a0), . . . , p(ar−1),b].
(g) B |= ϕ[p(a0), . . . , p(ar−1)].

To prove the equivalence of (b) and (c) and of (e) and (f), respectively, one uses the
back- and the forth-property of the sequence (In)n∈N. The equivalence of (c) and (d)
follows from the induction hypothesis. �
From the foregoing proof we can extract another result:

Structures A and B are said to be m-isomorphic (written: A ∼=m B) if there is a
sequence I0, . . . , Im of nonempty sets of partial isomorphisms from A to B with the
back-property and the forth-property, i.e.,

for n+ 1 ≤ m, p ∈ In+1 and a ∈ A (resp. b ∈ B), there is q ∈ In such that
q ⊇ p and a ∈ dom(q) (resp. b ∈ rg(q)).

In this case, we write (In)n≤m : A∼=m B.

In case (In)n≤m : A ∼=m B, the proof of Lemma 3.2 shows that each p ∈ In (with
n ≤ m) preserves the validity of formulas of quantifier rank ≤ n. If we write A≡m B
in case A and B satisfy the same sentences of quantifier rank ≤ m, we thus have

3.3 Corollary. If A∼=m B then A≡m B. �
The following considerations lead to the converse of 3.1.

For an S-structure B, a finite sequence (b0, . . . ,br−1) ∈ B, written:
r

b ∈ B, and n ∈N
we introduce a formula ϕn

B,
r

b
∈ LS

r : the formula ϕ0
B,

r
b

describes the “isomorphism

type” of the substructure [{b0, . . . ,br−1}]B; for n > 0, ϕn
B,

r
b

indicates to which iso-

morphism types
r

b can be extended in B by adding n elements, one at a time. We
shall have that B |= ϕn

B,
r

b
[

r
b]; and if A |= ϕn

B,
r

b
[

ra] for an S-structure A and ra ∈ A,

then the map given by ai �→ bi (i < r) will be a partial isomorphism which can be
extended “back and forth n times”. For n > 0 we also allow the case r = 0, i.e., the
case of the empty sequence /0 of elements from B, and we write ϕn

B for ϕn
B, /0. For

n = 0 we assume r > 0.

XII.3 Proof of Fraı̈ssé’s Theorem 267

We now give an exact definition. As an abbreviation we set

Φr := {ϕ ∈ LS
r | ϕ is atomic or negated atomic}.

Since S contains only relation symbols, Φr is finite and Φ0 is empty.

For an S-structure B we define the formula ϕn
B,

r
b

by induction on n for all r (r > 0,

if n = 0) and all
r

b ∈ B as follows (afterwards we shall show that the conjunctions
and disjunctions occurring in the definition are finite):

ϕ0
B,

r
b

:=
∧
{ϕ ∈ Φr |B |= ϕ[

r
b]}

ϕn+1
B,

r
b

:= ∀vr
∨
{ϕn

B,
r

bb
| b ∈ B}∧

∧
{∃vrϕn

B,
r

bb
| b ∈ B}.

Here,
r

bb abbreviates (b0, . . . ,br−1,b).

Since Φr is finite for all r, by induction on n we easily obtain:

3.4. The set {ϕn
B,

r
b
|B is an S-structure and

r
b ∈ B} is finite. �

The conjunctions and disjunctions occurring in the definition are therefore all finite,
and hence the ϕn

B,
r

b
are first-order formulas.

3.5. (a) ϕn
B,

r
b
∈ LS

r and qr(ϕn
B,

r
b
) = n. (b) B |= ϕn

B,
r

b
[

r
b].

Proof. We show (a) and (b) by induction on n. We consider (b). For n= 0 (and r > 0)
the claim follows immediately from the definition of ϕ0

B,
r

b
. For the step from n to

n+1, the induction hypothesis yields for all b′ ∈ B,

B |= ϕn
B,

r
bb′ [

r
b,b′],

hence, for all b′ ∈ B,

B |=∨{ϕn
B,

r
bb

| b ∈ B}[r
b,b′] and B |= ∃vrϕn

B,
r

bb′ [
r

b].

Thus

B |= ∀vr
∨{ϕn

B,
r

bb
| b ∈ B}[r

b] and B |=∧{∃vrϕn
B,

r
bb′ | b′ ∈ B}[r

b]

and therefore, B |= ϕn+1
B,

r
b
[

r
b]. �

Let
r

b ∈ B. If A is also an S-structure and ra ∈ A, then 1.2(c) shows:

3.6. A |= ϕ0
B,

r
b
[

ra] iff by setting p(ai) = bi for i < r one gets a partial isomor-

phism from A to B (written: ra �→ r
b ∈ Part(A,B)).

We generalize the direction from left to right:

268 XII An Algebraic Characterization of Elementary Equivalence

3.7. If A |= ϕn
B,

r
b
[

ra], then ra �→ r
b ∈ Part(A,B).

Proof. We use induction on n. For n = 0 the claim follows from 3.6. For the
induction step, let A |= ϕn+1

B,
r

b
[

ra]. We choose a ∈ A arbitrarily. Since we have

A |= ∀vr
∨{ϕn

B,
r

bb
| b ∈ B}[ra], there is some b ∈ B such that A |= ϕn

B,
r

bb
[

ra,a]. By

induction hypothesis, raa �→ r
bb ∈ Part(A,B), hence ra �→ r

b ∈ Part(A,B). �
We fix two S-structures A and B. For n ∈ N we set

Jn := { ra �→ r
b | r ∈ N, ra ∈ A,

r
b ∈ B and A |= ϕn

B,
r

b
[

ra]}.

Then we obtain:

3.8. (a) Jn ⊆ Part(A,B) for all n.
(b) (Jn)n∈N has the back- and the forth-property.
(c) If n > 0 and A |= ϕn

B (= ϕn
B, /0), then /0 ∈ Jn, hence Jn �= /0.

Proof. Since (a) follows immediately from 3.7 and (c) from the definition of Jn, we
only have to prove (b). First we show the forth-property. Let p =

ra �→ r
b ∈ Jn+1 and

a ∈ A. Then A |= ϕn+1
B,

r
b
[

ra]; in particular, A |= ∀vr
∨{ϕn

B,
r

bb
| b ∈ B}[ra]. Therefore

there is a b ∈ B such that A |= ϕn
B,

r
bb
[

ra,a]. Then raa �→ r
bb is a partial isomorphism

in Jn which extends p and whose domain contains a. – Since we also have A |=∧{∃vrϕn
B,

r
bb

| b ∈ B}[ra], for each b ∈ B there is a ∈ A such that A |= ϕn
B,

r
bb
[

ra,a] and

hence raa �→ r
bb ∈ Jn, i.e., there is a partial isomorphism in Jn which extends p and

has b in its range. This proves the back-property. �
With 3.8 we easily obtain the direction of Fraı̈ssé’s Theorem which was still open:
If A ≡B then A ∼= f B. So let A ≡B. Since, for n ≥ 1, B |= ϕn

B (cf. 3.5(b)), we
have A |= ϕn

B. By 3.8(c) we get Jn �= /0 for all n and therefore (Jn)n∈N : A ∼= f B
(cf. 3.8(a), (b)). �
From the preceding considerations we instantly obtain:

3.9 Theorem. Let S be a finite relational symbol set, and let A and B be S-
structures. Then the following are equivalent:

(a) A≡B. (c) (Jn)n∈N : A∼= f B.
(b) A |= ϕn

B for n ≥ 1. (d) A∼= f B. �
Since qr(ϕm

B) = m for m ≥ 1, we further get:

3.10 Theorem. Let S be a finite and relational symbol set, and let A and B be
S-structures. Then the following are equivalent for m ≥ 1:

(a) A≡m B. (c) (Jn)n≤m : A∼=m B.
(b) A |= ϕm

B. (d) A∼=m B. �

XII.3 Proof of Fraı̈ssé’s Theorem 269

In Section VI.3 we have shown that some classes are not Δ -elementary. The argu-
ments involved the Compactness Theorem and used infinite structures. The preced-
ing considerations provide a method for showing that certain properties cannot be
expressed by a first-order sentence, even if we restrict ourselves to finite structures.
We explain the approach treating, as an example, the connectedness of finite graphs
(in VI.3.6 we considered the connectedness for the class of all graphs). A further
example is contained in Exercise 3.16(b).

3.11 Theorem. Let R be a binary relation symbol. There is no {R}-sentence whose
finite models are the finite connected graphs. Hence, the class of connected graphs
is not elementary.

Proof. For k ≥ 0 let Gk be the graph corresponding to the (k + 1)-cycle with the
vertices 0, . . . ,k, i.e.,

Gk =
({0, . . . ,k},RGk

)
,

where

RGk = {(i, i+1) | i < k}∪{(i, i−1) | 1 ≤ i ≤ k}∪{(0,k),(k,0)},

and let Hk consist of two disjoint copies of Gk, say,

Hk =
({0, . . . ,k}×{0,1},RHk

)
with

RHk = {((i,0),(j,0)) | (i, j) ∈ RGk}∪{((i,1),(j,1)) | (i, j) ∈ RGk}.
We claim:

(∗) For k ≥ 2m: Gk ∼=m Hk.

Then we are done. In fact, let ϕ be an {R}-sentence and m = qr(ϕ). Then we have
G2m ∼=m H2m by (∗), i.e., G2m ≡m H2m , and therefore (G2m |= ϕ iff H2m |= ϕ).
Since G2m is connected, but H2m is not, the class of finite models of ϕ cannot be
identical with the class of all finite connected graphs.

For the proof of (∗) we define, for fixed k ≥ 2m and n ≥ 0, “distance functions” dn
on Gk ×Gk and dn

′ on Hk ×Hk as follows:

dn(a,b) :=

{length of the shortest path
connecting a and b in Gk, if this length is < 2n+1;

∞ otherwise;

dn
′((a, i),(b, j)) :=

{
dn(a,b) if i = j;
∞ otherwise.

For n ≤ m we set

In := {p ∈ Part(Gk,Hk) | |dom(p)| ≤ m−n, and for all a,b ∈ dom(p),
dn(a,b) = dn

′(p(a), p(b))}.

Similarly to Example 1.8, one can easily show now that (In)n≤m : Gk ∼=m Hk. �

270 XII An Algebraic Characterization of Elementary Equivalence

3.12 Exercise. Let S be finite and relational, and let the S-structure B contain ex-
actly n elements. Then for every S-structure A:

A∼=B iff A |= ϕn+1
B ,

i.e., ϕn+1
B characterizes B up to isomorphism.

3.13 Exercise. Let S be finite and relational and let B be an S-structure. Show that
for all n and r (with n+ r > 0) and for all

r
b ∈ B, |= ϕn+1

B,
r

b
→ ϕn

B,
r

b
.

3.14 Exercise. Again, let S be finite and relational. For an S-structure B and
r

b ∈ B
define ψn+1

B,
r

b
(for n+ r > 0) by ψ0

B,
r

b
:= ϕ0

B,
r

b
and ψn+1

B,
r

b
:= ∀vr

∨{ψn
B,

r
bb

| b ∈ B}.

Show: (a) ψn
B,

r
b

is a universal formula.

(b) For an S-structure A the following are equivalent:
– A satisfies every universal S-sentence which holds in B.
– A |= ψn

B for all n ≥ 1.
– A→ f B (for notation see Exercise 1.12).

(c) Part (b) corresponds to Theorem 3.9. Formulate and prove the version analo-
gous to Theorem 3.10.

3.15 Exercise. Transfer the results of this section to arbitrary finite symbol sets. For
this purpose define a modified rank mrk for terms and formulas as follows:

mrk(x) := 0, mrk(c) = 1
mrk(f t1 . . . tn) := 1+mrk(t1)+ . . .+mrk(tn)
mrk(Rt1 . . . tn) := mrk(t1)+ . . .+mrk(tn)

mrk(t1 ≡ t2) := max{0,mrk(t1)+mrk(t2)−1}
mrk(¬ϕ) := mrk(ϕ)

mrk(ϕ ∨ψ) := max{mrk(ϕ),mrk(ψ)}
mrk(∃xϕ) := 1+mrk(ϕ).

Furthermore, for r ≥ 0 define (similarly to Φr on p. 267)

Φr
′ := {ϕ ∈ LS

r | ϕ is atomic or negated atomic and mrk(ϕ) = 0}.
Show: (a) Theorems 3.9 and 3.10 and the considerations leading to them remain

valid if we replace the quantifier rank everywhere by the modified rank and Φr
by Φr

′. The same holds for the preceding exercises.
(b) If S is relational, then Φr = Φr

′ and qr(ϕ) = mrk(ϕ) for all ϕ ∈ LS.

3.16 Exercise. Let S := {<,R} with binary relation symbols < and R. For k ∈N let
Ak := ({0, . . . ,k},<Ak ,RAk), where <Ak is the natural order on {0, . . . ,k} and RAk is
the successor relation, i.e., RAk = {(i, i+1) | i < k}. Show:
(a) For k, l,m ∈ N with k, l ≥ 2m+1: Ak ∼=m Al .

Hint: Define “distance functions” dn on N×N by

XII.4 Ehrenfeucht Games 271

dn(a,b) :=

{
b−a if |b−a| < 2n+1

∞ otherwise.

For n ≤ m set

In := {p ∈ Part(Ak,Al) | |dom(p)| ≤ 2+m−n, 0,k ∈ dom(p),

p(0) = 0, p(k) = l,and for all a,b ∈ dom(p),
dn(a,b) = dn(p(a), p(b))}

and show for k, l ≥ 2m+1 that (In)n≤m : Ak ∼=m Al .
(b) There is no ϕ ∈ LS

0 such that for all k, Ak |= ϕ iff k is even.

3.17 Exercise. Let S := {P1, . . . ,Pr} with unary Pi. Show: For each S-structure A
and each m ≥ 1 there is a structure B with A ∼=m B containing at most m · 2r el-
ements. Hint: Consider the 2r many subsets of A of the form A1 ∩ . . .∩Ar, where
Ai = PA

i or Ai = A\PA
i . For B take a structure in which the corresponding sets have

the same number of elements, if this number is < m, and m elements otherwise.

3.18 Exercise. Again, let S = {P1, . . . ,Pr} with unary Pi, m ≥ 1 and let ϕ ∈ LS
0 be a

sentence of quantifier rank ≤ m. Show:
(a) If ϕ is satisfiable, then ϕ is satisfiable already over a domain with at most m ·2r

elements.
(b) {ψ | ψ ∈ LS

0, ψ valid} is R-decidable.

XII.4 Ehrenfeucht Games

The algebraic description of elementary equivalence is well-suited for many pur-
poses. However, it lacks the intuitive appeal of a game-theoretical characterization
due to Ehrenfeucht, which we describe in the present section.

Let S be an arbitrary symbol set and let A and B be S-structures. To simplify the
formulation we assume A∩B = /0. The Ehrenfeucht game G(A,B) corresponding to
A and B is played by two players, I (“he”) and II (“she”), according to the following
rules:

Each play of the game begins with player I choosing a natural number r ≥ 1; then r
is the number of subsequent moves each player has to make in the course of the
play. These subsequent moves are begun by player I, and both players move alter-
nately. Each move consists of choosing an element from A∪B. If player I chooses
an element ai ∈ A in his i th move, then player II must choose an element bi ∈ B in
her i th move. If player I chooses an element bi ∈ B in his i th move, then player II
must choose an element ai ∈ A. After the r th move of player II the play is com-
pleted. Altogether some number r ≥ 1, elements a1, . . . ,ar ∈ A and b1, . . . ,br ∈ B
have been chosen. Player II has won the play iff by p(ai) := bi for i = 1, . . . ,r a
partial isomorphism from A to B is defined.

272 XII An Algebraic Characterization of Elementary Equivalence

We say that player II has a winning strategy in G(A,B) and write “II wins
G(A,B)”, if it is possible for her to win each play. (We omit an exact definition
of the notion of “winning strategy.”)

4.1 Lemma. A∼= f B iff II wins G(A,B).

This lemma, together with Fraı̈ssé’s Theorem 2.1, yields the desired game-theoreti-
cal characterization of elementary equivalence:

4.2 Ehrenfeucht’s Theorem. Let S be a finite symbol set. Then for any S-structures
A and B:

A≡B iff II wins G(A,B).

Proof of Lemma 4.1. Suppose (In)n∈N : A∼= f B. Then also (I′n)n∈N : A∼= f B, where
I′n := {p | there is q ∈ In such that p ⊆ q}. We describe a winning strategy for player
II:

If player I chooses the number r at the beginning of a G(A,B)-play, then for
i = 1, . . . ,r player II should choose the elements ai (or respectively bi) so that by
pi(a j) := b j for 1 ≤ j ≤ i one obtains a partial isomorphism pi : {a1, . . . ,ai} →
{b1, . . . ,bi} with pi ∈ I′r−i. This is always possible because of the extension prop-
erties of partial isomorphisms in (I′n)n∈N. For i = r it follows that player II has a
winning strategy for the game.

Conversely, suppose that player II has a winning strategy in G(A,B). We define a
sequence (In)n∈N as follows: For n ∈ N let

p ∈ In :iff p ∈ Part(A,B) and there are j ∈ N and a1, . . . ,a j ∈ A such that
– dom(p) = {a1, . . . ,a j};
– there is an m ≥ n and a G(A,B)-play which II plays according

to her winning strategy, which player I opens by choosing the
number m+ j, and where in the first j moves the elements
a1, . . . ,a j ∈ A and p(a1), . . . , p(a j) ∈ B are chosen.

From the rules of the game we immediately obtain that (In)n∈N : A∼= f B. �
4.3 Exercise. For r ≥ 1 let Gr(A,B) be the game obtained from the Ehrenfeucht
game G(A,B) by fixing r to be the number player I has to choose first. Show:
A∼=r B iff II wins Gr(A,B).

Chapter XIII
Lindström’s Theorems

In this final chapter we present some results, due to Lindström [28], which we have
already mentioned several times. They show that first-order logic occupies a unique
place among logical systems. Indeed, we shall prove:

(a) There is no logical system with more expressive power than first-order logic, for
which both the Compactness Theorem and the Löwenheim–Skolem Theorem hold
(Section 3).

(b) There is no logical system with more expressive power than first-order logic,
for which the Löwenheim–Skolem Theorem holds and for which the set of valid
sentences is enumerable (Section 4).

XIII.1 Logical Systems

In the following definition of a “logical system” we collect several properties which
are shared by the logics we have considered so far. As we are mainly interested in
semantic aspects, we speak of a logical system as soon as we are given, for every
symbol set S, an “abstract” set whose elements play the role of S-sentences, and a
relationship between structures and such sentences which corresponds to the satis-
faction relation and determines whether an “abstract” sentence holds in a structure.

1.1 Definition. A logical system L consists of a function L and a binary relation
|=L . The function L associates with every symbol set S a set L(S), the set of S-
sentences of L . The following properties are required:

(a) If S0 ⊆ S1 then L(S0)⊆ L(S1).
(b) If A |=L ϕ (i.e., if A and ϕ are related under |=L), then there is an S such that

A is an S-structure and ϕ ∈ L(S).
(c) (Isomorphism property) If A |=L ϕ and A∼=B, then B |=L ϕ .
(d) (Reduct property) If S0 ⊆ S1, ϕ ∈ L(S0) and A is an S1-structure, then

A |=L ϕ iff A|S0 |=L ϕ .

273© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

https://doi.org/10.1007/978-3-030-73839-6_13
H.-D. Ebbinghaus et al., Mathematical Logic, Graduate Texts in Mathematics 291,

http://crossmark.crossref.org/dialog/?10.1007/978-3-030-73839-6_13&domain=pdf

274 XIII Lindström’s Theorems

Examples of logical systems are LI,LII,L
w

II ,Lω1ω , and LQ. For instance, in the
case of LI we choose LI to be the function which assigns to a symbol set S the set
LI(S) := LS

0 of first-order S-sentences, and we take |=LI to be the usual satisfaction
relation between structures and first-order sentences.

If L is a logical system and ϕ ∈ L(S), let

ModS
L (ϕ) := {A | A is an S-structure and A |=L ϕ}.

In case S is clear from the context we just write ModL (ϕ).

The class ModS
L (ϕ) can be regarded as a mathematically precise counterpart to the

meaning of ϕ . It suggests the following definition of when a logical system L ′ has
at least the expressive power as L , namely, if for every L -sentence ϕ there is an
L ′-sentence ψ with the same meaning:

1.2 Definition. Let L and L ′ be logical systems.

– Let S be a symbol set, ϕ ∈ L(S) and ψ ∈ L′(S). Then ϕ and ψ are said to be
logically equivalent if ModS

L (ϕ) = ModS
L ′(ψ).

– L ′ is at least as strong as L (written: L ≤ L ′) if for every S and every
ϕ ∈ L(S) there is a ψ ∈ L′(S) such that ϕ and ψ are logically equivalent.

– L and L ′ are equally strong (written: L ∼ L ′) if L ≤ L ′ and L ′ ≤ L .

Examples. We have LI ≤ L w
II ; L w

II ≤ LII; not LII ≤ L w
II (cf. Exercise IX.1.7);

L w
II ≤ Lω1ω (cf. Exercise IX.2.7).

On our abstract level we now formulate some properties of logical systems L ,
which are known to hold for the systems we have considered so far.

Boole(L) (“L contains propositional (“Boolean”) connectives”):

(1) Given S and ϕ ∈ L(S), there is a χ ∈ L(S) such that for every S-structure A:

A |=L χ iff not A |=L ϕ .

(2) Given S and ϕ,ψ ∈ L(S), there is a χ ∈ L(S) such that for every S-structure A:

A |=L χ iff (A |=L ϕ or A |=L ψ).

If Boole(L) holds, then ¬ϕ and (ϕ ∨ψ) stand for sentences χ in the sense of (1)
and (2), respectively. The notations (ϕ ∧ψ),(ϕ → ψ), . . . are used analogously.

Rel(L) (“L permits relativization”):

For S and ϕ ∈ L(S) and a unary relation symbol U there is a ψ ∈ L(S∪{U})
such that

(A,UA) |=L ψ iff [UA]A |=L ϕ

for all S-structures A and all S-closed subsets UA of A. ([UA]A is the substruc-
ture of A with domain UA.)

If Rel(L) holds, let ϕU be a sentence ψ with the above property.

XIII.1 Logical Systems 275

Repl(L) (“L permits replacement of function symbols and constants by relation
symbols”):

If S is a symbol set and Sr is chosen as on p. 113 – the function symbols and
constants from S are replaced by relation symbols for their graphs –, then for
every ϕ ∈ L(S) there is a ψ ∈ L(Sr) such that for all S-structures A:

A |=L ϕ iff Ar |=L ψ .

(For the definition of Ar see also Section VIII.1). If Repl(L), we write ϕr for a
formula ψ with the above property.

1.3 Definition. A logical system L is said to be regular if it satisfies the properties
Boole(L), Rel(L), and Repl(L).

All logical systems which we have hitherto considered are regular. In the case of
LI we verified Rel(LI) and Repl(LI) in Section VIII.1 and Section VIII.2. The
arguments given there can also be applied without difficulty to the other logical
systems.

We tacitly adopt some semantic notions whose definitions can be extended from LI
to other logical systems L in a straightforward manner. For example, ϕ ∈ L(S) is
said to be satisfiable if ModS

L (ϕ) �= /0, and valid if ModS
L (ϕ) is the class of all

S-structures. If Φ ⊆ L(S) then Φ |=L ϕ means that every model of Φ (in the sense
of |=L) is a model of ϕ . Note that these definitions refer to a fixed symbol set S.
However, using the reduct property of Definition 1.1(d) one can argue that they do
not depend on S. In the sequel, applications of the reduct property will be made
without explicit mention.

We introduce the following abbreviations:

LöSko(L) (“The Löwenheim–Skolem Theorem holds for L ”):

If ϕ ∈ L(S) is satisfiable, then there is a model of ϕ whose domain is at most
countable.

Comp(L) (“The Compactness Theorem holds for L ”):

If Φ ⊆ L(S) and if every finite subset of Φ is satisfiable, then Φ itself is satis-
fiable.

In this terminology the result of Lindström mentioned in the introduction to the
present chapter under (a) reads as follows:

If L is a regular logical system such that LI ≤ L , LöSko(L), and
Comp(L), then L ∼ LI.

We shall use the following result to restrict ourselves to a relational S in the proofs
of Lindström’s Theorems.

1.4 Lemma. Let L be a regular logical system. If, for all relational symbol sets S,
every L(S)-sentence is logically equivalent to a first-order sentence, then L ≤ LI.

276 XIII Lindström’s Theorems

Proof. We prove the claim using Repl(L) and the results from Section VIII.1: Let S
be an arbitrary symbol set and ψ ∈ L(S). With Repl(L) we choose the L(Sr)-
sentence ψr. Since Sr is relational, by assumption there is a first-order sentence
ϕ ∈ LI(Sr) logically equivalent to ψr. For ϕ we choose the LI(S)-sentence ϕ−r ac-
cording to TheoremVIII.1.3. Then the following holds for every S-structure A:

A |=L ψ iff Ar |=L ψr

iff Ar |= ϕ
iff A |= ϕ−r.

Hence ψ and ϕ−r are logically equivalent. �
1.5 Exercise. Let L be given by:

– L(S) := {ϕ | ϕ is an LS
II-sentence of the form ∃X1 . . .∃Xnψ , where ψ does not

contain a second-order quantifier}.
– For ϕ ∈ L(S) and S-structures A, A |=L ϕ iff A |=LII ϕ .

Show: (a) L is a logical system.
(b) LöSko(L), Comp(L), Rel(L), and Repl(L) hold.
(c) Boole(L) does not hold.
(d) LI ≤ L , but not L ≤ LI.
(e) The set of valid L(Sar)-sentences is not enumerable. Hint: Note that Th(N) is

not enumerable and use the axiom system Π given in Exercise III.7.5.

This system L shows that Boole(L) is necessary in Lindström’s First Theorem 3.5.

1.6 Exercise. Show: LQ ≤ LII, not L w
II ≤ LQ, not LQ ≤ L w

II .

XIII.2 Compact Regular Logical Systems

Before proving Lindström’s Theorems we derive some properties of logical systems
for which the Compactness Theorem holds.

In the following, L is a regular logical system such that LI ≤ L . For a first-order
S-sentence ϕ , let ϕ∗ be a sentence in L(S) logically equivalent to ϕ . For a set Φ of
first-order S-sentences, define Φ∗ := {ϕ∗ | ϕ ∈ Φ}.

As usual, Comp(L), the Compactness Theorem for satisfaction, yields the Com-
pactness Theorem for the consequence relation:

2.1 Lemma. Suppose Comp(L), and let Φ∪{ϕ}⊆ L(S) and Φ |=L ϕ . Then there
is a finite subset Φ0 of Φ such that Φ0 |=L ϕ .

Proof. Choose ¬ϕ by Boole(L). Then Φ ∪{¬ϕ} is not satisfiable. By Comp(L)
there is a finite subset Φ0 of Φ so that Φ0 ∪{¬ϕ} is not satisfiable, i.e., we have
Φ0 |=L ϕ . �

XIII.2 Compact Regular Logical Systems 277

If Comp(L) holds, the meaning of an L(S)-sentence only depends on finitely many
symbols from S:

2.2 Lemma. Suppose Comp(L) and ψ ∈ L(S). Then there is a finite subset S0 of S
such that for all S-structures A and B:

If A|S0
∼=B|S0 , then (A |=L ψ iff B |=L ψ).

Proof. We restrict ourselves to the case where S is relational (the case we shall
subsequently need). There is no difficulty in extending the proof to arbitrary symbol
sets.

Choose new unary symbols U , V , and f . Define Φ to consist of the following first-
order S∪{U,V, f}-sentences, which say that f is an isomorphism between the sub-
structure induced on U and the substructure induced on V :

∃xUx, ∃xV x,
∀x(Ux →V f x), ∀y(V y →∃x(Ux∧ f x ≡ y)),
∀x∀y((Ux∧Uy∧ f x ≡ f y)→ x ≡ y),

and, for every R ∈ S, R n-ary:

∀x1 . . .∀xn((Ux1 ∧ . . .∧Uxn)→ (Rx1 . . .xn ↔ R f x1 . . . f xn)).

Then, first (note that LI ≤ L),

(1) Φ∗ |=L ψU ↔ ψV .

In fact, assume that A is an S-structure and that (A,UA,V A, f A) |=L Φ∗, and hence,
(A,UA,V A, f A) |= Φ . Then UA and V A are nonempty and f A|UA is an isomorphism
from [UA]A to [V A]A. By the isomorphism property (cf. Definition 1.1(c)) we have

[UA]A |=L ψ iff [V A]A |=L ψ ,

that is, by Rel(L),

(A,UA) |=L ψU iff (A,V A) |=L ψV .

Using the reduct property and Boole(L), we obtain

(A,UA,V A, f A) |=L ψU ↔ ψV .

Thus (1) is proved. By Comp(L) there is a finite subset Φ0 of Φ such that

(2) Φ∗
0 |=L ψU ↔ ψV .

Since Φ0 consists of first-order sentences, we may choose a finite subset S0 of S
such that Φ0 consists of S0-sentences. We show that S0 has the desired properties.
Suppose A and B are S-structures and π : A|S0

∼=B|S0 , where we assume A∩B = /0.
(Otherwise, we can take an isomorphic copy of B and use the isomorphism prop-
erty.) We define over C := A∪B an S∪{U,V, f}-structure (C,UC,VC, f C) as follows
(note that S is relational):

278 XIII Lindström’s Theorems

RC := RA ∪RB for R ∈ S,
UC := A, VC := B,
f C such that f C|UC = π .

Then (C,UC,VC, f C) is a model of Φ0, i.e., (C,UC,VC, f C) |=L Φ∗
0 . Hence by (2),

(C,UC,VC, f C) |=L ψU ↔ ψV ,

and therefore, using [UC]C = A and [VC]C =B,

A |=L ψ iff B |=L ψ. �

XIII.3 Lindström’s First Theorem

In the following, let L be a regular logical system with LI ≤L . Furthermore, let S
be a relational symbol set and ψ an L(S)-sentence which is not logically equivalent
to any first-order sentence. To prepare for Lindström’s Theorems we first show that
there are structures A and B with A |=L ψ and B |=L ¬ψ , which are – in a sense
made precise below – nearly identical with respect to the first-order language.

For a first-order S-sentence ϕ , let ϕ∗ be a logically equivalent sentence in L(S).

3.1 Lemma. Let S be a relational symbol set and ψ an L(S)-sentence which is not
logically equivalent to any first-order sentence. Then, for every finite S0 ⊆ S and
every m ∈ N, there are S-structures A and B such that:

(+) A|S0
∼=m B|S0 , A |=L ψ , and B |=L ¬ψ .

Proof. Let S0 be a finite subset of S and, without loss of generality, m ≥ 1. We set,
using the formulas ϕm

B of Section XII.3,

ϕ :=
∨{ϕm

A|S0
| A is an S-structure and A |=L ψ}.

By XII.3.4, this disjunction is finite, hence ϕ is a first-order sentence. Obviously
ψ → ϕ∗ is valid. Since, by assumption, ψ is not logically equivalent to ϕ , and
hence not to ϕ∗, there is an S-structure B such that B |=L ϕ∗ and B |=L ¬ψ . Since
B |= ϕ , there is an S-structure A such that A |=L ψ and B |= ϕm

A|S0
. Therefore, we

also have A|S0
∼=m B|S0 (cf. Theorem XII.3.10). �

In the proofs of Lindström’s Theorems we shall essentially use the fact that the
claim of Lemma 3.1 can be formulated in L . Let us turn to such a formulation,
using the terminology of partial isomorphisms as introduced in Section XII.3. For
m ∈ N and for S0 we choose ψ , A, B, and (In)n≤m such that (In)n≤m : A|S0

∼=m
B|S0 , A |=L ψ , B |=L ¬ψ . We may assume that A∩B = /0 (otherwise we take
an isomorphic copy of B). Let the symbol set S+ be obtained from S by adding
the following new symbols: a constant c, a unary function symbol f , and relation
symbols P,U,V,W (unary), <, I (binary) and G (ternary). We define an S+-structure

XIII.3 Lindström’s First Theorem 279

C which contains A and B and allows us to describe the m-isomorphism property
(In)n≤m : A|S0

∼=m B|S0 by including the partial isomorphisms from In as elements
of its domain. More exactly:

(a) C := A∪B∪{0, . . . ,m}∪⋃n≤m In;

(b) UC := A and [UC]C|S := A;
(c) VC := B and [VC]C|S :=B;

((b) and (c) are possible since A∩B = /0 and since S is relational.)

(d) WC := {0, . . . ,m}, <C is the natural ordering relation on {0, . . . ,m}, cC := m,
and f C|WC is the predecessor function on WC, i.e., fC(n+ 1) := n for n < m
and, say, fC(0) := 0;

(e) PC =:
⋃

n≤m In;
(f) ICnp :iff n ≤ m and p ∈ In;
(g) GC pab :iff PC p, a ∈ dom(p) and p(a) = b.

Figure XIII.1 gives an illustration.

UC V C

IC

cCWC

PC

Fig. XIII.1

The structure C is then a model of the conjunction χ of the following finite set of
sentences of L(S+), which yields the desired formulation of (+). (Note that χ does
not depend on m.) Here and later we use first-order sentences as an intuitive notation
for the corresponding sentences of L .

(i) ∀p(Pp →∀x∀y(Gpxy → (Ux∧V y))).
(ii) ∀p(Pp →∀x∀x′∀y∀y′((Gpxy∧Gpx′y′)→ (x ≡ x′ ↔ y ≡ y′))).

280 XIII Lindström’s Theorems

(iii) For every R ∈ S0, R n-ary:
∀p(Pp →∀x1 . . .∀xn∀y1 . . .∀yn((Gpx1y1 ∧ . . .∧Gpxnyn)

→ (Rx1 . . .xn ↔ Ry1 . . .yn))).

((i), (ii), and (iii) say that for a fixed p ∈ P, Gp · · describes the graph of the par-
tial isomorphism p from the S0-substructure induced on U to the S0-substructure
induced on V .)

(iv) The axioms of Φpord for partially defined orderings (cf. III.6.4) and the sen-
tences

∀x(Wx ↔ (x ≡ c∨∃y(y < x∨ x < y)))∧∀x(Wx → (x < c∨ x ≡ c))

(< is the empty relation and W = {c}, or W is the field of < and c is the greatest
element; in both cases we say that W is the field of <),

∀x(∃yy < x → (f x < x∧¬∃z(f x < z∧ z < x)))

(f is the predecessor function).

(v) ∀x(Wx →∃p(Pp∧ Ixp))

(if x is in the field of <, then Ix = {p | Pp∧ Ixp} is nonempty).

(vi) ∀x∀p∀u((f x < x∧ Ixp∧Uu)→
∃q∃v(I f xq∧Gquv∧∀x′∀y′(Gpx′y′ → Gqx′y′)))

(the forth-property).

(vii) An analogous sentence for the back-property.

(viii) ∃xUx∧∃yV y∧ψU ∧ (¬ψ)V

(note that UC = A, VC = B, A |=L ψ , B |=L ¬ψ).

We have:

3.2. For every m ∈ N there is a model C of χ in which the field WC of <C consists
of exactly (m+1) elements. �
We now show:

3.3. Assume LöSko(L). Then one of the following conditions (a) or (b) holds:

(a) There are S-structures A and B such that

A |=L ψ , B |=L ¬ψ , and A|S0
∼=B|S0 .

(b) In all models D of χ , the field W D of <D is finite.

Proof. First we show:

(◦)

If the S+-structure D is a model of χ , in which the field W D of <D is infinite,
then the U-part and the V -part of D are domains of S-substructures A :=
[UD]D|S and B := [V D]D|S such that

A |=L ψ, B |=L ¬ψ , and A|S0
∼=p B|S0 .

XIII.3 Lindström’s First Theorem 281

Indeed: Since D satisfies the sentences in (viii), UD �= /0 and V D �= /0; and since S is
relational, UD and V D are domains of S-substructures. Again by (viii), we have

D |=L ψU and D |=L (¬ψ)V ,

and therefore

A |=L ψ and B |=L ¬ψ .

From (i), (ii), (iii) we know that every p ∈ PD corresponds, via GD, to a partial iso-
morphism from A|S0 to B|S0 , which we also denote by p. We extract from PD a sub-
set I in the following way: Let f 0c, f 1c, f 2c, . . . be abbreviations for c, f c, f f c,
Since W D is infinite and cD is the last element of <D, the relation <D has an infinite
descending chain (f is the predecessor function, cf. (iv)):

. . . <D (f 2c)D <D (f c)D <D cD.
We set

I := {p | there is an n with ID(f nc)D p}
and show

I : A|S0
∼=p B|S0 .

Indeed, by (v) we get that I �= /0, and by (vi) and (vii) that I has the forth- and the
back-property. For example, for the forth-property we conclude as follows: If p ∈ I,
say ID(f nc)D p, and a ∈ A = UD, then by (vi) there is a q such that ID(f n+1c)Dq
(thus q ∈ I), q ⊇ p, and a ∈ dom(q). Hence, (◦) is proved.

Now we return to the proof of 3.3 and suppose that (b) does not hold. So there is a
model of χ , in which the field W of < is infinite. We show below, using LöSko(L),
that we may assume the domain of this model to be countable. Then, by (◦), the
following holds for the U-part A and the V -part B:

A |=L ψ, B |=L ¬ψ , and A|S0
∼=p B|S0 .

Since A|S0 and B|S0 are partially isomorphic and at most countable, they are iso-
morphic (cf. Remark XII.1.5(d)). Hence part (a) in 3.3 is satisfied.

It remains to justify the transition to a countable model. So let D be a model of χ
with infinite field W D of <D. As mentioned before, to obtain from D a countable
model of χ with an infinite field, we use LöSko(L). Since LöSko(L) only holds
for sentences, not for infinite sets of sentences, we have to ensure by a single sen-
tence that the field of < is infinite. This is done as follows: <D has an infinite
descending chain (see above),

. . . <D (f 2c)D <D (f c)D <D cD.

Let Q be a new unary relation symbol and let ϑ be the L(S+∪{Q})-sentence

ϑ = Qc∧∀x(Qx → (f x < x∧Q f x))

(“Q contains c, and every element in Q contains an immediate <-predecessor which
also belongs to Q”).

282 XIII Lindström’s Theorems

With QD := {(f nc)D | n ∈ N} we have:

(D,QD) |=L χ ∧ϑ .

So, since χ ∧ϑ is satisfiable, by LöSko(L) there exists an at most countable model
(E,QE) of χ ∧ϑ . Obviously, E is an at most countable model of χ , and the field W E

of <E is infinite. �
For the following applications we summarize our considerations (of 3.2 and 3.3):

3.4 Main Lemma. Let L be a regular logical system with LI ≤L and LöSko(L).
Furthermore, let S be a relational symbol set, and let ψ be a sentence in L(S), which
is not logically equivalent to any first-order sentence. Then (a) or (b) holds:

(a) For all finite symbol sets S0 with S0 ⊆ S there are S-structures A and B such
that

A |=L ψ , B |=L ¬ψ , and A|S0
∼=B|S0 .

(b) For a unary relation symbol W and a suitable symbol set S+ with S∪{W}⊆ S+

and finite S+ \S, there is an L(S+)-sentence χ such that

(i) In every model C of χ , WC is finite and nonempty.
(ii) For every m ≥ 1 there is a model C of χ , in which WC has exactly m

elements. �
Now we show:

3.5 Lindström’s First Theorem. For a regular logical system L with LI ≤ L
the following holds:

If LöSko(L) and Comp(L), then L ∼ LI.

Proof. Assume, towards a contradiction, that ψ is a sentence in L(S) which is not
logically equivalent to any first-order sentence. By Lemma 1.4 we may assume that
S is relational. Since Comp(L) holds, by Lemma 2.2 the meaning of ψ depends
only on finitely many symbols. So we can choose a finite subset S0 of S such that
for all S-structures A,B:

If A|S0
∼=B|S0 then (A |=L ψ iff B |=L ψ).

Hence the condition (a) in Lemma 3.4 is not satisfied, and therefore (b) must hold,
i.e., there is an L -sentence χ which satisfies (i) and (ii) in 3.4(b). But this contra-
dicts Comp(L): By (i), the set of sentences

{χ}∪{“W contains at least n elements” | n ∈ N}
is not satisfiable, but by (ii), every finite subset has a model. �
To clarify the role of the conditions LöSko(L) and Comp(L) in Lindström’s First
Theorem, we describe the main idea of the proof once again:

Starting with the assumption that ψ is an L -sentence which is not logically equiv-
alent to any first-order sentence, for any m ≥ 1 we obtain structures A and B with

XIII.3 Lindström’s First Theorem 283

(1) A |=L ψ and B |=L ¬ψ

(2) A∼=m B.

By Comp(L) we get structures A and B with

(1) A |=L ψ and B |=L ¬ψ

(2′) A∼=p B.

LöSko(L) allows us to find countable structures which satisfy (1) and (2′) and
hence

(1) A |=L ψ and B |=L ¬ψ

(2′′) A∼=B,

a contradiction. In (2), (2′), and (2′′) we do not explicitly refer to a finite symbol set;
however, this is not important since, by Comp(L), the sentence ψ depends only on
finitely many symbols (cf. Lemma 2.2).

Lindström’s First Theorem characterizes first-order logic in the following sense:
Among the regular logical systems there is none of greater expressive power which
still satisfies the Compactness Theorem and the Löwenheim–Skolem Theorem.

If one considers the defining properties of regular logical systems L , the properties
Rel(L) and Repl(L) do not seem as fundamental as the others. An analysis of the
proof of 3.3 shows that both these properties were used to speak about two struc-
tures A and B in L by placing them together in the structure C. There are alternative
properties that can be used instead of Rel(L) and Repl(L): For given structures A
and B, say A = (A,PA) and B = (B,PB) with A = B (one can reduce to the case
where both domains are the same), we consider the structure C = (A,PC,QC) with
PC = PA and QC = PB. If L is one of the logical systems considered in Chap-
ter IX, then it is possible to talk about A in C, since A= C|{P}, and about B, since
for every ϕ ∈ L({P}) there exists a ϕ ′ ∈ L({Q}) which says the same in C as ϕ does
in B (where ϕ ′ is obtained from ϕ by replacing P by Q). In the proof of Lindström’s
First Theorem, we can eliminate the use of Rel(L) and Repl(L), if L permits this
kind of replacements. But if there is no substitute for Rel(L) and Repl(L), there
are counterexamples to Theorem 3.5 (cf. [4]).

The following two exercises show alternatives to Lindström’s First Theorem in
which other properties of logical systems are used in place of LöSko(L) and
Comp(L), respectively. The subsequent two exercises demonstrate how the method
in the proof of Theorem 3.5 can also be used to prove properties of first-order logic.

3.6 Exercise. The role of LöSko(L) in Lindström’s First Theorem can be taken
over by a further property of logical systems L , namely by:

Part(L) (“Partially isomorphic structures are L -equivalent”) means that for
every S and every S-structures A and B,
if A∼=p B, then A and B are models of the same L (S)-sentences.

284 XIII Lindström’s Theorems

Show: If L is a regular logical system with LI ≤L , Comp(L), and Part(L), then
L ∼ LI.

3.7 Exercise. This exercise shows that, in a suitable framework, the property
Comp(L) in Lindström’s First Theorem can be replaced by the following weak
analogue of the Upward Löwenheim–Skolem Theorem VI.2.3 and the subsequent
two regularity conditions.

LöSko-up(L) (“ L satisfies the Upward Löwenheim–Skolem Theorem”) means
that every L -sentence which has an infinite model also has an un-
countable model.

∃-Quant(L) (“L allows existential quantification”) means that for every S, every
c �∈ S, and every L(S∪{c})-sentence ϕ there is an L(S)-sentence ψ
such that for all S-structures A,

A |= ψ iff there is an a ∈ A with (A,a) |= ϕ.

Together with Boole(L), the closure under propositional connectives, this property
guarantees closure under first-order quantification.

gRel(L) (“L allows generalized relativization”) means that L allows relati-
vization to relations of the kind {c | χ(c)} with L -sentences χ , not
only relativization to unary relation symbols as with Rel(L).

A regular logical system L is strongly regular if it satisfies Boole(L), ∃-Quant(L),
gRel(L), and Repl(L). For logics L and L ′, we mean by L ≤fin L ′ that for
all finite symbol sets S, every L (S)-sentence is equivalent to an L ′(S)-sentence.
Similarly we define L ∼fin L ′.
(a) Give a precise formulation of gRel(L) for relational symbol sets.
(b) Using part (b) of the Main Lemma 3.4., prove: If L is a strongly regular logical

system with LI ≤fin L , LöSko(L), and LöSko-up(L), then L ∼fin LI.

3.8 Exercise. Show that a first-order sentence whose class of models is closed un-
der substructures is logically equivalent to a universal sentence. (For the converse,
see Corollary III.5.8.)
Hint: Let S be finite, ψ ∈ LI(S), ModS(ψ) be closed under substructures. For m ≥ 1
set ϕm :=

∨{ψm
B | B is an S-structure and B |= ψ} (cf. Exercise XII.3.14 for the

definition of ψm
B). Then |= ψ → ϕm, and ϕm is universal. Suppose ψ is not logically

equivalent to any ϕm. As in the proof of Theorem 3.5, find S-structures A and B
such that A |= ¬ψ , B |= ψ , and A is embeddable in B. So B has a substructure
isomorphic to A, which is not a model of ψ , a contradiction.

3.9 Exercise. Let P be a k-ary relation symbol which is not in the symbol set S, and
let Φ be a set of (S∪{P})-sentences. Φ defines P implicitly if for every S-structure A
and P1,P2 ⊆ Ak the following holds:

If (A,P1) |= Φ and (A,P2) |= Φ then P1 = P2.

The set Φ defines P explicitly if there is a ψ ∈ LS
k such that

XIII.4 Lindström’s Second Theorem 285

Φ |= ∀v0 . . .∀vk−1(Pv0 . . .vk−1 ↔ ψ).

Show the equivalence of (i) and (ii), i.e., Beth’s Definability Theorem:

(i) Φ defines P explicitly.
(ii) Φ defines P implicitly.

Hint: For the direction from (ii) to (i) consider, for n ≥ 0, the following formula:

χn :=
∨{ϕn

A,
k
a
| A is an S-structure, (A,PA) |= Φ , and PA k

a}.

Using the methods developed in this section, show that there is an n ∈ N for which
Φ |= ∀v0 . . .∀vk−1(Pv0 . . .vk−1 ↔ χn).

XIII.4 Lindström’s Second Theorem

In our considerations of logical systems we now pay special attention to syntactic
aspects. In this context we recall the following properties of first-order logic: For a
decidable symbol set S

– the S-sentences are concrete finite symbol strings each of which contains only
finitely many symbols from S,

– the set of S-sentences is decidable,
– operations such as negation, relativization and the replacement of function

symbols can be carried out effectively,
– the set of valid S-sentences is enumerable.

We shall consider these aspects for logical systems in general, thereby arriving at the
concept of an effective logical system. Within this framework we can then formu-
late and prove the result of Lindström mentioned in the introduction to this chapter
under (b).

When speaking of a decidable set, we understand it to be a set of words over a
suitable alphabet that is R-decidable in the sense of Definition X.2.5.

4.1 Definition. Let L be a logical system. L is called an effective logical system
if for every decidable symbol set S the set L(S) is decidable, and for every ϕ ∈ L(S)
there is a finite subset S0 of S such that ϕ ∈ L(S0).

4.2 Definition. Let L and L ′ be effective logical systems.

(a) L ≤eff L ′ if for every decidable S there is a computable function ∗ which
associates with every ϕ ∈ L(S) a sentence ϕ∗ ∈ L′(S) such that ModS

L (ϕ) =
ModS

L ′(ϕ∗).
(b) L ∼eff L ′ if L ≤eff L ′ and L ′ ≤eff L .

286 XIII Lindström’s Theorems

The logical systems LI, L w
II , LII, and LQ are effective, but Lω1ω is not. We have,

for instance, LI ≤eff L w
II , L w

II ≤eff LII.

4.3 Definition. A logical system L is said to be effectively regular if L is effec-
tive and if the following effective analogues of Boole(L), Rel(L), and Repl(L)
hold.

For every decidable symbol set S:

– There exists a computable function which assigns to every ϕ ∈ L(S) a sen-
tence ¬ϕ , and, in addition, a computable function which assigns to every ϕ
and ψ in L(S) a sentence (ϕ ∨ψ). (Here ¬ϕ , for instance, denotes an L(S)-
sentence ψ such that A |=L ψ iff not A |=L ϕ .)

– For every unary U , there is a computable function which associates with every
ϕ ∈ L(S) a sentence ϕU .

– There is a computable function which associates with every ϕ ∈ L(S) a sen-
tence ϕr ∈ L(Sr) (where Sr is chosen as a decidable symbol set).

The logical systems LI, L w
II , LII, and LQ are effectively regular.

Let L be an effectively regular logical system. We say that for L the set of valid
sentences is enumerable if for every decidable S, the set

{ϕ ∈ L(S) | |=L ϕ}
is enumerable.

Clearly, if L has an adequate proof calculus, then for L the set of valid sentences
is enumerable. In particular, for LI and for LQ the set of valid sentences is enumer-
able.

Lindström’s Second Theorem tells us that among the effectively regular logical sys-
tems with LöSko(L) there is no system which is both properly stronger than LI
and has an adequate proof calculus.

4.4 Lindström’s Second Theorem. Let L be an effectively regular logical sys-
tem such that LI ≤eff L . If LöSko(L) and if for L the set of valid sentences is
enumerable, then LI ∼eff L .

Proof. Let L satisfy the hypotheses of the theorem. We prove that L ≤eff LI in two
steps.

First, we show:

(+) For every decidable S and for every ψ ∈ L(S), there is a logically equivalent
first-order S-sentence ϕ .

Then we prove that the transition from ψ to ϕ can be carried out effectively: Given
a decidable S, we set up an algorithm which yields for every ψ ∈ L(S) a first-order
S-sentence with the same models.

XIII.4 Lindström’s Second Theorem 287

Since L is an effective logical system, we only need to give a proof of (+) for
finite decidable S (cf. Definition 4.1). Since (the effective variant of) Repl(L) holds
for L , we can assume S to be relational by an argument similar to that in the proof
of Lemma 1.4.

Therefore, let S be decidable, finite, and relational.

To prove (+) we assume, towards a contradiction, that ψ ∈ L(S) is a sentence which
is not logically equivalent to any first-order sentence. Then (a) or (b) in Lemma 3.4
holds. Part (a) says for S0 := S (note that S is finite) that there are S-structures A
and B such that A ∼= B, A |= ψ and B |= ¬ψ . Since this contradicts the isomor-
phism property in Definition 1.1 of a logical system, part (b) in Lemma 3.4 holds;
that is, for a suitable finite symbol set S+, containing S and a unary relation symbol
W , there is a sentence χ in L(S+) with (i) and (ii):

(i) In every model C of χ , WC is finite and nonempty.
(ii) For every m ≥ 1 there is a model C of χ such that WC has exactly m elements.

Thus, as C ranges over the models of χ , WC ranges over the finite sets (isomorphism
property!). We shall now see that we can use (i) and (ii), together with Trakhtenbrot’s
Theorem X.5.4, to conclude that for L the set of valid sentences is not enumerable,
in contradiction to our assumption on L . We argue as in the proof of the incom-
pleteness of second-order logic (cf. Theorem X.5.5).

By Trakhtenbrot’s Theorem X.5.4 there is a decidable symbol set S1 such that the
set of fin-valid first-order S1-sentences is not enumerable. We may assume that S1 is
relational and disjoint from S+.

Let ∗ be a computable function which associates with every first-order S1-sentence ϕ
a sentence ϕ∗ ∈ L(S1) that has the same models. Then for ϕ ∈ LS1

0 we have

(◦) ϕ is fin-valid iff |=L χ → (ϕ∗)W .

To prove this, we assume first that ϕ is fin-valid. If A is an (S+∪S1)-structure such
that A |=L χ , then W A is finite and nonempty by (i), and thus [W A]A|S1 |= ϕ . But
then [W A]A|S1 |=L ϕ∗, and hence A |=L (ϕ∗)W . The converse is obtained similarly
by applying (ii).

The equivalence (◦) enables us to obtain from an enumeration algorithm P for the
set of valid L(S+∪S1)-sentences an enumeration algorithm Q for the fin-valid first-
order S1-sentences, thus yielding a contradiction to Trakhtenbrot’s Theorem X.5.4.
The algorithm Q proceeds as follows: For n = 1,2,3, . . . the (lexicographically)
first n first-order S1-sentences ϕ1, . . . ,ϕn are generated, and the L(S+∪S1)-sentences
χ → (ϕ∗

1)
W , . . . ,χ → (ϕ∗

n)
W are formed. (Note that the map ∗ is computable and

that the operations of relativization and implication are effective.) Then, using P,
one generates the first n valid L(S+ ∪ S1)-sentences, listing those ϕi for which the
sentence χ → (ϕ∗

i)
W occurs. This finishes the proof of (+).

288 XIII Lindström’s Theorems

Now, given a decidable S, we describe an effective procedure which associates with
every sentence ψ ∈ L(S) a first-order S-sentence with the same models. Let P be
an enumeration algorithm for the set of valid L(S)-sentences, and ∗ a computable
function which assigns to every first-order S-sentence ϕ an L(S)-sentence ϕ∗ with
the same models.

Given ψ , proceed as follows: For n = 1,2,3, . . . use P to generate the first n valid
sentences ψ1, . . . ,ψn from L(S); then generate the (lexicographically) first n first-
order S-sentences ϕ1, . . . ,ϕn, and finally, form the L(S)-sentences ψ ↔ ϕ∗

1 , . . . ,
ψ ↔ ϕ∗

n . Check when there are i and j for the first time such that ψi = ψ ↔ ϕ∗
j

(by (+) this must eventually happen). Then let ϕ j be the ϕ associated with ψ . �
Lindström’s results initiated a series of investigations of properties of logical sys-
tems and relations between them, in a general setting (cf. [4]). In this way it is
possible to bring important aspects of such properties into better perspective, thus
gaining new insights into concrete logical systems, and even into first-order logic.
We illustrate this briefly, taking the Compactness Theorem as an example.

An ordering (A,<A) that contains no infinite descending chain

. . . <A a2 <
A a1 <

A a0

is said to be a well-ordering. All finite orderings are well-orderings, as are (N,<N),
and the ordering which results when (N,<N) is extended by adding an isomorphic
copy. On the other hand, (Z,<Z) and (Q,<Q) are not well-orderings.

For the following discussion let L be a regular logical system such that LI ≤ L .
A well-ordering (A,<A) is said to be L -accessible if there is an S with <∈ S and a
satisfiable L(S)-sentence ψ such that

– in every model B of ψ , (field <B,<B) is a well-ordering;
– there is a model B of ψ such that (A,<A)⊆ (field <B,<B).

Since LI ≤ L , all finite well-orderings are L -accessible. If Comp(L) holds then
no infinite well-ordering is L -accessible. For if a sentence ψ has a model A, where
(field <A,<A) is an infinite well-ordering, then one can show, by a method similar
to that used in Exercise VI.4.11, that ψ has a model B in which (field <B,<B) has
an infinite descending chain.

If one assumes LöSko(L) and strengthens the regularity conditions slightly, for
example, by demanding the relativizations to hold in a suitable way also for relation
symbols of larger arities,1 then we get the following equivalence:

not Comp(L) iff (N,<N) is L -accessible.

These considerations motivate us to look beyond the simple dichotomy “Comp(L)
– not Comp(L)”, and to make finer distinctions: the more (infinite) L -accessible

1 For further details see [4]. Here we only mention that the systems discussed in Chapter IX satisfy
these strengthened regularity conditions.

XIII.4 Lindström’s Second Theorem 289

well-orderings there are, the more the Compactness Theorem is violated for L .
As a measure for the violation one can take the “smallest” well-ordering which is
not L -accessible, the so-called well-ordering number of L . The study of well-
ordering numbers has led to a series of fruitful investigations (cf. [4]). In particular,
it turns out that for certain logical systems one can use arguments involving the
well-ordering number to compensate for the absence of the compactness property.

References

For textbooks we state the year of publication of the first edition.

1. K. R. Apt: Logic Programming. In: J. v. Leeuwen (Editor): Handbook of Theoretical Computer
Science, vol. B. Elsevier, Amsterdam-New York-Oxford-Tokyo 1990.

2. C. Baier and J.-P. Katoen: Principles of Model-Checking. MIT Press, Cambridge, MA 2008.
3. J. Barwise: Admissible Sets and Structures. Springer-Verlag, Berlin-Heidelberg-New York

1975.
4. J. Barwise and S. Feferman (Editors): Model-Theoretic Logics. Springer-Verlag, Berlin-

Heidelberg-New York-Tokyo 1985.
5. P. Benacerraf and H. Putnam (Editors): Philosophy of Mathematics. Selected Readings. Cam-

bridge University Press, Cambridge 21983.
6. B. Bolzano: Wissenschaftslehre, vol. II of the four-volume edition. J. E. von Seidel, Sulzbach

1837.
7. G. Cantor: Gesammelte Abhandlungen mathematischen und philosophischen Inhalts (edited

by E. Zermelo). Springer-Verlag, Berlin 1932.
8. C. C. Chang and H. J. Keisler: Model Theory. North-Holland Publishing Company, Amster-

dam-London 1973.
9. A. Church: A Note on the Entscheidungsproblem. The Journal of Symbolic Logic 1 (1936).

10. N. Cutland: Computability. Cambridge University Press, Cambridge 1980.
11. G. Frege: Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen

Denkens. Louis Nebert, Halle 1879.
12. M. R. Garey and D. S. Johnson: Computers and Intractability. A Guide to the Theory of NP-

Completeness. W. H. Freeman and Company, San Francisco 1979.
13. K. Gödel: Die Vollständigkeit der Axiome des logischen Funktionenkalküls. Monatshefte für

Mathematik und Physik 37 (1930).
14. K. Gödel: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Sys-

teme I. Monatshefte für Mathematik und Physik 38 (1931).
15. L. Henkin: The Completeness of the First-Order Functional Calculus. The Journal of Symbolic

Logic 14 (1949).
16. J. M. Henle and E. M. Kleinberg: Infinitesimal Calculus. MIT Press, Cambridge, MA 1979.
17. H. Hermes: Enumerability, Decidability, Computability. Springer-Verlag, Berlin-Heidelberg-

New York 1965.
18. H. Hermes: Introduction to Mathematical Logic. Springer-Verlag, Berlin-Heidelberg-New

York 1973.
19. A. Heyting: Intuitionism. An Introduction. North-Holland Publishing Company, Amsterdam

1961.
20. D. Hilbert and P. Bernays: Grundlagen der Mathematik I, II. Springer-Verlag, Berlin-

Heidelberg 1934/1939.

291

https://doi.org/10.1007/978-3-030-73839-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license

to Springer Nature Switzerland AG 2021

H.-D. Ebbinghaus et al., Mathematical Logic, Graduate Texts in Mathematics 291,

292 References

21. W. Hodges: Model Theory. Cambridge University Press, Cambridge 1993.
22. J. E. Hopcroft and J. D. Ullman: Introduction to Automata Theory, Languages, and Computa-

tion. Addison-Wesley Publishing Company, Reading 1979.
23. H. J. Keisler: Logic with the Quantifier “There exist uncountably many”. Annals of Mathe-

matical Logic 1 (1970).
24. H. J. Keisler: Model Theory for Infinitary Logic. North-Holland Publishing Company, Am-

sterdam-London 1971.
25. H. J. Keisler: Elementary Calculus: An Infinitesimal Approach. Dover Publications, New York

2011.
26. K. Kunen: Set Theory. An Introduction to Independence Proofs. North-Holland Publishing

Company, Amsterdam-New York-Oxford 1980.
27. A. Levy: Basic Set Theory. Springer-Verlag, Berlin-Heidelberg-New York 1979.
28. P. Lindström: On Extensions of Elementary Logic. Theoria 35 (1969).
29. J. W. Lloyd: Foundations of Logic Programming. Springer-Verlag, Berlin-Heidelberg-New

York 1984.
30. Y. Matiyasevich: Hilbert’s 10th Problem. MIT Press, Cambridge, MA 1993.
31. P. Odifreddi: Classical Recursion Theory. North-Holland Publishing Company, Amsterdam

1992.
32. C. H. Papadimitriou: Computational Complexity. Addison-Wesley Publishing Company,

Reading, MA 1994.
33. G. Peano: Arithmetices Principia, Novo Methodo Exposita. Fratres Bocca, Turin 1889.
34. A. Robinson: Non-Standard Analysis. North-Holland Publishing Company, Amsterdam-

London 1966.
35. H. Scholz and G. Hasenjaeger: Grundzüge der mathematischen Logik. Springer-Verlag,

Berlin-Göttingen-Heidelberg 1961.
36. R. M. Smullyan: First-Order Logic. Springer-Verlag, Berlin-Heidelberg-New York 1968.
37. H. Straubing: Finite automata, Formal Logic, and Circuit Complexity. Birkhäuser Boston Inc.,

Boston, MA, 1994.
38. A. Tarski: Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philosophica 1 (1936).
39. A. Tarski, A. Mostowski and R. M. Robinson: Undecidable Theories. North-Holland Publish-

ing Company, Amsterdam 1953.
40. W. Thomas: Languages, Automata, and Logic. In: G. Rozenberg and A. Salomaa, Eds: Hand-

book of Formal Languages, Vol. 3, Berlin-Heidelberg 1997.
41. K. Tent and M. Ziegler: A Course in Model Theory. Cambridge University Press, Cambridge

2012.
42. A. Turing: On Computable Numbers, with an Application to the Entscheidungsproblem. Pro-

ceedings of the London Mathematical Society 42 (1936/37) and 43 (1937).

English translations of parts of [6] and of [11], [13], and [14] can be found in From
Frege to Gödel, edited by J. van Heijenoort, Harvard University Press, Cambridge,
MA, 1967. The articles [13] and [14] are translated in Kurt Gödel: Collected Works,
Volume I (edited by S. Feferman a.o.), Oxford University Press, New York 1986.

List of Symbols

R 4

Z 5

A∗ 11

� 11

N 12

¬, ∧, ∨, →, ↔ 14

∀, ∃ 14

≡ 14

AS 14

S 14

Sgr, Seq, S∞ 14

T S 15

LS 16

var(t) 22

SF(ϕ) 22

free(ϕ) 24

LS
n 24

Sar, S<ar 27

N, N<, R, R< 27

β a
x , Ia

x 27

A×B 28

∨̇,
...∧, →̇, ↔̇, ¬̇ 29

I(t) 30

I |= ϕ 30

Φ |= ϕ 31

Φgr 31

|= ϕ 32

Sat ϕ , Sat Φ 32

ϕ =||= ψ 33

A |= ϕ[a0, . . . ,an−1] 35

tA[a0, . . . ,an−1] 35

A |= ϕ 35

A′|S 35

∏i∈I Ai 36

π : A∼=B 37

Q 39

A⊆B 39

[X]B 39

Φgrp 40

ϕ≥n 43

Φord 43

field <A 43

293

https://doi.org/10.1007/978-3-030-73839-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license

to Springer Nature Switzerland AG 2021

H.-D. Ebbinghaus et al., Mathematical Logic, Graduate Texts in Mathematics 291,

294 LIST OF SYMBOLS

Φpord 44

Φfd, Φofd 44

Φdgph, Φgph 44

Nσ 47

t t0 . . . tr
x0 . . .xr

, ϕ t0 . . . tr
x0 . . .xr

49

β a0 . . .ar
x0 . . .xr

, Ia0 . . .ar
x0 . . .xr

50

rk(ϕ) 53

∃=1xϕ 53

Φ |= 55

� Γ ϕ 57

(Ant), (Assm), (PC) 58

(Ctr), (∨A), (∨S), (TND) 59

(Ctr’), (Ch), (Cp) 60

(∃S), (∃A) 62

(≡), (Sub) 63

S 65

Φ � ϕ 65

Con Φ , Inc Φ 67

IΦ , TΦ , β Φ 72

free(Φ) 75

ModSΦ 86

A≡B 90

Th(A) 90

n 91

ZFC 103

ψ(y1, . . . ,yn) 103

ñ 105

ω 105

CH 106

Sr, Ar 112

Sg, Φg 114

Φrg 115

LS
II 134

LII, LI 134

L w
II 138

Lω1ω 138∨
Φ ,
∧

Φ 139

LQ 143

l(ζ) 149

PIR, PIR1 152

P : ζ → halt 154

P : ζ → ∞ 154

P : ζ → η 154

ξP 158

Π , Πhalt 158

SAT 161

P 161

NP 162

Φfs, Φfv 166

ΦPA 169

DerΦ 180

x ≡k y 182

S+ 183

N+ 183

A 194

Ta 194

τa 196

Am,n 196

ϕ(n
x | n

t) 206

T S
k , T Φ

k , TΦ
k 206

β Φ
k , IΦ

k 206

pvar(α) 217

PFn 217

α[b] 217

LIST OF SYMBOLS 295

AS 218

DNF, CNF 220

pT , pF 221

bΔ 224

Res(K), Res∞(K) 228

HRes(K), HRes∞(K) 232

GI(ϕ), GI(Φ) 236

ψF 237

Φ+, Φ− 239

tσ , ϕσ 242

ι 242

URes(K), URes∞(K) 249

GI(K), GI(K) 249

UHRes(K), UHRes∞(K) 251

dom(p), rg(p) 258

Part(A,B) 258

A∼= f B 260

(In)n∈N : A∼= f B 260

A∼=p B 260

Φdord 261

Φσ 262

A→ f B, A→p B 263

qr(ϕ) 265

A∼=m B, A≡m B 266

ϕn
B, ϕn

B,
r
b

266

r
a �→ r

b 267

A |=L ϕ 273

ModS
L (ϕ) 274

L ≤ L ′, L ∼ L ′ 274

Boole(L), Rel(L) 274

Repl(L) 275

LöSko(L), Comp(L) 275

Part(L) 283

LöSko-up(L) 284

∃-Quant(L) 284

gRel(L) 284

L ≤fin L ′, L ∼fin L ′ 284

L ≤eff L ′, L ∼eff L ′ 285

Subject Index

accept, 195
add-instruction, 153
Adequacy of the Sequent Calculus,

81
algorithm, 148
alphabet, 11, 149

of a language, 14
and, 13, 30, 33
antecedent, 56
Aristotle, 3, 81
arithmetic, 27, 168, 170

nonstandard model of, 92
Peano, 168
Presburger, 182
Skolem, 182
Theorem on the Undecidability of,

171
truth in, 179

arithmetical, 175
assignment, 27

propositional, 217
second-order, 134

automaton
Büchi, 203
deterministic finite, 196
finite, 194
non-deterministic finite, 194

automorphism, 41
axiomatic method, 181
axiomatizable

finitely, 169
register-, 169

axioms
independent system of, 89
system of, 89

back-property, 260
Barwise Compactness Theorem, 140
β -function, 172
Beth’s Definability Theorem, 285
bi-implication, 16
Bolzano, 37
Boole, 3
bound occurrence, 24
bounded in time

t-, 161
polynomially, 161

Büchi, 191
Büchi automaton, 203

calculus, 15, 18, 56, 168
calculus of terms, 15
Cantor, 105, 137, 261
cardinality

of the same, 105
CH, 137
chain

descending, 94
chain rule, 60
characteristic of a field, 87

297

https://doi.org/10.1007/978-3-030-73839-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license

to Springer Nature Switzerland AG 2021

H.-D. Ebbinghaus et al., Mathematical Logic, Graduate Texts in Mathematics 291,

298 SUBJECT INDEX

characterize
up to isomorphism, 47, 90

Church, 157, 165
Church’s Thesis, 157, 161
Church–Turing Thesis, 157
class

Δ -elementary, 87
elementary, 87
of models, 86

clause, 227
negative, 230
positive, 230
unifiable, 244

CNF, see conjunctive normal form
Cobham, 161
Cohen, 106
Coincidence Lemma, 34

of Propositional Calculus, 217
colloquial speech, 29
Compactness Theorem, 84, 91, 136,

138, 140
LQ-, 144
Barwise, 140
for Propositional Logic, 219

complete theory, 169
completeness, 71
completeness axiom, 84
Completeness Theorem, 81, 95, 109
complexity theory, 161
computability, 152

theory of, 148
computable, 152

register-, 156
computer science, 3, 162
configuration, 163
conjunction, 16, 139
conjunctive normal form, 129, 220,

221
connective, 7, 28, 220
consequence relation, 5, 7, 31, 37,

217
consistency of mathematics, 107,

181
consistent, 67
constant, 14

containing witnesses, 74
continuum hypothesis, 105, 137
contraposition, 60
correct rule, 57
correct sequent, 57
Correctness of the Sequent Calculus,

65
countable, 12

at most, 12

decidable, 148, 149
register-, 156

decide, 156
decision problem, 165
decision procedure, 149
declarative, 213
Dedekind’s Theorem, 47
definition, 122

explicit, 284
extension by, 123
implicit, 284

Δ -elementary class, 87
derivable, 57

H-, 231
UH-, 251

derivable in a calculus, 15
derivation, 15
DFA, 196
diagonal argument, 162
direct product, 28, 36
disjunction, 16, 139
disjunctive normal form, 125, 220,

221
DNF, see disjunctive normal form
domain, 26

Edmonds, 161
effective, 149
Ehrenfeucht game, 271
Ehrenfeucht’s Theorem, 272
elementarily equivalent, 90, 260
elementary class, 87
Elgot, 191
embeddable, 263

finitely, 263
partially, 263

SUBJECT INDEX 299

Entscheidungsproblem, 165
enumerable, 147, 150

register-, 156
enumerate, 156
enumeration procedure, 150
epistemology, 3, 98
equality, 13, 135

axioms for, 241
equation, 212
equivalence relation, 5, 42
equivalence structure, 5, 87
equivalent

for satisfaction, 127
logically, 32, 33, 218, 274

everyday language, 7
expansion, 35
extensional, 29

field, 44, 87
algebraically closed, 170
archimedean, 91
archimedean ordered, 139
ordered, 35, 44

finitely axiomatizable, 169
finitely embeddable, 263
finitely isomorphic, 260
finitistic, 180
first-order language, 9
first-order object, 9
Fixed Point Theorem, 177
follows from, 5, 6
for all, 13, 33
forall, 30
formal proof, 8
formalization, 41
formally provable, 56, 57
formula, 7, 16

atomic, 16
equality-free, 213
existential, 41
Horn, 36, 44
positive, 31
propositional, 216
term-reduced, 111
universal, 40

forth-property, 260
Fraı̈ssé’s Theorem, 263
Fraenkel, 103
free model, 210
free occurrence, 23
Frege, 3, 18
function, 26

arithmetical, 175
partial, 45

function symbol, 13
function variable, 135
functionally complete, 222

general unifier, 244
Gödel, 81, 106, 167, 172, 176
Gödel numbering, 158, 177
Gödel’s Completeness Theorem, 8,

81, 95, 109
Gödel’s First Incompleteness

Theorem, 179
Gödel’s Second Incompleteness

Theorem, 107, 180
graph, 44, 87, 234

connected, 88, 139, 269
directed, 44
of a function, 45, 101, 112

ground clause, 246
ground instance, 236, 249
group, 4, 87

free, 212
free abelian, 212
simple, 142
torsion, 46, 88, 139

group theory, 4, 147

halt-instruction, 153
halting problem, 159
Henkin, 81
Henkin’s Theorem, 74
Herbrand model, 215

minimal, 216
Herbrand structure, 215
Herbrand’s Theorem, 208
Hilbert, 3
Hilbert’s program, 3, 107, 180
hold, 30

300 SUBJECT INDEX

homomorphism, 210
Horn formula, 36, 44

negative, 224, 239
positive, 224, 239
propositional, 223
universal, 210

Horn sentence, 37
universal, 165, 211

identitas indiscernibilium, 135
if and only if, 13, 33
if-then, 13, 30, 33
iff, 20
implication, 16
incompleteness

of second-order logic, 167
Incompleteness Theorem

Gödel’s First, 179
Gödel’s Second, 107, 180

inconsistent, 67
independent, 36, 89
induction

on formulas, 19
on terms, 19
over a calculus, 18

induction axiom, 47, 92
induction schema, 169
inductive definition

on formulas, 22
on terms, 22

inductive proof, 18
inductive set, 105
inference, 7, 55
infinitary language, 138
infinitesimal, 93
input, 148
instance, 236

ground, 236
integers, 115
intensional, 29
interpretation, 27

syntactic, 116
intuitionist, 98
isomorphic, 37

m-, 266

finitely, 260
partially, 260

isomorphism, 37
partial, 258

Isomorphism Lemma, 37
isomorphism property, 273

jump-instruction, 153

label, 153
language

alphabet of a, 14
everyday, 7
first-order, 9, 16
formal, 7
infinitary, 138
many-sorted, 46
second-order, 9, 134

Leibniz, 3, 81, 135, 165
length, 149
lexicographic order, 150
liar paradox, 177
Lindström, 273
Lindström’s First Theorem, 282
Lindström’s Second Theorem, 286
literal, 227
Llull, 81, 165
Löb axioms, 181
logic

first-order, 16
mathematical, 3
monadic second-order, 190
MSO-, 190
second-order, 133, 167
weak monadic second-order, 190
weak second-order, 138, 143, 168
WMSO-, 190

logic programming, 205, 213, 252
logical system, 273

effective, 285
effectively regular, 286
regular, 275
strongly regular, 284

logically equivalent, 32, 33, 218, 274
Löwenheim, Skolem, and Tarski,

Theorem of, 86

SUBJECT INDEX 301

Löwenheim–Skolem Theorem, 83,
136, 138, 140

downward, 84
upward, 85

m-admissible, 193
mathematics, 3

classical, 98
consistency of, 107, 181
intuitionistic, 98
set-theoretical setup of, 98

Matiyasevich, 175, 181
matrix, 126
metalanguage, 18
model, 30, 35, 217

free, 210
minimal, 210, 224

model theory, 86
model-checking, 203
Modus ponens, 61
monadic second-order logic, 190
MSO-logic, 190

natural numbers, 105
negation, 16
negation complete, 74
NFA, 194
non-deterministic automaton, 194
non-deterministic register program,

162
nonstandard analysis, 93
nonstandard model of arithmetic, 92
normal form

conjunctive, 129, 220
disjunctive, 125, 220
prenex, 126, 238
Skolem, 127, 238

not, 13, 30
notion of proof, 55

object
first-order, 9
second-order, 9

object language, 18
operation, syntactic, 147
or, 13, 30

ordering, 43, 114
ω1-like, 143
dense, 261, 263
field of a, 43
partial, 43
partially defined, 43, 87
well-, 288

ordinal number, 105
output, 148

“P = NP”-problem, 162, 223
paradox

liar, 177
Skolem’s, 102

parameter, 23
partially embeddable, 263
partially isomorphic, 260
Peano, 18
Peano arithmetic, 168
Peano axioms, 47, 91, 99
Peano structure, 99, 105
philosophy, 3
philosophy of science, 4
platonism, 98
Polish notation, 23
polynomially bounded in time, 161
prefix, 126
prenex normal form, 126, 238
Presburger, 182
Presburger arithmetic, 182
Presburger’s Theorem, 184
print-instruction, 153
procedural, 213
procedure, 148

decision, 149
enumeration, 150

process, 148
program, 153

non-deterministic, 162
PROLOG, 213, 234, 242
proof, 4, 6, 32

notion of, 58, 66, 95
proposition, 7
propositional logic, 161, 216

language of, 216

302 SUBJECT INDEX

propositional variable, 216
provable, 7

formally, 57, 66

quantifier
for all, 7
number, 126
restricted, 42
there are at least countably many,

145
there are uncountably many, 143
there exists, 7
there exists exactly one, 53

quantifier elimination, 183
quantifier elimination in Th(N+)

Theorem on, 183
quantifier rank, 265
quantifier-free, 39, 125
quotient structure, 241

R-, see register-
rank, 53

modified, 270
recursion theory, 148
recursive, 157
recursively enumerable, 157
reduct, 35
reduct property, 273
register, 153
register machine, 153
register program, 153
register-axiomatizable, 169
register-computable, 156
register-decidable, 156
register-enumerable, 156
regular logical system, 275
relation, 5, 26

arithmetical, 175
relation symbol, 14
relation variable, 134
relational, 112
relativization, 115, 119
representable, 176
resolution, 227

H-, 231

U-, 246, 250
UH-, 251

Resolution Lemma, 228
resolution method, 226
Resolution Theorem, 228
resolution tree, 229
resolvent, 227

U-, 246
unification, 246

ring, 114
of integers, 115

Robinson, 226
rule, 18

connective, 58
correct, 57
derivable, 60
equality, 58, 61
list of rules in S, 65
quantifier, 58, 61
structural, 58

Russell, 3, 81

S-closed, 39
SAT, 161
satisfaction

equivalent for, 127
satisfaction relation, 30, 274
satisfiable, 32, 275

clause, 227
fin-, 166
formula, 32
propositional formula, 218
propositionally, 236
set of clauses, 227
set of formulas, 32

satisfy, 30, 217
second-order language, 9
second-order object, 9
self-referential, 177
semantic, 26
sentence, 24

of L , 273
separator, 243
sequent, 56

correct, 57

SUBJECT INDEX 303

sequent calculus, 57, 96
of propositional logic, 222
Theorem on the Adequacy of, 81

set
concept of, 100, 106

set theory, 181
background, 102
object, 102
system of axioms for, 100
Zermelo–Fraenkel axioms for, 103

Skolem, 103, 182
Skolem arithmetic, 182
Skolem normal form, 127, 238
Skolem’s paradox, 102
Skolem’s Theorem, 92
sort, 45
sort reduction, 46
spectrum, 45
statement

cardinality, 43
self-referential, 177

string, 11
empty, 11

strong
at least as, 274
equally, 274

strongly regular logical system, 284
structure, 4, 26

many-sorted, 45
quotient, 241

substitution
simultaneous, 49

Substitution Lemma, 51
substitutor, 242
substructure, 39, 284

generated, 39
Substructure Lemma, 40
subtract-instruction, 153
succedent, 56
successor arithmetic

weak monadic, 191
symbol, 11
symbol set, 14

relational, 112
syntactic, 26

syntactic interpretation, 116
associated, 122

syntactic operation, 56, 97
system of axioms, 6, 89

Tarski, 37
Tarski’s Theorem, 179
term, 15
term interpretation, 73, 206
term structure, 72, 206
term-reduced, 111
tertium non datur, 59, 98
theory, 168

complete, 169
of a structure, 90

theory of computability, 148
there exists, 13, 30
time complexity, 161
torsion group, 46, 88, 139
Trakhtenbrot, 167, 191
Trakhtenbrot’s Theorem, 167
transfinite induction, 105
tree automaton, 204
truth, 178
truth-function, 220
truth-value, 29
Turing, 153, 165

ultimately periodic, 188
uncountable, 12
undecidability

of arithmetic, 170, 171
of first-order logic, 163
of the halting problem, 159

underlining algorithm, 225
unifiable, 244
unification algorithm, 244
unification resolvent, 246
unifier, 244

general, 244
Lemma on the, 244

unit in a ring, 115
units

group of, 115
universal, 40, 210

304 SUBJECT INDEX

universe, 26, 99
urelement, 100, 105

valid, 32, 217, 275
fin-, 166

variable, 14
function-, 135
propositional, 216
relation, 134

vector space, 46

weak monadic second-order logic,
190

well-ordering, 288
well-ordering number, 289
Whitehead, 81
witness, 74
WMSO-logic, 190
word, 11

length of, 11

Zermelo, 103
Zorn’s Lemma, 80

	Preface
	Contents
	Part A
	Chapter I Introduction
	I.1 An Example from Group Theory
	I.2 An Example from the Theory of Equivalence Relations
	I.3 A Preliminary Analysis
	I.4 Preview

	Chapter II Syntax of First-Order Languages
	II.1 Alphabets
	II.2 The Alphabet of a First-Order Language
	II.3 Terms and Formulas in First-Order Languages
	II.4 Induction in the Calculi of Terms and of Formulas
	II.5 Free Variables and Sentences

	Chapter III Semantics of First-Order Languages
	III.1 Structures and Interpretations
	III.2 Standardization of Connectives
	III.3 The Satisfaction Relation
	III.4 The Consequence Relation
	III.5 Two Lemmas on the Satisfaction Relation
	III.6 Some Simple Formalizations
	III.7 Some Remarks on Formalizability
	III.8 Substitution

	Chapter IV A Sequent Calculus
	IV.1 Sequent Rules
	IV.2 Structural Rules and Connective Rules
	IV.3 Derivable Connective Rules
	IV.4 Quantifier and Equality Rules
	IV.5 Further Derivable Rules
	IV.6 Summary and Example
	IV.7 Consistency

	Chapter V The Completeness Theorem
	V.1 Henkin’s Theorem
	V.2 Satisfiability of Consistent Sets of Formulas (the Countable Case)
	V.3 Satisfiability of Consistent Sets of Formulas (the General Case)
	V.4 The Completeness Theorem

	Chapter VI The Löwenheim–Skolem Theorem and the Compactness Theorem
	VI.1 The Löwenheim–Skolem Theorem
	VI.2 The Compactness Theorem
	VI.3 Elementary Classes
	VI.4 Elementarily Equivalent Structures

	Chapter VII The Scope of First-Order Logic
	VII.1 The Notion of Formal Proof
	VII.2 Mathematics Within the Framework of First-Order Logic
	VII.3 The Zermelo–Fraenkel Axioms for Set Theory
	VII.4 Set Theory as a Basis for Mathematics

	Chapter VIII Syntactic Interpretations and Normal Forms
	VIII.1 Term-Reduced Formulas and Relational Symbol Sets
	VIII.2 Syntactic Interpretations
	VIII.3 Extensions by Definitions
	VIII.4 Normal Forms

	Part B
	Chapter IX Extensions of First-Order Logic
	IX.1 Second-Order Logic
	IX.2 The System Lω_1ω
	IX.3 The System L_Q

	Chapter X Computability and Its Limitations
	X.1 Decidability and Enumerability
	X.2 Register Machines
	X.3 The Halting Problem for Register Machines
	X.4 The Undecidability of First-Order Logic
	X.5 Trakhtenbrot’s Theorem and the Incompleteness of Second-Order Logic
	X.6 Theories and Decidability
	X.7 Self-Referential Statements and Gödel’s Incompleteness Theorems
	X.8 Decidability of Presburger Arithmetic
	X.9 Decidability of Weak Monadic Successor Arithmetic

	Chapter XI Free Models and Logic Programming
	XI.1 Herbrand’s Theorem
	XI.2 Free Models and Universal Horn Formulas
	XI.3 Herbrand Structures
	XI.4 Propositional Logic
	XI.5 Propositional Resolution
	XI.6 First-Order Resolution (without Unification)
	XI.7 Logic Programming

	Chapter XII An Algebraic Characterization of Elementary Equivalence
	XII.1 Finite and Partial Isomorphisms
	XII.2 Fraïssé’s Theorem
	XII.3 Proof of Fraïssé’s Theorem
	XII.4 Ehrenfeucht Games

	Chapter XIII Lindström’s Theorems
	XIII.1 Logical Systems
	XIII.2 Compact Regular Logical Systems
	XIII.3 Lindström’s First Theorem
	XIII.4 Lindström’s Second Theorem

	References
	List of Symbols
	Subject Index

