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Preface

What is a mathematical proof? How can proofs be justified? Are there limitations to
provability? To what extent can machines carry out mathematical proofs?

Only in the last century has there been success in obtaining substantial and satis-
factory answers. The present book contains a systematic discussion of these results.
The investigations are centered around first-order logic. Our first goal is Godel’s
completeness theorem, which shows that the consequence relation coincides with
formal provability: By means of a calculus consisting of simple formal inference
rules, one can obtain all consequences of a given axiom system (and in particular,
imitate all mathematical proofs).

A short digression into model theory will help to analyze the expressive power of
first-order logic, and it will turn out that there are certain deficiencies. For example,
first-order logic does not allow the formulation of an adequate axiom system for
arithmetic or analysis. On the other hand, this difficulty can be overcome—even
in the framework of first-order logic—by developing mathematics in set-theoretic
terms. We explain the prerequisites from set theory necessary for this purpose and
then treat the subtle relation between logic and set theory in a thorough manner.

Godel’s incompleteness theorems are presented in connection with several related
results (such as Trakhtenbrot’s theorem) which all exemplify the limitations of
machine-oriented proof methods. The notions of computability theory that are rel-
evant to this discussion are given in detail. The concept of computability is made
precise by means of the register machine as a computer model.

We use the methods developed in the proof of Godel’s completeness theorem to
discuss Herbrand’s Theorem. This theorem is the starting point for a detailed de-
scription of the theoretical fundamentals of logic programming. The corresponding
resolution method is first introduced on the level of propositional logic.

The deficiencies in expressive power of first-order logic are a motivation to look for
stronger logical systems. In this context we introduce, among others, second-order
logic and the infinitary logics. For each of them we prove that central facts which
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hold for first-order logic are no longer valid. Finally, this empirical fact is confirmed
by Lindstrom’s theorems, which show that there is no logical system that extends
first-order logic and at the same time shares all its advantages.

The book does not require special mathematical knowledge; however, it presupposes
an acquaintance with mathematical reasoning as acquired, for example, in the first
year of a mathematics or computer science curriculum.

For the present third English edition the text has been carefully revised. Moreover,
two important decidability results in arithmetic are now included, namely the de-
cidability of Presburger arithmetic and the decidability of the weak monadic theory
of the successor function. For the latter one, some facts of automata theory that are
usually taught in a computer science curriculum are developed as far as needed.

The authors have done their best to avoid typos and errors, but almost surely the
book will still contain some. Please let the authors know of any errors you find.
Corresponding corrections will be accessible online via the Springer page of the
book.

After the appearance of the first German edition of the book (1978), A. Ferebee
saw to the translation for the first English edition (1984), and J. Ward assisted in
preparing the final text of that edition. We are grateful to Margit Messmer who
translated the materials added in the second edition, and assisted with polishing the
English of the new sections in the present edition.

We thank Loretta Bartolini of Springer New York for a smooth and efficient coop-
eration, as well as the LaTex support team of Springer and the copy editor James
Waddington for valuable advice and help.

Freiburg and Aachen, February 2021 H.-D. Ebbinghaus
J. Flum
W. Thomas
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Chapter I
Introduction

Towards the end of the nineteenth century mathematical logic evolved into a sub-
ject of its own. It was the works of Boole, Frege, Russell, and Hilbert,! among
others, that contributed to its rapid development. Various elements of the subject
can already be found in traditional logic, for example, in the works of Aristotle or
Leibniz.> However, while traditional logic can be considered as part of philosophy,
mathematical logic is more closely related to mathematics. Some aspects of this
relation are:

(1) Motivation and Goals. Investigations in mathematical logic arose mainly from
questions concerning the foundations of mathematics. For example, Frege intended
to base mathematics on logical and set-theoretical principles. Russell tried to elim-
inate contradictions that arose in Frege’s system. Hilbert’s goal was to show that
“the generally accepted methods of mathematics taken as a whole do not lead to a
contradiction” (this is known as Hilbert’s program).

(2) Methods. In mathematical logic the methods used are primarily mathematical.
This is exemplified by the way in which new concepts are formed, definitions are
given, and arguments are conducted.

(3) Applications in Mathematics. The methods and results obtained in mathematical
logic are not only useful for treating foundational problems; they also increase the
stock of tools available in mathematics itself. There are applications in many areas
of mathematics, such as algebra and topology, but also in various parts of theoretical
computer science.

However, these mathematical features do not mean that mathematical logic is of in-
terest solely to mathematics or parts of computer science. For example, the mathe-
matical approach leads to a clarification of concepts and problems that are important
in traditional logic and also in other fields, such as epistemology or the philosophy

1 George Boole (1815-1864), Gottlob Frege (1848-1925), David Hilbert (1862-1943),
Bertrand Russell (1872-1970).

2 Aristotle (384-322 B.C.), Gottfried Wilhelm Leibniz (1646-1716).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 3
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4 I Introduction

of science. In this sense the restriction to mathematical methods turns out to be very
fruitful.

In mathematical logic, as in traditional logic, deductions and proofs are central ob-
jects of investigation. However, it is the methods of deduction and the types of
argument as used in mathematical proofs which are considered in mathematical
logic (cf. (1)). In the investigations themselves, mathematical methods are applied
(cf. (2)). This close relationship between the subject and the method of investigation,
particularly in the discussion of foundational problems, may create the impression
that we are in danger of becoming trapped in a vicious circle. We shall not be able
to discuss this problem in detail until Chapter VII, and we ask the reader who is
concerned about it to bear with us until then.

I.1 An Example from Group Theory

In this and the next section we present two simple mathematical proofs. They il-
lustrate some of the methods of proof used by mathematicians. Guided by these
examples, we raise some questions which lead us to the main topics of the book.

We begin with the proof of a theorem from group theory. We therefore require the
axioms of group theory, which we now state. We use o to denote the group multipli-
cation and e to denote the identity element. The axioms may then be formulated as
follows:

(Gl) Forall x,y,z: (xoy)oz=xo0(yoz).
(G2)Forallx: xoe=ux.
(G3) For every x there is a y such that xoy = e.

A group is a triple (G,0%, e%) which satisfies (G1)-(G3). Here G is a set, ¥ is
an element of G, and oS is a binary function on G, i.e., a function defined on all
ordered pairs of elements from G, the values of which are also elements of G. The
variables x,y, z range over elements of G, o refers to 09, and e refers to €%,

As an example of a group we mention the additive group of the reals (R,+,0),
where R is the set of real numbers, + is the usual addition, and O is the real number
zero. On the other hand, (R, -, 1) is not a group (where - is the usual multiplication).
For example, the real number O violates axiom (G3): there is no real number r such
that 0-r=1.

We call triples such as (R, +,0) or (R,-, 1) structures. In Chapter III we shall give
an exact definition of the notion of “structure.”

Now we prove the following simple theorem from group theory:

1.1 Theorem on the Existence of a Left Inverse. For every x there is a 'y such that
yox =e.
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Proof. Let x be chosen arbitrarily. By (G3) we have for suitable y,
(1) xoy=e.

Again from (G3) we get, for this y, an element z such that

) yoz=e.

We can now argue as follows:

yox=(yox)oe (by (G2))
=(yox)o(yoz) (from (2))
=yo(xo(yoz))  (by(Gl)
=yo((xoy)oz) (by (G1))

=yo(eoz) (from (1))
=(yoe)oz (by (G1))
=yoz (by (G2))
=e (from (2)).

Since x was arbitrary, we conclude that for all x there is a y such that yox=e. -3

The proof shows that in every structure where (G1), (G2), and (G3) are satisfied, i.e.,
in every group, the theorem on the existence of a left inverse holds. A mathematician
would also describe this situation by saying that the theorem on the existence of a
left inverse follows from, or is a consequence of the axioms of group theory.

1.2 An Example from the Theory of Equivalence Relations

The theory of equivalence relations is based on the following three axioms (xRy is
to be read as “x is equivalent to y”):

(E1) For all x: xRx.

(E2) For all x,y: If xRy, then yRx.

(E3) For all x,y, z: If xRy and yRz, then xRz.

Let A be a nonempty set, and let RA be a binary relation on 4, i.e., RA C A x A. For
(a,b) € R* we also write aR*b. The pair (A,R*) is another example of a structure.
We call R* an equivalence relation on A, and the structure (A,R*) an equivalence

structure, if (E1), (E2), and (E3) are satisfied. For example, (Z,Rs) is an equivalence
structure, where Z is the set of integers and

Rs={(a,b) | a,b € Z and b—a is divisible by 5}.

We now prove a simple theorem about equivalence relations.

3 From now on, | denotes the end of a proof.
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2.1 Theorem. If x and y are both equivalent to a third element, they are equivalent
to the same elements. More formally: For all x and vy, if there is a u such that xRu
and yRu, then for all z, xRz if and only if yRz.

Proof. Let x and y be given arbitrarily; suppose that for some u
(1) xRu and yRu.
From (E2) we then obtain
2 uRx and uRy.
From xRu and uRy we get, using (E3),
3) xRy,
and from yRu and uRx we likewise get (using (E3))
) YRx.
Now let z be chosen arbitrarily. If
5) XRz,
then, using (E3), we obtain from (4) and (5)
YRz.
On the other hand, if
(6) YRz,
then, using (E3), we get from (3) and (6)
xRz.
Thus the claim is proved for all z. —

As in the previous example, this proof shows that every structure (of the form
(A,RA)) which satisfies the axioms (E1), (E2), and (E3), also satisfies Theorem 2.1,
i.e., that Theorem 2.1 follows from (E1), (E2), and (E3).

L.3 A Preliminary Analysis

We now sketch some aspects which the two examples just given have in common.

In each case one starts from a system @ of propositions which is taken to be a system
of axioms for the theory in question (group theory, theory of equivalence relations).
The mathematician is interested in finding the propositions which follow from @,
where the proposition y is said to follow from @ if y holds in every structure which
satisfies all propositions in @. A proof of y from a system & of axioms shows that y
follows from .
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When we think about the scope of methods of mathematical proof, we are led to ask
about the converse:

(x) Is every proposition ¥ which follows from @ also provable from @?

For example, is every proposition which holds in all groups also provable from the
group axioms (G1), (G2), and (G3)?

The material developed in Chapters II through V and in Chapter VII yields an essen-
tially positive answer to (). Clearly it is necessary to make the concepts “proposi-
tion”, “follows from”, and “provable”, which occur in (x), more precise. We sketch
briefly how we shall do this.

(1) The Concept “Proposition.” Usually mathematicians use their everyday lan-
guage (e.g., English or German) to formulate their propositions. But since sentences
in everyday language are not, in general, completely unambiguous in their meaning
and structure, one cannot specify them by precise definitions. For this reason we
shall introduce a formal language L which reflects features of mathematical state-
ments. Like programming languages used today, L will be formed according to fixed
rules: Starting with a set of symbols (an “alphabet”), we obtain so-called formulas
as finite symbol strings built up in a standard way. These formulas correspond to
propositions expressed in everyday language. For example, the symbols of L will
include V (to be read “for all”), A (“and”), — (“if ... then”), = (“equal”) and vari-
ables like x,y and z. Formulas of L will be expressions like

Vxx=x, x=y, x=z, WaVWz((x=yAy=z) >x=2).

Although the expressive power of L may at first appear to be limited, we shall later
see that many mathematical propositions can be formulated in L. We shall even see
that L is, in principle, sufficient for all of mathematics. The definition of L will be
given in Chapter II.

(2) The Concept “Follows From” (the Consequence Relation). Axioms (G1), (G2),
and (G3) of group theory obtain a meaning when interpreted in structures of the form
(G,0Y,€%). In an analogous way we can define the general notion of an L-formula
holding in a structure. This enables us (in Chapter III) to define the consequence
relation: y follows from (is a consequence of) @ if and only if y holds in every
structure where all formulas of @ hold.

(3) The Concept “Proof.” A mathematical proof of a proposition y from a system
@ of axioms consists of a series of inferences which proceed from axioms of @ or
propositions that have already been proved, to new propositions, and which finally
ends with y. At each step of a proof mathematicians write something like “From ...
and _ _ _ one obtains directly that ...,” and they expect it to be clear to anyone
that the validity of ... and of _ _ _ entails the validity of .

An analysis of examples shows that the grounds for accepting such inferences are
often closely related to the meaning of connectives, such as “and”, “or”, or “if-then”,
and quantifiers, “for all” or “there exists”, which occur there. For example, this is the
case in the first step of the proof of Theorem 1.1, where we deduce from “for all x



8 I Introduction

there is a y such that xoy = ¢” that for the given x there is a y such that xoy = e. Or
consider the step from (1) and (2) to (3) in the proof of Theorem 2.1, where from
the proposition “xRu and yRu” we infer the left member of the conjunction, “xRu”,
and from “uRx and uRy” we infer the right member, “uRy”, and then using (E3) we
conclude (3).

The formal character of the language L makes it possible to represent these infer-
ences as formal operations on symbol strings (the L-formulas). Thus, the inference
of “xRu” from “xRu and yRu” mentioned above corresponds to the passage from the
L-formula (xRu A yRu) to xRu. We can view this as an application of the following
rule:

(+) One is allowed to pass from an L-formula (¢ A y) to the L-formula ¢.

In Chapter IV we shall give a finite system & of rules which, like (+), correspond to
elementary inference steps mathematicians use in their proofs.

A formal proof of the L-formula y from the L-formulas in @ (the “axioms”) consists
then (by definition) of a sequence of formulas in L which ends with y, and in which
each L-formula is obtained by application of a rule from & to the axioms or to
preceding formulas in the sequence.

Having introduced the precise notions, one can convince oneself by examples that
mathematical proofs can be imitated by formal proofs in L. Moreover, in Chapter V
we return to the question (x) at the beginning of this section and answer it positively,
showing that if a formula y follows from a set @ of formulas, then there is a proof
of ¥ from @, even a formal proof. This is the content of Gddel’s Completeness
Theorem.*

1.4 Preview

Godel’s Completeness Theorem forms a bridge between the notion of proof, which
is formal in character, and the notion of consequence, which refers to the meaning
in structures. In Chapter VI we show how this connection can be used in algebraic
investigations.

Once a formal language and an exact notion of proof have been introduced, we have
a precise framework for mathematical investigations concerning, for instance, the
consistency of mathematics or a justification of rules of inference used in mathe-
matics (Chapters VII and X).

Finally, the formalization of the notion of proof gives the possibility of using a
computer to carry out or check proofs. In Chapter X we discuss the scope and the
limitations of such machine-oriented methods.

4 Kurt Godel (1906-1978).
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Certain formulas in L can themselves be interpreted in an operational way. For ex-
ample, one can view an implication of the form “if ¢ then y” as an instruction to
go from ¢ to y. This interpretation of L-formulas as programs forms the basis of
logic programming, which is the starting point of certain computer languages in so-
called artificial intelligence. In Chapter XI we develop the fundamentals of this part
of “applied” logic.

In formulas of L the variables refer to the elements of a structure, for example, to the
elements of a group or the elements of an equivalence structure. In a given structure
we often call elements of its domain A first-order objects, while subsets of A are
called second-order objects. Since L only has variables for first-order objects (and
thus expressions such as “Vx” and “Jx” apply only to the elements of a structure),
we call L a first-order language.

Unlike L, the so-called second-order language also has variables which range over
subsets of the domain of a structure. Thus a proposition about a given group which
begins “For all subgroups...” can be directly formulated in the second-order lan-
guage. We shall investigate this language and others in Chapter IX. In Chapter XIII
we shall be able to show that no language with more expressive power than L en-
joys both an adequate formal concept of proof and other useful properties of L. From
this point of view L is a “best-possible” language; and this fact might explain the
dominant role which the first-order language plays in mathematical logic.
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Chapter II
Syntax of First-Order Languages

In this chapter we introduce the first-order languages. They obey simple, clear for-
mation rules. In Chapter VII we shall discuss whether, and to what extent, all math-
ematical propositions can be formalized in such languages.

II.1 Alphabets

By an alphabet A we mean a nonempty set of symbols. Examples of alphabets are
the sets A} = {0,1,2,...,9}, Ay = {a,b,c,...,z} (the alphabet of lower-case let-
ters), Az ={o, [,a,d,x, f,),(}, and Ay = {co,c1,c2,...}.

We call finite sequences of symbols from an alphabet A strings or words over A.
By A* we denote the set of all strings over A. The length of a string { € A* is the
number of symbols, counting repetitions, occurring in {. The empty string is also
considered to be a word over A. It is denoted by [, and its length is zero.

Examples of strings over A, are
softly, xdbxaz.

Examples of strings over A3 are

[f(x)dx, xoffa.

Suppose A = {|,||}, that is, A consists of the symbols a;:= |! and ay:= ||. Then
the string ||| over A can be read in three ways: as ajajay, as ajaz, and as axa;. In
the sequel we allow only those alphabets A where any string over A can be read in
exactly one way. The alphabets A, ..., A4 given above satisfy this condition.

We now turn to questions concerning the number of strings over a given alphabet.

! Here we write “a;:= |~ instead of “aj =
right-hand side of the equation.

” in order to make it clear that a; is defined by the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 11
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12 II Syntax of First-Order Languages

We call a set M countable if it is not finite and if there is a surjective map « from
the set of natural numbers N = {0,1,2,...} onto M. We can then represent M as
{a(n) | n € N} or, if we write the arguments as indices, as {0, | n € N}. A set M is
called at most countable if it is finite or countable.

1.1 Lemma. For a nonempty set M the following are equivalent:

(a) M is at most countable.
(b) There is a surjective map o: N — M.
(¢) There is an injective map 3: M — N.

Proof. 2 We shall prove (b) from (a), (c) from (b), and (a) from (c).

(b) from (a): Let M be at most countable. If M is countable, (b) holds by definition.
For finite M, say M = {ay,...,a,} (M is nonempty), we define o.: N — M by

. a; if 0<i<n,
o(i):= )
ap otherwise.

Clearly, « is surjective.

(c) from (b): Let oc: N — M be surjective. We define an injective map f: M — N
by setting, fora € M,

B(a) := the least i such that (i) = a.

(a) from (c): Let B: M — N be injective and suppose M is not finite. We must show
that M is countable. To do this we define a surjective map o : N — M inductively as
follows:

o(0) := the a € M with the smallest image under f in N,
o(n+1) := the a € M with the smallest image under f3 greater

than B(a(0)),...,B(a(n)).

Since the images under 8 are not bounded in N, « is defined for all n € N, and
clearly every a € M belongs to the range of c. n

With Lemma 1.1 one can easily show that every subset of an at most countable
set is at most countable and that, if M and M, are at most countable, then so is
M UM,;. The set R of real numbers is neither finite nor countable: it is uncountable
(cf. Exercise 1.3).

We shall later show that finite alphabets suffice for representing mathematical state-
ments. Moreover, the symbols may be chosen as “concrete” objects so that they can
be included on the keyboard of a typewriter. Often, however, one can improve the
transparency of an argument by using a countable alphabet such as A4, and we shall

2 The goal of our investigations is, among other things, a discussion of the notion of proof. There-
fore the reader may be surprised that we use proofs before we have made precise what a mathe-
matical proof is. As already mentioned in Chapter I, we shall return to this apparent circularity in
Chapter VII.
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do this frequently. For some mathematical applications of methods in mathemat-
ical logic it is also useful to consider uncountable alphabets. The set {c, | r € R},
which contains a symbol ¢, for every real number r, is an example of an uncountable
alphabet. We shall justify the use of such alphabets in Section VIL.4.

1.2 Lemma. If A is an at most countable alphabet, then the set A* of strings over
A is countable.

Proof. Let p, be the nth prime number: py =2, py =3, p» =5, and so on. If A is
finite, say A = {ay,...,a,}, where a, .. .,a, are pairwise distinct, or if A is count-
able, say A = {ag,ay,az,...}, where the g; are pairwise distinct, we can define the
map f: A* — N by

B(D) = 1; B(ai() ...a,»r) = p0i0+1 ,prir+1.

Clearly S is injective and thus A* is at most countable (cf. 1.1(c)). Since ag, apao,
apaopdo, . .. are all in A* it cannot be finite; hence it is countable. =

1.3 Exercise. Let oc: N — R be given. For a,b € R such that a < b show that there
is a point ¢ in the closed interval I = [a, D] such that ¢ ¢ {a(n) | n € N}. Conclude
from this that /, and hence R also, are uncountable. Hint: By induction define a
sequence I =1y D I} 2 ... of closed intervals such that o (n) ¢ I,,.-; and use the fact
that (), eq o # 0.

1.4 Exercise. (a) Show that if the sets My, Mj,... are at most countable, then the
union |J,cy M, is also at most countable.
(b) Use (a) to give a different proof of Lemma 1.2.

1.5 Exercise. Let M be a set. Show that there is no surjective (and hence no bi-
jective) map from M onto the power set &?(M) := {B | B C M} of M. Hint: For
o:M— P (M), theset {a € M |a¢ ofa)} is not in the range of o.

I1.2 The Alphabet of a First-Order Language

We wish to construct formal languages in which we can formulate, for example, the
axioms, theorems, and proofs about groups and equivalence relations which we con-
sidered in Chapter I. In that context the connectives, the quantifiers, and the equality
relation played an important role. Therefore, we shall include the following symbols
in the first-order languages: — (for “not”), A (for “and”), V (for “or”), — (for “if-
then”), <> (for “if and only if”), V (for “for all”’), 3 (for “there exists”), = (as symbol
for equality). To these we shall add variables (for elements of groups, elements of
equivalence structures, etc.) and, finally, parentheses as auxiliary symbols.

To formulate the axioms for groups we also need certain symbols specific to group
theory, e.g., a binary function symbol, say o, to denote the group multiplication, and
a symbol, say e, to denote the identity element. We call e a constant symbol, or
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simply a constant. For the axioms of the theory of equivalence relations we need a
binary relation symbol, say R.

“__

Thus, in addition to the “logical” symbols such as “—” and “A”, we need a set S of
relation symbols, function symbols, and constants which varies from theory to the-
ory. Each such set S of symbols determines a first-order language. We summarize:

2.1 Definition. The alphabet of a first-order language contains the following sym-
bols:

(a) vo,vi1,Vv2,... (variables);

(b) =, A,V,—, <> (not, and, or, if-then, if and only if);

(¢) V,3 (for all, there exists);

(d) = (equality symbol);

(e) ),( (parentheses);

(f) (1) forevery n>1 a (possibly empty) set of n-ary relation symbols;
(2) for every n>1 a (possibly empty) set of n-ary function symbols;
(3) a (possibly empty) set of constants.

By A we denote the set of symbols listed in (a) through (e). Let S be the (possibly
empty) set of symbols from (f). The symbols listed under (f) must, of course, be
distinct from each other and from the symbols in A.

The set S determines a first-order language (cf. Section 3). We call Ag:= AUS the
alphabet of this language and S its symbol set.

We have already become acquainted with some symbol sets: Sgr := {0, e} for group
theory and Seq := {R} for the theory of equivalence relations. For the theory of
ordered groups we could use {o,e,R}, where the binary relation symbol R is now
taken to represent the ordering relation. In certain theoretical investigations we shall
use the symbol set S.., which contains the constants cg,cy, ¢z, ..., and for every n>1
countably many n-ary relation symbols Rfj, R},R5,... and n-ary function symbols

Jo 105

Henceforth we shall use the letters P,Q,R, ... for relation symbols, f,g, A,... for
function symbols, ¢, ¢, c1, ... for constants, and x,y, z, . .. for variables.

II.3 Terms and Formulas in First-Order Languages

Given a symbol set S, we call certain strings over Ag formulas of the first-order
language determined by S. For example, if S = Si,, we want the strings

e=e, eovi = vy, Iile=eAvi =)

to be formulas, but not
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The formulas ¢ = e and e o v; = v, have the form of equations. Mathematicians
call the strings to the left and to the right of the equality symbol ferms. Terms are
“meaningful” combinations of function symbols, variables, and constants (together
with commas and parentheses). Clearly, to give a precise definition of formulas and
thus, in particular, of equations, we must first specify more exactly what we mean
by terms.

In mathematics, terms are written in different notation, such as f(x), fx, x+e,
g(x,e), gxe. We choose a parenthesis-free notation, as with fx and gxe.

To define the notion of term we give instructions (or rules) which tell us how to
generate the terms. (Such a system of rules is often called a calculus.)

3.1 Definition. S-ferms are precisely those strings in Ay which can be obtained by
finitely many applications of the following rules:

(T1) Every variable is an S-term.

(T2) Every constant in S is an S-term.

(T3) If the strings #1,...,t, are S-terms and f is an n-ary function symbol in S, then
ft1...t, is also an S-term.

We denote the set of S-terms by 7'5.

If £ is a unary and g a binary function symbol and S = {f,g,c,R}, then

gvofgvac

is an S-term. First of all, ¢ is an S-term by (T2) and vy and v4 are S-terms by (T1).
If we apply (T3) to the S-terms v4 and ¢ and to the function symbol g, we see that
gvac is an S-term. Another application of (T3) to the S-term gv4c and to the function
symbol f shows that fgvsc is an S-term, and a final application of (T3) to the S-
terms vp and fgv4c and to the function symbol g shows that gvy fgvac is an S-term.

We say that one can derive the string gvo fgvac in the calculus of terms (correspond-
ing to §). The derivation just described can be given schematically as follows:

l.c (T2)
2. v (T1)
3. (T1)

4. gvac (T3) applied to 3. and 1. using g
5. fgvac  (T3) applied to 4. using f
6. gvofgvac (T3) applied to 2. and 5. using g.

The string directly following the number at the beginning of each line can be ob-
tained in each case by applying a rule of the calculus of terms; applications of (T3)
use terms obtained in preceding lines. The information at the end of each line indi-
cates which rules and preceding terms were used. Clearly, not only the string in the
last line, but all strings in preceding lines can be derived and, hence, are S-terms.
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The reader should show that the strings gxgxfy and gxgfxfy are S-terms for arbi-
trary variables x and y. Here we give a derivation to show that the string oxoey is an
Sop-term.

1. x (T1)
2.y (T1)
3.e (T2)
4. ocey (T3) applied to 3. and 2. using o

5. oxoey (T3) applied to 1. and 4. using o.

Mathematicians usually write the term in line 4 as eoy, and the term in line 5 as
xo (eoy). For easier reading we shall sometimes write terms in this way as well.

Using the notion of term we are now able to give the definition of formulas.

3.2 Definition. S-formulas are precisely those strings of A which are obtained by
finitely many applications of the following rules:

(F1) If 7y and t, are S-terms, then #; = t» is an S-formula.

(F2) Ifty,...,t, are S-terms and R is an n-ary relation symbol in S, then Rty .. .1, is
an S-formula.

(F3) If ¢ is an S-formula, then —¢ is also an S-formula.

(F4) If ¢ and y are S-formulas, then (@ A y), (¢ V), (¢ — V), and (¢ < V)
are also S-formulas.

(F5) If ¢ is an S-formula and x is a variable, then Vx¢ and Jx¢ are also S-formulas.

S-formulas derived using (F1) and (F2) are called atomic formulas because they are
not formed by combining other S-formulas. The formula —¢ is called the negation
of ¢, and (P A V), (¢ V y), and (¢ — ) are called, respectively, the conjunction,
disjunction, implication, and bi-implication of ¢ and y.

By LS we denote the set of S-formulas. This set is called the first-order language
associated with the symbol set S.

Instead of S-terms and S-formulas, we often speak simply of terms and formulas
when the reference to S is either clear or unimportant. For terms we use the letters
t,to,11,. .., and for formulas the letters ¢, y,. ...

We now give some examples. Let S = Seq = {R}. We can express the axioms for the
theory of equivalence relations by the following formulas:

VV()RVQV()
VVQVV] (RV()V] — Rvy V())
YvoVviVva ((Rvovi ARviva) — Rvova).

One can verify that these strings really are formulas by giving appropriate deriva-
tions (as was done above for terms) in the calculus of Seq-formulas. For the first two
formulas we have, for example,

(1) 1. Rwvyvg (F2)
2. VYvoRvovg (F5) applied to 1. using V¥, vg
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2) 1. Rvovi (F2)
2. Rviv (F2)
3. (Rvovi — Rviv) (F4) applied to 1., 2. using —
4. Yvi(Rvovi — Rvivg) (F5) applied to 3. using V, v,
5. WYwoVvi(Rvovi — Rvivg) (F5) applied to 4. using V, vy.

In a similar way readers should convince themselves that, for unary f, binary g,
unary P, ternary Q, and variables x, y, and z, the following strings are {P,Q, f,g}-
formulas:

(1) Vy(Pz — Qxxz)

(2) (Pgxfy — Ix(x=xAx=x))

(3) VzVz3z0xyz.

In spite of its rigor the calculus of formulas has “liberal” aspects: we can quantify
over a variable which does not actually occur in the formula in question (as in (1)),
we can join two identical formulas by means of a conjunction (as in (2)), or we can
quantify several times over the same variable (as in (3)).

For better legibility we shall frequently use an abbreviated or modified notation for
terms and formulas. For example, we shall write the Seq-formula Rvovy as voRv|
(compare this with the notation 2 < 3). Moreover, we shall often omit parentheses
if they are not essential in order to avoid ambiguity, e.g., the outermost parentheses
surrounding conjunctions, disjunctions, etc. Thus, we may write @ A y for (@ A ).
In the case of iterated conjunctions or disjunctions we shall agree to associate to the
left, e.g., @ A w A x will be understood to mean ((¢ A w) A x). Finally, A and V shall
bind more strongly than —. Thus Vx(¢@ A y — x) will stand for Vx((@ A y) — x).
The reader should always be aware that expressions in the abbreviated form are
no longer formulas. Once again we emphasize that we need an exact definition of
formulas to have a precise notion of mathematical statement in our analysis of the
notion of proof.

Perhaps the following analogy with programming languages will clarify the situa-
tion. When writing a program one must be meticulous in following the grammatical
rules for the programming language, because a computer can process only a for-
mally correct program. But programmers use an abbreviated notation when devising
or discussing programs in order to express themselves more quickly and clearly.

We have used = for the equality symbol in first-order languages in order to make
statements of the form ¢ = x =y (“¢ is the formula x = y”) easier to read.

For future use we note the following:
3.3 Lemma. IfS is at most countable, then TS and LS are countable.

Proof. If § is at most countable, then so is Ag, and hence by Lemma 1.2 the set A
is countable. Since T and LS are subsets of Aj they are also at most countable. On
the other hand, T and LS are infinite because 7 contains the variables VO, V1, V2,
and LS contains the formulas vy = vg, v = vy, vo = va,... (even if S = 0). —
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With the preceding observations the languages L have become the object of in-
vestigation. In this investigation we use another language, namely everyday English
augmented by some mathematical terminology. In order to emphasize the difference
in the present context, the formal language LS is called the object language (since
it is the object of the investigations); the language English (the language in which
the investigations are carried out) is called the metalanguage. In another context,
for example in linguistic investigations, everyday English could be an object lan-
guage. Similarly, first-order languages can play the role of metalanguages in certain
set-theoretical investigations (cf. Section VII.4.3).

Historical Note. G. Frege [11] developed the first comprehensive formal language.
He used a two-dimensional system of notation which was so complicated that his
language never came into general use. The formal languages used today are based
essentially on those introduced by G. Peano® [33].

I1.4 Induction in the Calculi of Terms and of Formulas

Let S be a set of symbols and let Z C A be a set of strings over Ag. In the case where
Z =TS or Z = LS we described the elements of Z by means of a calculus. Each rule
of such a calculus either says that certain strings belong to Z (e.g., the rules (T1),
(T2), (F1), and (F2)), or else permits the passage from certain strings {i,..., &, to
a new string ¢ in the sense that, if {i,...,{, all belong to Z, then ¢ also belongs
to Z. The way such rules work is made clear when we write them schematically, as
follows:

Ciyeos G
7z

By allowing n = 0, the first sort of rules mentioned above (“premise-free” rules) is
included in this scheme. Now we can write the rules for the calculus of terms as
follows:

(T —: (T2) — ifces

,...,ly
fti...t,

When we define a set Z of strings by means of a calculus € we can then prove
assertions about elements of Z by means of induction over €. This principle of
proof corresponds to induction over the natural numbers. If one wants to show that
all elements of Z have a certain property P, then it is sufficient to show that

(T3) if f € Sand f is n-ary.

3 Guiseppe Peano (1858-1939).
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for every rule

Ciyeos G
@ ¢

of the calculus €, the following holds: whenever {,...,{, are
derivable in € and have the property P (“induction hypothe-
sis™), then { also has the property P.

Hence in the case n = 0 we must show that { has the property P.

This principle of proof is evident: In order to show that all strings derivable in €
have the property P, we show that everything derivable by means of a “premise-
free” rule (i.e., n = 0 in (I)) has the property P, and that P is preserved under the
application of the remaining rules. This method can also be justified using the prin-
ciple of complete induction for natural numbers. For this purpose, one defines, in
an obvious way, the length of a derivation in € (cf. the examples of derivations in
Section 3), and then argues as follows: If the condition (I) is satisfied for P, one
shows by induction on m that every string which has a derivation of length m has the
property P. Since every element of Z has a derivation of some finite length, P must
hold for all elements of Z.

In the special case where € is the calculus of terms or the calculus of formulas, we
call the proof procedure outlined above proof by induction on terms or on formulas,
respectively. In order to show that all S-terms have a certain property P it is sufficient
to show:

(T1) Every variable has the property P.

(T2)" Every constant in S has the property P.

(T3)" If the S-terms 11,...,t, have the property P, and if f € S is n-ary, then
ft1...t, also has the property P.

In the case of the calculus of formulas the corresponding conditions are

(F1)" Every S-formula of the form 7; = 1, has the property P.

(F2)" Every S-formula of the form Rt ...z, has the property P.

(F3)" If the S-formula ¢ has the property P, then —¢ also has the property P.

(F4)" 1f the S-formulas ¢ and y have the property P, then the formulas (¢ A y),
(eVv), (¢ — y), and (¢ <> ) also have the property P.

(F5)" If the S-formula @ has the property P and if x is a variable, then Vx¢ and
Jx¢ also have the property P.

We now give some applications of this method of proof.

4.1. (a) For all symbol sets S, the empty string [ is neither an S-term nor an S-
formula.
(b) (1) oisnotan Sg-term.
(2) oovy is not an Sy -term.
(¢) Forall symbol sets S, every S-formula contains the same number of right paren-
theses ) as of left parentheses (.



20 II Syntax of First-Order Languages

Proof. (a) Let P be the property on Ag which holds for a string  iff 4 ¢ is nonempty.
We show by induction on terms that every S-term has the property P, and leave the
proof for formulas to the reader.

(T1), (T2)': Terms of the form x or ¢ (with ¢ € S) are nonempty.

(T3): Every term formed according to (T3) begins with a function symbol, and
hence is nonempty. (Note that we do not need to use the induction hypothesis.)

(b) We leave (1) to the reader. To prove (2), let P be the property on A;gr which

holds for a string & over Ag,, iff { is distinct from o ov;. We show by induction on
terms that every Sg-term is distinct from o o v;. The reader will notice that we start
using a more informal presentation of inductive proofs.

t =x,t =e: Thent is distinct from the string oov;.

t =ot1tp: If ot1tp = oovy, then, by (a), we would have r; = o and , =v;. Butt; =o
contradicts (1).

(c) First, one shows by induction on terms that no S-term contains a left or right
parenthesis. Then one considers the property P over A%, which holds for a string {
over Ag iff { has the same number of right parentheses as left parentheses, and one
shows by induction on formulas that every S-formula has the property P. We give
some cases here as examples:

¢ =1t =1, where #; and f, are S-terms: By the observation above there are no
parentheses in ¢, thus P holds for ¢.

¢ = —y, where y has the property P by induction hypothesis: Since ¢ does not
contain any parentheses except those in y, ¢ also has the property P.

@ = (Y Ax), where P holds for y and x by induction hypothesis: Since ¢ contains
one left parenthesis and one right parenthesis in addition to the parentheses in Y
and Y, the property P also holds for ¢.

¢ = Vxy, where Y has the property P by induction hypothesis: The proof here is
the same as in the case ¢ = —y. =

Next, we want to show that terms and formulas have a unique decomposition into
their constituents. We refer to a fixed symbol set S. The following two lemmas
contain some preliminary results needed for this purpose.

4.2 Lemma. (a) For all termst and t', t is not a proper initial segment of t' (i.e.,
there is no { distinct from O such that t{ =1t).
(b) For all formulas @ and @', @ is not a proper initial segment of ¢'.

We confine ourselves to the proof of (a), and consider the property P, which holds
for a string 7 iff

for all terms ¢, ¢’ is not a proper initial segment of 7 and 7 is not a proper
initial segment of 7',

(*)

* Throughout “iff” is an abbreviation for “if and only if”.
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Using induction on terms, we show that all terms ¢ have the property P.

t = x: Let ¢’ be an arbitrary term. By 4.1(a), ¢’ cannot be a proper initial segment of
x, for then ¢ would have to be the empty string (1. On the other hand, one can easily
show by induction on terms that x is the only term which begins with the variable x.
Therefore, ¢ cannot be a proper initial segment of ’.

t = c: The argument is similar.

t = ft1...t, and (x) holds for #1,...,2,: Let ¢’ be an arbitrary fixed term. We show
that ¢ cannot be a proper initial segment of ¢. Otherwise there would be a { such
that

(1 C#0 and r=1'C.

Since ¢’ begins with f (for ¢ begins with f), t' cannot be a variable or a constant,
thus # must have been generated using (T3). Therefore it has the form f7] ..., for
suitable terms ¢#{,...7,. From (1) we have

2) ftio..ty=fty...1,C,
and from this, canceling the symbol f, we obtain
3) t.ty=11...0,C.

Therefore 1 is an initial segment of tl or vice versa. Since #; satisfies (x) by induction
hypothesis, neither of these can be a proper initial segment of the other. Thus t; = 1.
Cancelling #; on both sides of (3) we obtain

4) ty...ty=1th...1,C.
Repeatedly applying the argument leading from (3) to (4) we finally obtain
O=2¢.

This contradicts (1). Therefore ¢ cannot be a proper initial segment of . The proof
that # cannot be a proper initial segment of ¢’ is analogous. —

Applying Lemma 4.2, in a similar way one obtains
4.3 Lemma. (a) Ifti,...,t,andt],...,t,, are terms, and if

!

footy=1]...1,

m?

then n =m and t; =t for 1<i<n.
®) Ifi,...,0, and @},..., @, are formulas, and if

(Pl---q)n:(P{-'-(pr/n’
then n =m and @; = @/ for 1<i<n.

Using Lemma 4.2 and Lemma 4.3, one can easily prove
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4.4 Theorem. (a) Every term is either a variable, a constant, or a term of the
form fty...t,. In the last case the function symbol f and the termsty,...,t, are
uniquely determined.

(b) Every formula is of the form

(Ot1r =t or Q) Rty...ty or 3)—@ or 4 (pAy) or (5)(pVy)
or 6)(@—=w) or (D(+y) or 8)Vxe or (9)3Ixo,

where the cases (1)—(9) are mutually exclusive and where the following are
uniquely determined: the terms t1,t> in case (1), the relation symbol R and the
terms ty,...,t, in case (2), the formula @ in case (3), the formulas ¢ and y in

@), (5), (6), (7), and the variable x and the formula @ in (8) and (9). n

Theorem 4.4 asserts that a term or a formula has a unique decomposition into its
constituents. Thus, as we shall now show, we can give inductive definitions on terms
or formulas. For example, to define a function for all terms it will be sufficient

(T1)" to assign a value to each variable;
(T2)"" to assign a value to each constant;

(T3)"" for every n-ary f and for all terms ?q,...,t, to assign a value to the term
ft1...t, assuming that values have already been assigned to the terms
1,0y

Each term is assigned exactly one value by (T1)”" through (T3)" . We show this by
means of induction on terms as follows.

t = x: By Theorem 4.4(a) the term ¢ is not a constant and does not begin with a
function symbol. Therefore, it is assigned a value only by an application of (T1)".
Thus ¢ is assigned exactly one value.

t = c: The argument is analogous to the preceding case.

t = ft...t,, and each of the terms #1,...,7, has been assigned exactly one value:
To assign a value to ¢ we can only use (T3)", by Theorem 4.4(a). Since, again by
Theorem 4.4(a), the ¢; are uniquely determined, # is assigned a unique value.

We now give some examples of inductive definitions.

4.5 Definition. (a) The function var (more precisely, vars), which associates with
each S-term the set of variables occurring in it, can be defined as follows:

var(x) := {x}
var(c) 1= 0
var(fty...t,) := var(f;) U...Uvar(z,).

(b) The function SF, which assigns to each formula the set of its subformulas, can
be defined by induction on formulas as follows:

SE(t1 =1) == {1 =0}
SE(Rty ...ty) :=={Rt;...1,}
SF(=¢) := {~¢} USF(¢)
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SF((@+y)) :={(@*y)} USF(@) USF(y) forx=A,V,—, <
SE(Vx¢) := {Vx¢} USF(o)
SF(3xp) := {3x@} USF(9).

In these examples the set-theoretical notation allows a concise formulation. A means
of defining the preceding notions by calculi is indicated in the following exercise.

4.6 Exercise. (a) Let the calculus €, consist of the following rules:

. y
x x’ Yy fti...t,

if feSisn-aryandi€ {l,...,n}.

Show that, for all variables x and all S-terms ¢, x is derivable in €, iff x € var(z).
(b) Give a result for SF analogous to the result for var in (a).

4.7 Exercise. Alter the calculus of formulas by omitting the delimiting parentheses
in the formulas introduced in (F4) of Definition 3.2, e.g., by writing “@ A y” in-
stead of “(¢ A ). So, for example, ) := JvgPvo A Qv is a {P,Q}-formula in this
new sense. Show that the analogue of Theorem 4.4 no longer holds, and that the
corresponding definition of SF yields both SF(yx) = {x,Pvo A Qvi, Pvy,Qv; } and
SE(x) = {x, 3voPvo, Pvo, Qv }, so that SF is no longer a well-defined function.

4.8 Exercise (Parenthesis-Free, or So-Called Polish Notation for Formulas). Let S
be a symbol set and let A’ be the set of symbols given in Definition 2.1(a)—(d). Let
A% := A’ US. Define S-formulas in Polish notation (S-P-formulas) to be all strings
over A which can be obtained by finitely many applications of the rules (F1), (F2),
(F3), and (F5) from Definition 3.2, and the rule (F4)’:

(F4)’ If ¢ and y are S-P-formulas, then AQy, VoY, — @y, and <> @y are
also S-P-formulas.

Prove the analogues of Lemma 4.3(b) and Theorem 4.4(b) for S-P-formulas.

4.9 Exercise. Letn > 1 and lett,...,t, € TS. Show that at each place in the word
1y ...t, exactly one term starts, i.e., if 1 <i < length of #1...1,, there are uniquely
determined &,1 € A% and ¢ € TS such that length of § =i— 1 and 1...1, = §11).

I1.5 Free Variables and Sentences

Let x, y and z be distinct variables. Consider the atomic subformulas of the {R}-
formula

¢ :=Zx(Ryz A Vy(=y = xV Ryz)).

The occurrences of the variables y and z marked with single underlining are not
quantified, i.e., not in the scope of a corresponding quantifier. Such occurrences are
called free, and, as we shall see later, the variables there act as parameters. The
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occurrences of the variables x and y marked with double underlining shall be called
bound occurrences. (Thus the variable y has both free and bound occurrences in ¢.)

We give a definition by induction on formulas of the set of free variables in a for-
mula @; we denote this set by free(¢). Again, we fix a symbol set S.

5.1 Definition.

free(ny = ) = var(r;) Uvar(p)

free(Pt; ...t,) := var(t;) U---Uvar(t,)

free(—o) = free(¢)

free((¢ * 1//)) = free(p) Ufree(y) for x = A, V,—, <>
free(Vxo) = free(@) \ {x}

free(3xo) = free(@) \ {x}.

The reader should use this definition to determine the set of free variables in the
formula ¢ at the beginning of this section (S = {R}). We do this here for a simpler
example. Again, let x, y, and z be distinct variables.

free((Ryx — Yy—y =z)) = free(Ryx) Ufree(Vy—y = 2)

= {xy U({y,z\ )
= {x,y,z}.

Formulas without free variables (“parameter-free” formulas) are called sentences.
For example, Jvg —vy = vy is a sentence.

Finally, we denote by L} the set of S-formulas in which the variables occurring free
are among vo, ..., Vy—1:

L3 :={¢@| ¢ is an S-formula and free(¢) C {vo,...,vy_1}}.
In particular Lg is the set of S-sentences.

5.2 Exercise. Show that the following calculus €, permits to derive precisely those
strings of the form x¢ for which ¢ € L and x does not occur free in ¢.

if 11,6, € TS and x ¢ var(t;) Uvar(t);

XHh=nbh
—— ifReSisnary,ty,...,t, € TS and x ¢ var(t;) U--- Uvar(t,);
X Rt;...t,
X ¢
al (P; f v for x = AV, —, <>;
X -0 x (p*y)
xVx(p; xEIx(p;
x Qo . . x Q@ .
poy if x #£y; e if x #y.
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Chapter III
Semantics of First-Order Languages

Let R be a binary relation symbol. The {R}-formula
(1) VVQRVQV()

is, at present, merely a string of symbols to which no meaning is attached. The
situation changes if we specify a domain for the variable vy and if we interpret the
binary relation symbol R as a binary relation over this domain. There are, of course,
many possible choices for such a domain and relation.

For example, suppose we choose N for the domain, take “Vvp” to mean “for all
n € N” and interpret R as the divisibility relation RN on N. Then clearly (1) becomes
the (true) statement

foralln € N, RNnn,
i.e., the statement
every natural number is divisible by itself.

We say that the formula YvoRvovg holds in (N ,RN).

But if we choose the set Z of integers as the domain and interpret R as the “smaller-
than” relation RZ on Z, then (1) becomes the (false) statement

foralla € Z, R%qaq,
i.e., the statement
for every integer a, a < a.
We say that the formula VvoRvovo does not hold in (Z,R”).
If we consider the formula
Ivo(Rvivo ARvova)

in (Z,R”), we must also interpret the free variables v; and v, as elements of Z. If
we interpret vi as 5 and v, as 8 we obtain the (true) statement

there is an integer a such that 5 < a and a < 8.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 25
H.-D. Ebbinghaus et al., Mathematical Logic, Graduate Texts in Mathematics 291,
https://doi.org/10.1007/978-3-030-73839-6_3


http://crossmark.crossref.org/dialog/?10.1007/978-3-030-73839-6_3&domain=pdf

26 III Semantics of First-Order Languages

If we interpret v; as 5 and v; as 6, we get the (false) statement
there is an integer a such that 5 < a and a < 6.

The central aim of this chapter is to give a rigorous formulation of the notion of
interpretation and precisely define when an interpretation yields a true (or false)
statement. This allows us to define in an exact way the consequence relation, which
we mentioned in Chapter L.

The definitions of “term”, “formula”, “free occurrence”, etc., given in Chapter II,
involve only formal (i.e., grammatical) properties of symbol strings. We call these
concepts synfactic. On the other hand, the concepts introduced in this chapter de-
pend on the meaning of symbol strings also (for example, on the meaning in struc-
tures, as in the case above). Such concepts are called semantic concepts.

IIL.1 Structures and Interpretations

Let A be asetand n > 1. An n-ary function on A is a map whose domain is the set A"
of n-tuples of elements from A, and whose values lie in A. By an n-ary relation R
on A we mean a subset of A". Instead of writing (ay,...,a,) € R, we shall often
write Raj . ..a,, and we shall say that the relation R holds for ay, ..., a,. According
to this definition, the divisibility relation on N is the set

{(n,m) | n,m € N and there is k € N with n-k = m},
and the relation “smaller-than” on 7Z is the set

{(a,b) |a,b € Z and a < b}.

In the examples given earlier, the structures (N,RY) and (Z,R”) were determined
by the domains N and Z and by the binary relations R and R” as interpretations of
the symbol R. We call (N,R"Y) and (Z,R%) {R}-structures, thereby specifying the
set of interpreted symbols, in this case {R}.

Consider once more the symbol set Sgr = {0, e} of group theory. If we take the real
numbers R as the domain and interpret o as the addition + over R and e as the ele-
ment 0 of R, then we obtain the Sg-structure (R, +-,0). In general an S-structure 2
is determined by specifying:

(a) adomain A,

(b) (1) an n-ary relation on A for every n-ary relation symbol in S,
(2) an n-ary function on A for every n-ary function symbol in S,
(3) an element of A for every constant in S.

We combine the separate parts of (b) by a map with domain S and define:
1.1 Definition. An S-structure is a pair 2( = (A, a) with the following properties:

(a) A is a nonempty set, the domain or universe of 2.
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(b) aisamap defined on S satisfying:
(1) for every n-ary relation symbol R in S, a(R) is an n-ary relation on A,
(2) for every n-ary function symbol f in S, a(f) is an n-ary function on A,
(3) for every constant ¢ in S, a(c) is an element of A.

Instead of a(R), a(f), and a(c), we shall frequently write R, ¥, and ¢%, or sim-
ply R4, f4, and . For structures 2,B,... we shall use A,B,... to denote their
domains. Instead of writing an S-structure in the form 20 = (A, a), we shall often
replace a by a list of its values. For example, we write an {R, f, g}-structure as
A= (A,R¥, /2, ¢%).

In investigations of arithmetic the symbol sets
Sar :={+,-,0,1} and S5 :={+,-,0,1,<}

play a special role, where + and - are binary function symbols, 0 and 1 are con-
stants, and < is a binary relation symbol. Henceforth, we shall use 1 to denote
the Sy-structure (N, +N,-N 0N 1N) where + and - are the usual addition and
multiplication on N and OY and 1V are the numbers zero and one, respectively.

N = (N, 41,00 1, <),

where <" denotes the usual ordering on N, is an example of an S5 -structure. Simi-
larly we set

Ri=(R,+5, B 0OR 1R) and N :=(R,+8, B 0R 1R <F),

We shall often omit the superscripts ¥, %, ... from +N, 48 . <N <R Tt will, how-
ever, be clear from the context whether, for example, + is intended to denote the
function symbol, the addition on N, or the addition on R.

The interpretation of variables is given by a so-called assignment.

1.2 Definition. An assignment in an S-structure 2 is a map B: {v, |[n € N} — A
from the set of variables into the domain A.

Now we can give a precise definition of the notion of interpretation:

1.3 Definition. An S-interpretation J is a pair (2, ) consisting of an S-structure 2
and an assignment f3 in 2.

When the particular symbol set S in question is either clear or unimportant, we
shall simply speak of structures and interpretations instead of S-structures and S-
interpretations.

If B is an assignment in 2(, a € A, and x is a variable, then let ﬁ% be the assignment
in 20 which maps x to a and agrees with 8 on all variables distinct from x:

- {ﬁ(y) ify #x

a if y=ux.

For J = (2, B) let 3% = (Q[»B%)
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In the introduction to this chapter we gave some examples showing how an S-
formula can be read in everyday language once an S-interpretation has been given.
It is useful to practice reading formulas under interpretations.

<
ar?

(%) A= (N,+,-,0,1,<) and B(v,) =2nforn>0,

For example, if § = S;;, and the interpretation J = (2, §) is given by

then the formula vy - (v +v2) = v4 (actually: -v, +vivy = vy) reads “4- (2+4) =8,
and the formula Yvy3v; vy < vy (actually: Yvo3Iv) <vgvy) reads “for every natural
number there is a larger natural number.”

1.4 Exercise. Let J be the interpretation defined above in (). How do the following
formulas read with this interpretation?

(a) Ivovo+vo =Wy (d) YwoTvivg =y

(b) Ivgvo-vo =vy (e) YvoVviTva(vo < vaAva < vp).

(¢) vivg=w;
1.5 Exercise. Let A be a finite nonempty set and S a finite symbol set. Show that
there are only finitely many S-structures with A as the domain.

1.6 Exercise. For S-structures 20 = (A, a) and B = (B, b) let 2 x B, the direct prod-
uct of A and B, be the S-structure with domain

AxB:={(a,b)|acA,beB},

which is determined by the following conditions:
for n-ary R in S and (ay,by),...,(an,b,) €A X B,
R*®(ay,by)...(an,by) iff R¥ay...a, and R®by...by;
for n-ary f in S and (ay,b1),..., (an,by) € AXB,
PR B ((ar,b1), ..., (@nbn)) == (Far,....an), £ (b1, ..., by));
and for c € S,
c

2AxB . (Cgl,c%).

Show: (a) If the Sy -structures 2 and 5 are groups, then 2( x ‘B is also a group.

(b) If 2 and *B are equivalence structures, then 2[ x 9B is also an equivalence struc-
ture.

(c) If the Sy-structures 2l and B are fields, then 2( x B is not a field.

II1.2 Standardization of Connectives

When we define the notion of satisfaction in the next section we shall refer to the
meaning of the connectives “not”, “and”, “or”, “if-then”, and “if and only if”. In
ordinary language their meanings vary. For example, “or” is sometimes used in an
inclusive sense and at other times in the exclusive sense “either-or”. However, for
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our purposes it is useful to fix a standard meaning: We shall always use “or” in the
inclusive sense, that is, a compound proposition whose constituents are connected
by “or” is true (has the truth-value T) iff at least one of the constituents is true; it is
false (has the truth-value F) iff both constituents are false. For example, we specify
in Definition 3.2 below that a formula (¢ V y) is assigned the truth-value 7 under
an interpretation J if and only if ¢ is assigned the truth-value 7" under J or y is
assigned the truth-value 7" under J. Because of our fixed standard meaning we have
that (¢ V y) is assigned the truth-value 7 under J if and only if at least one of the
formulas @, y is assigned 7 under J.

According to our convention, the truth-value of a proposition compounded by “or”
depends only on the truth-value of its constituents. Thus we can use a function

Vi {T,F} x {T,F} — {T,F}

to capture the meaning of “or”; the table of values (“truth-table”) is as follows:

We proceed in a similar way with the connectives “and”, “if-then”, “if and only if”,
and “not”. The truth-tables for the functions A, =, <+, and - are:

[ A= ] e |-
T T|T|T|T T|F
T F|F|F|F F|T
F T|F|T|F
F F|F|T|T

These conventions correspond to mathematical practice.

Connectives for which the truth-value of compound propositions depends only on
the truth-values of the constituents are called extensional. Thus we use the con-
nectives “not”, “and”, “or”, “if-then”, and “if and only if”” extensionally. In collo-
quial speech, however, these connectives are often not used extensionally. Consider,
for example, the statements “John fell ill and the doctor gave him a prescription,”
and “The doctor gave John a prescription and he fell ill.” By contrast with the ex-
tensional case, the truth-values of these compound statements also depend on the
temporal relation expressed by the order of the two components (we speak of an

intensional usage).

When we restrict ourselves to using the connectives extensionally, we sacrifice cer-
tain expressive possibilities of informal language. Experience shows, however, that
this restriction is unimportant as far as the formalization of mathematical assertions
is concerned. Furthermore, we will show in Section XI.4 that all other extensional
connectives can be defined from the connectives we have chosen.
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2.1 Exercise. Show for arbitrary x,y € {T,F}:
@ = (xy) =V(2(x),y);

(B) A (xy) = =(V(5(x), = ());

© ¢ (xy) = A(=(xy), = ().

II1.3 The Satisfaction Relation

The satisfaction relation makes precise the notion of a formula being true under an
interpretation. Again we fix a symbol set S. By “term”, “formula”, or “interpreta-
tion” we always mean “S-term”, “S-formula”, or “S-interpretation”. As a prelim-
inary step we associate with every interpretation J = (2(, 8) and every term ¢ an
element J(¢) from the domain A. We define J(¢) by induction on terms.

3.1 Definition. (a) For a variable x let J(x) := f(x).

(b) For a constant ¢ € S let J(c) := c*.

(c) For an n-ary function symbol f € S and terms #1,...,t, let

I(ftre ) = f2(3(0), -, I ().
As an illustration, if § = S, and J = (A, B) with % = (R,+,0) and B(vo) = 2,
B(v2) =6, then T(vgo (eovy)) =T(vo) +T(eovs) =2+ (0+6) =8.
Now, using induction on formulas ¢, we give a definition of the relation J is a model

of @, where J is an arbitrary interpretation. If J is a model of ¢, we also say that J
satisfies @ or that ¢ holds in J, and we write J = .

3.2 Definition of the Satisfaction Relation. For all interpretations J = (2, ) we

define
TJEHh=n (iff ! J(t)=3(t2)

JERy...t, iff  R*3(r)...3(t,) (i.e., R* holds for J(t),...,3(t,))
JE=-e :iff notJ = ¢
JE=(pAy)  iff JEeandJ =y

JE(evy) iff JEeordEw

JE(p—vy) iff ifJ=o, thenJ =y
JE(p«vy) iff JEeifandonlyif J =y

J = Vxo (iff forallac A, 3¢ ¢

JE 3xe (iff there is an a € A such that 3¢ = ¢.

For the definition of 3% see Section 1.

Given a set @ of S-formulas, we say that J is a model of @ and write J = & if
JEo@forall ¢ € @.

! For “iff” see the footnote on p. 20; a colon in front of “iff” indicates that the left-hand side is
defined by the right-hand side.



II1.4 The Consequence Relation 31

By going through the individual steps of Definition 3.2 readers should convince
themselves that J = ¢ if and only if ¢ becomes a true statement under the inter-
pretation J. The steps in the definition involving quantifiers are illustrated by the fol-
lowing example. Again, let S = Sg; and J = (2, B) with A = (R,+,0) and (x) =9
for all x. Then we have

JEYwvoe=vy iff forallreR: jv% Evpoe=
iff forallreR: r4+0=r.
3.3 Exercise. Let P be a unary relation symbol and f be a binary function symbol.
For each of the formulas
Vv fvovy =vo,  oVvifvovi =vi,  Ivo(Pvo AVVIPfvovy)
find an interpretation which satisfies the formula and one which does not satisfy it.

3.4 Exercise. A formula which does not contain —,—, or <> is called positive.
Show that for every positive S-formula there is an S-interpretation which satisfies it.
Hint: One can, for example, use a domain consisting of one element.

II1.4 The Consequence Relation

Using the notion of satisfaction we can state exactly when a formula is a conse-
quence of a set of formulas. Again, we assume a symbol set S is given.

4.1 Definition of the Consequence Relation. Let @ be a set of formulas and ¢ a
formula. We say that

Q is a consequence of ® (written: ® = @)  iff
every interpretation which is a model of @ is also a model of ¢.?
Instead of “{y} = ¢” we shall also write “y = ¢”.

We have already sketched some examples of the consequence relation in Chapter 1.
Now we can formulate Theorem I.1.1 (existence of a left inverse in groups) as

Dy = VvpIviviovg =e,
where
¢gr = {VV()VVlVVQ (VO OV]) OoVy =Vyp©O (V1 o Vz)7
Yvgvgoe =vy, YvoIvivgov) =e}.

2 We use the symbol |= for both the satisfaction relation (J = ¢) and for the consequence relation
(@ = ). The symbol preceding “I="" (either for an interpretation, such as J, or for a set of formulas,
such as @) determines the meaning.
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To show that a formula ¢ is not a consequence of a set of formulas @, it is sufficient
to give an interpretation which satisfies every formula in & but fails to satisty ¢.
For example, one shows

(1 not @y = Yvo¥vivoovy = viovg

by giving as an interpretation a nonabelian group & with an arbitrary assignment of
variables to elements of &. Analogously, one can use an abelian group to show

2) not @y = ~VvoVvivgovy =viovy.
With (1) and (2) we see that
not @ = ¢
does not necessarily imply
D E 0.

In Chapter I it became clear, both by examples and in an informal way, that when ¢
can be proved from a system of axioms @ then ¢ is a consequence of @. There we
raised the question as to what extent the consequences of a system of axioms can be
obtained by mathematical proofs. The precise definitions of concepts given in this
and the next chapter lay the foundation for a rigorous discussion of this question. In
Chapter V we obtain the fundamental result that the consequence relation @ |= ¢
can always be established by means of a mathematical proof. We shall see that such
a proof consists of elementary steps which, moreover, can be described in a purely
formal way (that is, syntactically).

Using the notion of consequence we are now able to define the notions of validity,
satisfiability, and logical equivalence.

4.2 Definition. A formula ¢ is valid (written: = @) iff 0 = ¢.

Thus a formula is valid if and only if it holds under all interpretations. For example,
all formulas of the form (¢ V —¢) or Ixx = x are valid.

4.3 Definition. A formula ¢ is satisfiable (written: Sat ¢) iff there is an interpreta-
tion which is a model of ¢. A set of formulas @ is satisfiable (written: Sat ®) iff
there is an interpretation which is a model of all the formulas in .

4.4 Lemma. For all @ and all ¢,

PEo¢ iff not Sat PU{-¢}.
In particular, ¢ is valid iff —@ is not satisfiable.

Proof. @ = ¢
iff every interpretation which is a model of @ is also a model of ¢

iff there is no interpretation which is a model of @ but not a model of ¢
iff there is no interpretation which is a model of @ U {—¢}
iff not Sat U {—¢}. =
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4.5 Definition. The formulas ¢ and y are said to be logically equivalent (written:
e=lFy) iff ¢Eyandyl=o.

Thus the formulas ¢ and y are logically equivalent iff they are valid under the same
interpretations, that is, iff = @ <> y.

It is immediately evident from the definition of the notion of satisfaction, together
with the truth-tables for connectives, that the following formulas are logically equiv-
alent:

eAy and —(-@V-y)

+) ¢ —y and ~QV Y
@<y and ~(@VY)V (2@ V-y)
Vx¢  and —3x—o.

Therefore, we can dispense with the connectives A, —, and <, and the quantifier V.
More precisely, we define a map * by induction on formulas, which associates with
every formula ¢ a formula ¢* such that ¢* is logically equivalent to ¢ and does not
contain A,—, <>, or V:

¢* = ¢ if ¢isatomic

(= <P)* = "
(pVy) = " Vy"
(PAY)" = =(=@"Vy")
(@—=y) = —p"Vy”
(@ )" == =(Q" V") Va(ne*Voyr)
(Fxe)* = Ixe*
(Vx@)* = —Jx—e*.

Using (+) one can easily prove that * has the desired properties.

In general, a formula ¢ is easier to read than the corresponding ¢*, as is clear
from (+). But because of the logical equivalence of ¢ and ¢* we do not lose ex-
pressive power when we exclude the symbols A,—, <>, and V from our first-order
languages. This simplifies our investigations of the languages; in particular, proofs
by induction on formulas will be shorter. Thus we make the following conventions:

(1) In the sequel we restrict ourselves to formulas in which only the connectives —
and \ and the quantifier 3 occur; i.e., in the common alphabet A (cf. Defini-
tion I1.2.1) of the first-order languages we omit the symbols A, —, <+, and V. In
Definition I1.3.2 we restrict the cases (F4) and (F5) to the introduction of formulas
of the form (¢ V y) and 3x@, respectively. Finally, in the definition of the notion of
satisfaction we eliminate the cases corresponding to A, —, <>, and V.

(2) Nevertheless we shall sometimes retain the symbols A, —, <+, V when writing
formulas. Such “formulas ¢ in the old style” should now be understood as abbre-
viations for @*; for example, Vx(Px A Qx) should be understood as an abbreviation
for —=Ix——(—=Px V-Qx).
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We close this section with a lemma which gives an exact formulation of the — in-
tuitively clear — fact that the satisfaction relation between an S-formula ¢ and an
S-interpretation J depends only on the interpretation of the symbols of S occurring
in @, and on the variables occurring free in @.

4.6 Coincidence Lemma. Let J; = (204,31) be an Sy-interpretation and J, =
(2, B2) be an Sy-interpretation, both with the same domain, i.e., A = Ay. Put
S:=851N8S,.

(a) Lett be an S-term. If 31 and J, agree’on the S-symbols occurring in t and on
the variables occurring in t, then J\(t) = J(t).
(b) Let ¢ be an S-formula. If J1 and J, agree on the S-symbols and on the variables

occurring free in @, then (31 = @ iff J2 = ¢).
Proof. (a) We use induction on S-terms.
t = x: By hypothesis, B (x) = B2(x) and therefore J; (x) = B (x) = B2 (x) = Ja(x).
t = c¢: Similarly.
t=fti...t, (f €Snaryandt,...,t, € T5):
Jiftr.ta) = fml(jl(tl)a J1(tn))
= fm‘ J2(t1),...,T2(ty)) (by induction hypothesis)
= /"0 (tl)v J2(ta))  (by hypothesis, f*1 = f*)

I
=
[’}
—~
\
AR

(b) We use induction on S-formulas and treat the cases ¢ = Rty ...t, (R € S n-ary,
Hyeosty €TS), @ =y, and @ = Ixy.

JiERy .1, iff RMT(1)... T30 (t)

iff  RM3y(t1)... Ja(ta)  (by (a))

iff  R™J5(11)...J2(t,) (by hypothesis, R¥1 = R%2)

iff Ty =Ry

JiE-y iff notd Ey
iff notJ, =y (by induction hypothesis)
iff 3, -y
JiE3xy  iff thereisana € Ajsuchthat ;¢ =y
iff thereisana € Ay (=A) such that 3¢ = v
iff 7, = vy

To show the equivalence between the first and the second line, apply the induction
hypothesis to v, J; %, and Jz%; note that, because free(y) C free(¢) U {x}, the

33 and J, agree on k € S or on x if k%1 = k%2 or By (x) = Ba(x), respectively.
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interpretations 31% and 32% agree on all symbols occurring in y and all variables
occurring free in Y. —

In particular, the Coincidence Lemma says that, for an S-formula ¢ and an S-
interpretation J = (21, ), the validity of ¢ under J depends only on the assignments
for the finitely many variables occurring free in ¢ (and, of course, on the interpre-
tation of the symbols of S in (). If these variables are among vo,...,v,_1, i.e., if
@ € L3, itis, at most, the B-values a; = B(v;) fori =0,...,n— 1 which are signifi-
cant. Thus, instead of (2, B) = @, we shall often use the more suggestive notation

A = @lag, ..., an—1].

Similarly, for an S-term ¢ such that var(z) C {vo,...,v, 1} we write t%[aq, ...,a, 1]
instead of J(7).

If ¢ is a sentence, i.e., if ¢ € L3, we can choose n = 0 and write

A= o,

without even mentioning an assignment. In that case we say that 2 is a model of ¢.
For a set of sentences @, 2 = @ means that 2 = ¢ for every ¢ € .

4.7 Definition. Let S and S’ be symbol sets such that S C §'; let 2 = (A, a) be an
S-structure, and 2’ = (A’,a’) be an §'-structure. We call 2 a reduct (more precisely:
the S-reduct) of 2’ and write 2l = 2'|g iff A = A’ and a and o’ agree on S. We say
that 2" is an expansion of 2 iff 2 is a reduct of 2.

The ordered field 8= of real numbers as an Sy-structure is an expansion of the
field R of real numbers as Sy-structure: R = R<|s,.

If 2L = 2’|, then it follows from the Coincidence Lemma that for every S-formula @
whose free variables are among vy, ...,v,—1, and for all ay,...,a,—1 € A,

A= olag,...,an—1] iff A E@lag,...,an-1]

To see that this holds we choose : {v,, | m € N} — A so that B(v;) = a; fori <n,
and we apply the Coincidence Lemma for J; = (2, ) and J, = (', 8); 71 and J,
agree on the symbols occurring in ¢ and on the variables occurring free in .

The definitions of interpretation, consequence, and satisfiability refer to a fixed sym-
bol set S. Using the Coincidence Lemma we can remove this reference to S. Let us
consider, for example, the notion of satisfiability. If @ is a set of S-formulas and
S’ DS, then @ is also a set of §'-formulas. As a set of S-formulas, @ is satisfi-
able if there is an S-interpretation which satisfies it, and as a set of §’-formulas it is
satisfiable if there is an S’-interpretation which satisfies it. We have

4.8. D is satisfiable with respect to S iff @ is satisfiable with respect to S'.

Proof. It 7' = (', B’) is an §'-interpretation such that 3’ = &, then by the Coin-
cidence Lemma the S-interpretation (21'|s, B’) is a model of @. On the other hand,
if 3= (2, B) is an S-interpretation which satisfies @, we choose an §'-structure 2’
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such that 2'|s = 2. (The symbols in S’ \ S can be interpreted arbitrarily.) Again by
the Coincidence Lemma, the S'-interpretation (21, §) is then a model of ®. =

4.9 Exercise. For arbitrary formulas ¢,y and y show:

@ (evy)Eyx iff @FEyandyl=y.
® Elp—y) iff oEvy.

4.10 Exercise. (a) Show: IxVy¢ |= Vy3Ixe.
(b) Show that Yy3xRxy = IxVyRxy does not hold.

4.11 Exercise. Prove: (a) Vx(@ A y) == (Vxo AVxy).

(b) (o V) == (TxeVixy).

(©) Vx(oVy) == (@Vvxy), ifx¢free(p).

() Ix(@Ay) == (9Adxy), ifx¢ free(q).

(e) Show that one cannot do without the assumption “x ¢ free(¢)” in (c) and (d).

4.12 Exercise. Let ¢ and y be formulas such that ¢ =|= y. Let x’ be any formula
obtained from the formula } by replacing no, some, or all subformulas of the form ¢
by y. Show that y =|FE x'.

4.13 Exercise. Prove the analogue of 4.8 for the consequence relation.

4.14 Exercise. A set @ of sentences is called independent if there is no ¢ € @ such
that @\ {@} |= ¢. Show that the set @y of group axioms and the set of axioms for
equivalence relations (cf. p. 16) are independent.

4.15 Exercise (cf. Exercise 1.6). Let / be a nonempty set. For every i € I, let 2(; be
an S-structure. We write [[;c;2; for the direct product of the structures ;, that is,
the S-structure 2 with domain

[TiciAi :={g | g:1— Uic;Ai, and for all i € I: g(i) € A;},

which is determined by the following conditions (where for g € [];c;A; we also
write (g(i) | i € I)):
For n-ary R € Sand g1,...,8, € [Lic/Ais

R¥%gy...g, :iff R¥igi(i)...g,(i)forallic;
forn-ary f € Sand g1,...,8, € [Lic/Ais

Fgs8n) = (F2(81(30)s - ga(i)) [ €1);
and ¢ := (% |icl)forces.

Show: If ¢ is an S-term with var(r) C {vo,...,v,—1} and if go,...,gn—1 € [Lic; Ai>
then the following holds:

12180, gn1] = (Mi[go(i),....gn 1 (D] [ i €1).

4.16 Exercise. Formulas which are derivable in the following calculus are called
Horn formulas (after the logician A. Horn):
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1 ifneNand @,...,0,, tomic;
1 (CQIV.. V0,V ) 1rn and @ @, @ are atomic
) eV ifn € Nand ¢,..., @, are atomic;

4 ¢ ¢
3 o ) o 5 .
(3 CIX% 4) Vxo Q) e

Horn formulas without free variables are called Horn sentences.
Show: If @ is a Horn sentence and if 2; is a model of ¢ for i € I, then [T;; 2L = ¢.
Hint: State and prove the corresponding result for Horn formulas.

Historical Note. The precise version of semantics as given here is essentially due to
A. Tarski [38]. The notion of logical consequence was already present in work of
B. Bolzano [6].4

III.5 Two Lemmas on the Satisfaction Relation

Now we come to results about isomorphic structures and substructures.
5.1 Definition. Let 2 and B be S-structures.

(a) Amap w: A — B is called an isomorphism of 2 onto B (written: 7: 20 = *B)
iff (1) & is a bijection of A onto B.
(2) Forn-ary R € Sand ay,...,a, €A,

R¥ay,...,a, iff R®n(ar)...nw(a,).
(3) For n-ary f € Sand ay,...,a, €A,

(M ar,....an)) = fF (n(ar), ..., w(ay)).

(4)Forc € S, m(c®) =cP.
(b) Structures 2 and B are said to be isomorphic (written: 2( =2 B) iff there is an
isomorphism 7: A = 8.

For example, the Sg-structure (N, +,0) is isomorphic to the Sg,-structure (G, +C,0)
consisting of the even natural numbers with ordinary addition +%. In fact, the map
7: N — G with 7(n) = 2n is an isomorphism of (N,+,0) onto (G,+¢,0).

The following lemma shows that isomorphic structures cannot be distinguished by
means of first-order sentences.

5.2 Isomorphism Lemma. For isomorphic S-structures 2 and 8 and every S-

sentence @, 2% ): 0 ﬁ‘ B ': 0
l .

4 Alfred Tarski (1901-1983), Bernard Bolzano (1781-1848).
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Proof. Let w: 20 = *B. For the intended proof by induction it is convenient to show
not only that the same S-sentences hold in 2l and ‘B, but also that the same S-
formulas hold if one uses corresponding assignments: With every assignment f3
in 2 we associate the assignment B* := wo 8 in B, and for the corresponding in-
terpretations J = (2, B) and 37 := (B, ™) we shall show:

(i) For every S-term 7: ﬂ:(fi(t)) =7J%(r).
(ii) For every S-formula ¢@: T = ¢ iff 3% = ¢.
This will complete the proof.

(i) can easily be proved by induction on terms. (ii) is proved by induction on formu-
las ¢ simultaneously for all assignments f in 2. We only treat the case of atomic
formulas and the steps involving — and 3.

JeEn=n iff J3(n)=73(n)

iff 7w(3(t1)) =n(3(r2)) (since w: A — B is injective)

iff  3%(t;) =3%(r2) (by (i)

iff 3% ’: n=n.

JERy...t, iff R¥3(n)...3(1)

iff R®r(3(ty))...m(3(t,)) (because m: A= B)
iff R%”ﬁ(l)“.j”(n) (by (1))
ifft I ER...1

JE-y iff notJE=vy
iff notJ* =y (byinduction hypothesis)

iff 97 = .
JE3xy iff thereis an a € A such that 3¢ )=

iff  there is an a € A such that ( = v (by induction hypothesis)

54
X
iff  there is an a € A such that 3% ﬂ( ) =y (as (fia) = 3”¥)
iff  there is b € B such that 3”% E v (as m: A — Bis surjective)
iff 7% = dxy. -
From this proof we infer
5.3 Corollary. If : 2228, then for ¢ € LS and ay, ...,a, | € A,
A= @lag,...,an—1] iff B E@[r(ag),...,w(an—1)] !

Isomorphic structures cannot be distinguished in Lg. Conversely, one could ask
whether S-structures in which the same S-sentences are satisfied are isomorphic.
In Chapter VI we shall see that this is not always the case. For example, there are
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structures not isomorphic to the Sy-structure 91 of natural numbers in which the
same first-order sentences hold.

In the rational numbers every number is divisible by 2. Therefore we have, with Q
the set of rational numbers,

(Q, —|—,0) ': Yvoavi v +vi = vyp.
In the integers this is no longer true:
not (Z,+,0) = YvoIvi vy +vi = .

So sentences might no longer hold when passing to substructures. We finish this sec-
tion by introducing the notion of substructure, and we shall give a class of sentences
which are preserved by substructures.

5.4 Definition. Let 2 and B be S-structures. Then 2l is called a substructure of B
(written: 2 C B) iff
() ACB;
(b) (1) forn-ary R € S, R* = RT NA"
(thatis, for all ay,...,a, €A, R%a...a, iff R®aq, .. .ay);
(2) for n-ary f € S, f% is the restriction of f® to A",
(3) forces, & =B,

For example, (Z, +,0) is a substructure of (Q,+,0), and (N, +,0) is a substructure
of (Z,+,0) (although (N, +,0) is not a subgroup of (Z,+,0)).

If A C B, then A is S-closed (in ‘B), that is, A is not empty, for n-ary f € S,
ai,...,a, € Aimplies that f® (ay,...,a,) €A, and ¢® € Aforc€S.

Conversely, every subset X of B which is S-closed in ®5 is the domain of exactly one
substructure of 28: In fact, the conditions in 5.4(b) determine exactly one structure
with domain X. We denote this substructure by [X]% and call it the substructure
generated by X in *B.

For example, the set {2n | n € N} of the even, non-negative integers is Sg;-closed in
(Z,+,0), but the set {2n+1 | n € N} is not Sg-closed (343 is even!).

A formula which does not contain any quantifiers is called quantifier-free.

5.5 Lemma. Let 2l and B be S-structures with A C B and let B: {v, |n € N} = A
be an assignment in 2. Then the following holds for every S-term t:

(24,B)(1) = (B, B)();

and for every quantifier-free S-formula @:
@LB)Ee i (B.B) e

The easy proof is left to the reader. It follows, for example, from the proof of the
Isomorphism Lemma by leaving out the parts referring to the existential quantifier,
and by choosing the identity for the map 7: A — B, i.e., the map with 7(a) = a for
alla € A.
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If B is a group and 2 a substructure of ®B, the associative law
Q© :=YvoVvVvay (voovi)ovy =vgo(vion)

holds also in 2, since (ao® b) o™ ¢ = ao® (ho® ¢) holds even for all elements
a,b,c € B (and o™ on A agrees with o®). The sentence ¢ is universal in the sense
of the following definition.

5.6 Definition. The formulas which are derivable by means of the following calcu-
lus are called universal formulas:

o,y
(pxy)

(i) " if @ is quantifier-free; (ii) for s = A, V:

(iii)

9
Vxe
From the proof of Theorem VIII.4.4 one can see that every universal formula is

logically equivalent to a formula of the form Vx; ... Vx,y with quantifier-free y.

5.7 Substructure Lemma. Let A and B be S-structures with A C 8 and let ¢ € Lﬁ
be universal. Then the following holds for all ay, ... ,a,—1 € A:

If B = ¢lag,...,an—1], then A = @lao, ..., ay—1).

Proof. Let A C 8. We show by induction on universal formulas that for all assign-
ments f in 2L,

() If (B, B) |= @, then (A, B) = .

Then the lemma follows immediately if, for given ay,...,a,—1 € A, we choose an
assignment f3 in 2 with B (v;) = a; fori < n.

For quantifier-free @, () holds by Lemma 5.5. For ¢ = (y A x) and for ¢ = (yV %)
the claim follows immediately from the induction hypothesis. Now let ¢ = Vxy, and
let (%) hold for y. If (B, B) = Vxy, we get successively:

forall b € B, (B,52) = v

foralla € A, (‘B,ﬁ%) E v (since A C B);

forallac A, (A, %)=y (by induction hypothesis);

(2, B) = Vxy (by definition of the satisfaction relation). .

5.8 Corollary. If 2 is a substructure of *B, then the following holds for every uni-
versal sentence Q:

IfB = @, then 2 = o. 4

The substructure (N,+,0) of the group (Z,+,0) is itself not a group. Therefore
the corollary shows that there cannot be a system of axioms for group theory in
LS consisting only of universal sentences. If however, we add a unary function
symbol ~! to Sgr for the inverse map and put Sgp, := {o, ~1 e}, then the system of
axioms
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Dy 1= { VWV V2 (voovy)ovy =vgo (vion),

Ywovpoe=vy, Ywovgovy | = e}

consists only of universal sentences. Hence, for groups as Sgpp-structures, substruc-
tures and subgroups coincide.

5.9 Exercise. Let S be a finite symbol set and let 2( be a finite S-structure. Show
that there is an S-sentence @y, the models of which are precisely the S-structures
isomorphic to 2.

5.10 Exercise. Show: (a) The relation < (“less-than”) is elementarily definable in
(R,+,-,0), i.e., there is a formula ¢ € L§+"’O} such that for all a,b € R,

(R7+7'70) ':(P[a,b] iff a<b.

(b) The relation < is not elementarily definable in (R,+,0). Hint: Work with
a suitable automorphism of (R,+,0), i.e., with a suitable isomorphism of
(R,+,0) onto itself.

5.11 Exercise. The formulas which are derivable by means of the following calcu-
lus are called existential formulas:

oV
(pxy)
Show: (a) The negation of a universal sentence is logically equivalent to an existen-
tial sentence, and the negation of an existential sentence is logically equivalent
to a universal sentence.
(b) If A C B and ¢ is an existential sentence, then 2 = @ implies B E ¢.

9
Ixe -’

@) 5 if ¢ is quantifier-free; (ii) for x = A, V; (iii)

II1.6 Some Simple Formalizations

As we already saw in Section 4, the axioms for group theory can be formulated, or as
we often say, formalized, in first-order language. Another example of formalization
is the cancellation law for group theory:

@ :=YvoVvi¥va(vgovy =viovy — vy =vp).

To say that the cancellation law holds in a group & means that & |= ¢, and to say
that it holds in all groups means that @y, = @.

The statement “there is no element of order two” can be formalized as
Y= —Jvg(—vg = eAvgovy =e).

The observation that there is no element of order two in (Z,+,0) thus means that
(Z,+,0) is a model of .
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For applications of our results it is helpful to have a certain proficiency in formal-
ization. The following examples should serve this purpose. As the exact choice of
variables is unimportant (for example, instead of using the formula ¢ above we
could have used

VV17VV8VV| (V17 oOV]y =VvVgov) —» V7= Vg)

to formalize the cancellation law) we shall denote the variables simply by x,y,z...,
where distinct letters stand for distinct variables.

6.1 Equivalence Relations. The three defining properties of an equivalence rela-
tion can be formalized with the aid of a single binary relation symbol R as follows:

VxRxx,
VxVy(Rxy — Ryx),
VxVyVz((Rxy A Ryz) — Rxz).

The theorem mentioned in Section 1.2,

If x and y are both equivalent to a third element, then they are equivalent
to the same elements,

can be reformulated as

For all x,y, if there is an element u such that x is equivalent to u and y is
equivalent to u, then for all z, x is equivalent to z iff y is equivalent to z,

and then formalized as
VxVy(Ju(Rxu A Ryu) — Vz(Rxz <> Ryz)).

6.2 Continuity. Let p be a unary function on R and let A be the binary distance
function on R, that is, A(rg,r) = |ro —r1| for ro,r; € R. Using the function sym-
bols f (for p) and d (for A) we can treat (R,+,-,0,1,<,0,A) as an S5 U{f,d}-
structure. The continuity of p on R can be stated as follows:

For all x and for all € > 0 there is a § > 0 such that for all y, if A(x,y) < &,
then A(p(x),p(y) < €.

Concerning the “restricted” quantifiers “for all € > 0” and “there is a 6 > 0” that
appear in () it is useful to observe that a statement of the form

(%)

for all x such that ..., we have _ _ _
can be formalized as
Vx(o..— - _ ),
and a statement of the type
there is an x with ... such that _ _ _
can be formalized as

Ix(...A ).
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Thus, using the variables u and v for € and 0 we can give the following formalization
of (x):

VaVu(0 < u — Fv(0 < v AVy(dxy <v — dfxfy <u))).
6.3 Cardinality Statements. The sentence
P>2 1= JygIvi—vg =g

is a formalization of “there are at least two elements.” More precisely, for all S and
all S-structures 2,

A= ¢, iff A contains at least two elements.
In a similar way, for n > 3, the sentence
Q>p =g I 1 (VO EVIA L AVI =V AL AT = V)

states that there are at least n elements, and the sentences —¢>, and @>, A =@>,1
say that there are fewer than n elements and exactly n elements, respectively. If we
now put

Do = {Qp | n =2},

then the models of @., are precisely the infinite structures, that is, for all § and all
S-structures 2,

A= &, iff A contains infinitely many elements.
For later use, we state some further systems of axioms for different theories.

6.4 The Theory of Orderings. A structure 21 = (A, <*) is called an ordering if it
is a model of the following sentences:
Vx—x < x
Porg { VAVWZ((x <y Ay <z) = x<72)
VaVy(x <yVx=yVy <x).

(R, <R) and (N, <N ) are examples of orderings. If C denotes the set of complex
numbers and <€ is defined by

21 <z iff z,zp€Randz <Rz,

then (C, <©) is not an ordering because the third axiom in @y is violated. If for a
structure A = (A, <) we set

field < :={a€A|forsomeb€eA, a <A porb < a},5

then, for (C,<®), field <= R and (field <©,<C) is an ordering. We say that
A = (A,<m) is a partially defined ordering (also: partial ordering®) on A if
(field <®, <®) is an ordering. So the partial orderings are exactly the models of

5 Of course not to be confused with the notion of field as introduced in 6.5.
% In the literature partial ordering sometimes has a different meaning.
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IxIyx <y
Vx—x < x
Dpord § VAVWz((x <yAy<z) = x<z)
VaxVy (Fu(x <uVu <x)AIv(y <vVv<y))
— (x<yVx=yVy<ux)).

6.5 The Theory of Fields. We take S, = {+,-,0,1} to be the underlying symbol
set. An S, -structure is a field if it satisfies the following sentences:

VxVWz(x+y)+z=x+(y+2) Vxx+0=x
VxVyWz(x-y)-z=x-(y-2) Vxx-1=x

Py Vxdyx+y=0 Vx(-x=0— Jyx-y=1)
VaVyx+y=y+x VaVyx-y=y-x
-0=1

VxVyWzx- (y+2) = (x-y) + (x-2).

Ordered fields are Sg,-structures which satisfy the following sentences:

the sentences in ®ry and D4
Dog { VXVWz(x <y —x+z2<y+2)
VXVWz (x <yA0<z) > x-z2<y-2).

6.6 The Theory of Graphs. Let S = {R} with a binary relation symbol R. An
S-structure & = (G,R®) which is a model of

Dyoph:= {Vx—Rxx} and
Dypp 1= {Vx—Rxx, VxVy(Rxy <> Ryx)}

is called a directed graph and a graph, respectively. One can visualize a (directed)
graph & = (G, R®) by thinking of two different points a,b of G with R® ab as being
connected by a line (an arrow) going from a to b. Such a pair of points (a,b) is
called a (directed) edge of & and the elements of G are called vertices of &.

6.7 Exercise. Formalize the following statements using the symbol set of 6.2:
(a) Every positive real number has a positive square root.

(b) If p is strictly monotone, then p is injective.

(c) p is uniformly continuous on R.

(d) For all x, if p is differentiable at x, then p is continuous at x.

6.8 Exercise. Let Seq = {R}. Formalize:

(a) Ris an equivalence relation with at least two equivalence classes.

(b) R is an equivalence relation with an equivalence class containing more than
one element.

6.9 Exercise. Use Exercise 4.16 to show:

(a) If, for every i € I, the structure ; is a group, then [];c;2; is a group.

(b) Neither the theory of orderings nor the theory of fields can be axiomatized by
Horn sentences.
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6.10 Exercise. A set M of natural numbers is called a spectrum if there is a symbol
set S and an S-sentence ¢ such that

M = {n € N | ¢ has a model containing exactly n elements}.

Show: (a) Every finite subset of {1,2,3,...} is a spectrum.

(b) Forevery m > 1, the set of numbers > 0 which are divisible by m is a spectrum.
(c) The set of squares > 0 is a spectrum.

(d) The set of nonprime numbers > 0 is a spectrum.

(e) The set of prime numbers is a spectrum.

IIL.7 Some Remarks on Formalizability

In the preceding section we had a number of examples showing how mathematical
statements can be formalized by first-order formulas. However, the process of for-
malization is not always as simple as it was in those cases. In this section we discuss
some typical difficulties which can arise.

7.1 Partial Functions. When we defined the notion of structure we stipulated that
function symbols be interpreted by total functions, i.e., in the case of an n-ary func-
tion symbol, by a function which is defined on all n-tuples of elements of the do-
main. If, for example, in the field of real numbers, we regard division on R as a
function, then we do not have a structure in our sense (because a quotient is unde-
fined if its divisor is zero). The following are possible solutions to this difficulty:

(1) The division function can be extended to a total function. For example, one
can define § := 0 for all € R and take this into consideration when formulating
statements about the division function.

(2) Instead of the division function, one can consider its graph, that is, the ternary
relation {(a,b,c) € R | b #0and ¢ = c}’. In Section VIIL1 we shall describe how
statements about functions can be translated into statements about their graphs. The
remarks made there for total functions can easily be modified to cover the case of
partial functions.

(3) One can introduce first-order languages which also include partial functions.
However, this approach leads to a more complicated logical system without yielding
anything essentially new, as we see from (1) and (2).

7.2 Many-Sorted Structures. The structures we have hitherto considered have
only one domain and, in this sense, consist of elements of only one sorz. On the
other hand, some important structures in mathematics contain elements of different
sorts. Planes in affine spaces consist of points and lines, and vector spaces consist of
vectors and scalars. Taking vector spaces as an example, we give two possibilities
for treating many-sorted structures.

7 Note that this notion of graph is different from the one in 6.6; there graphs are special structures.
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(1) Many-Sorted Languages. We regard a vector space U as a “structure with two
domains” (a so-called two-sorted structure):

U= (F7V’ +F7'F70F7 1F10V76V7*F’V)a

where F is the set of scalars, (F,+",-F',0717) is the field of scalars, V is the set of
vectors, (V,0",e") is the additive group of vectors, and */*" is the multiplication of
scalars and vectors defined on F' x V.

In order to describe such two-sorted structures we introduce a two-sorted language,
that is, a language built up in the same way as the languages we have used so far, but
having two sorts of variables, namely ug, u,uz, ... (for elements of the first domain,
in the case above, scalars) and wg, wy,w,... (for elements of the second domain, in
the case above, vectors). A quantified variable always ranges over the corresponding
domain. To illustrate this we formalize some of the axioms for vector spaces.

(a) Associativity of scalar addition:
YoV Vuy (uo +ur) +up = up + (1 + u2).

(B) Associativity of vector addition:
VwoVwiVwy (woowy) owy = wgo (w)owy).

(7) Associativity of scalar multiplication of vectors:
YuoVuyYwo (uo - uy) * wo = ug * (11 % wo).

(2) Sort Reduction. It is also possible to use our one-sorted first-order languages to
treat many-sorted structures, namely, by a so-called sort reduction. We demonstrate
this method briefly for the case of vector spaces. Let F and V be two new unary
relation symbols. We regard a vector space as a {F,V,+,-, 0, 1,0, e, *}-structure

m = (FUV7Em’K%’+m’.m’Om7 1m70%’em’*m)

with F¥ := F, V¥ .=V, where the functions +7,-7, 0¥ ¥ are arbitrary exten-
sions of +¥,.F' oV +I*V to (FUV) x (FUV). The introduction of the “sort sym-
bols” F and V enables us to speak of scalars and vectors. We exemplify this by
reformulating the many-sorted vector axioms given above:

(@) VaVWz((FxANEyAFz) = (x+y)+z=x+ (y+2)).
(B) VavyWz((VxAVyAVz) = (xoy)oz=xo0(yoz)).
(Y) VXVWz((FXAFyAVz) = (x-y)*z=x%(y*2)).

Since in (&), for example, all quantifiers are “relativized” to F, it makes no differ-
ence how the extension +2 of 4+ is chosen.

7.3 Limits of Formalizability. The question of the limits of formalizability, which
is ultimately the question of the expressive power of first-order languages, will be
treated in detail in Chapter VI and in Section VII.2. Here we discuss two examples.

(1) Torsion Groups. A group & is called a torsion group if every element of & has
finite order, i.e., if for every a € G there is an n > 1 such that a" = €Y. An ad hoc
formalization of this property would be
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Vx(x=eVxox=eV(xox)ox=eV...).

However, in first-order logic we may not form infinitely long disjunctions. Indeed,
we shall later show that there is no set of first-order formulas whose models are
precisely the torsion groups.

(2) Peano’s Axioms. We consider the question of whether there is a set of Sy-
sentences the models of which are the structures isomorphic to

N = (N,+,-,0,1).

For simplicity we start our discussion with the structure 15 = (N, 6,0), where &
is the successor function on N (o(n) =n+1 for n € N). N5 is a {6,0}-structure,
with ¢ (“successor”) a unary function symbol. The results can easily be extended
to N, cf. Exercise 7.5.

N satisfies the so-called Peano axiom system:

(o) 01is not a value of the successor function o.

(B) o is injective.

(y) Forevery subset X of N: if 0 € X and if 6(n) € X whenever n € X, then X =N
(the so-called induction axiom).

Axioms (o) and () may be easily formalized in L{9%} by

(P1) Vx—6x=0;
(P2) VaVy(ox=0y—x=y).

The induction axiom () is a statement about arbitrary subsets of N. For an “ad hoc”
formalization of this axiom we would need to quantify over variables for subsets of
the domain. In such a language, () could be formalized as follows:

(P3) VX((XOAVx(Xx — X0ox)) — VyXYy).

(P3) is a so-called second-order formula (cf. Section IX.1). The following theorem
shows that (P1)—(P3) characterize the structure 915 up to isomorphism, i.e., I is,
up to isomorphism, the only model of (P1)—(P3).

7.4 Dedekind’s Theorem®. Every structure A = (A,064,0%) which satisfies (P1)—
(P3) is isomorphic to Ne.

In Section VI.4 we shall show that no set of first-order {@,0}-sentences has (up to
isomorphism) just 915 as a model. Thus the induction axiom cannot be formalized
in the first-order language L{9:0}.

The proof of Dedekind’s Theorem depends essentially on the fact that in structures 2
which satisfy (P3), the following kind of proofs by induction in 2l can be given: In
order to show that every element of the domain A has a certain property P, one
verifies that 04 has the property P and that if an element a has the property P, then
6/ (a) does also.

8 Richard Dedekind (1831-1916).
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Suppose 2 = (A, O'A, OA) is a structure which satisfies (P1)—(P3). The isomorphism
7: Mg = 2A we need must have the following properties:

i) (0N =04

(i) m(oN(n)) = 64(x(n)) foralln € N,
that is

Gy n(0) =04

(i) w(n+1) = 6*(x(n)) foralln € N.

We define 7 by induction on n, taking (i)’ and (ii)’ to be the defining clauses. Then
the compatibility conditions for an isomorphism are trivially satisfied and we only
have to show that 7 is a bijective map from N onto A.

Surjectivity of 7: By induction in 2l (2 satisfies (P3)) we prove that every element
of A lies in the range of 7. By (i)/, 04 is in the range of 7. Further, if a is in the range
of m, say a = 7(n), then 6 (a) = 6 ((n)). Hence, by (i)', 6 (a) = w(n+1), and
it follows that 6(a) is also in the range of 7.

Injectivity of 7: By induction on n we prove
(%) For all m € N, if m # n, then ©t(m) # n(n).

n=0:1fm+#0,say m=k+1, then 7(m) = n(k+ 1) = 6*(x(k)), and since 2
satisfies the axiom (P1), 6 (7t(k)) # 0. Hence, by (i)', (m) # 7(0).

Induction step: Suppose that (x) has been proved for n and suppose m # n+ 1. If
m = 0, we argue as in the case n = 0 that £(m) = 0" # w(n+1). If m # 0, say
m = k+ 1, then k # n and so, by induction hypothesis, (k) # 7(n). By injectivity
of 0 (A satisfies (P2)!) it follows that 6 (7(k)) # 6 (m(n)); hence from (i)’ we
have m(k+1) #n(n+1),ie., m(m) #n(n+1). 4

7.5 Exercise. Let IT be the following set of second-order S,.-sentences:

Vx-x+1=0
VaVy(x+1=y+1—=>x=y)

VX ((XOAVx(Xx — Xx+1)) = VyXy)
Vxx+0=x

Vavyx+ (y+1) = (x+y)+1
Vxx-0=0
VxVyx-(y+1)=(x-y)+x.

Show: (a) If the structure A = (A, +4,-4,04,14) is amodel of IT and if 64: A — A
is given by 6 (a) = a+4 14, then (A, 6*,0*) satisfies the axioms (P1)—~(P3).
(b) 9= (N,+,-,0,1) is characterized by IT up to isomorphism.
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II1.8 Substitution

In this section we define how to substitute a term ¢ for a variable x in a formula ¢
at the places where x occurs free, thus obtaining a formula y. We wish to define the
substitution so that y expresses the same about ¢ as ¢ does about x. We start with an
example to illustrate our objective and to show why a certain care is necessary. Let

¢:=Jzz+z=nx
In 91 the formula ¢ says that x is even; more precisely:

O,B) =@ iff B(x)iseven.

If we replace the variable x by y in ¢, we obtain the formula 3zz+ z =y, which
states that y is even. But if we replace the variable x by z, we obtain the formula
Jzz+ z = z, which no longer says that z is even; in fact, this formula is valid in 0
regardless of the assignment for z (because 0+ 0 = 0). In this case the meaning is
altered because at the place where x occurred free, the variable z gets bound. On the
other hand, we obtain a formula which expresses the same about z as ¢ does about x
if we proceed as follows: First, we introduce a new bound variable « in ¢, and then
in the formula Juu 4 u = x thus obtained we replace x by z. It is immaterial which
variable u (distinct from x and z) we choose. However, for certain technical purposes
it is useful to make a fixed choice.

In the preceding example we replaced only one variable, but in our exact defini-
tion we specify the procedure for simultaneously replacing several variables: With a
given formula ¢, pairwise distinct variables xy, ..., x, and arbitrary terms fy, ... ,t,,
we associate a formula (p [’ , which is said to be obtained from ¢ by simulta-
neously substituting ty, . . t, for X0, - - - ,Xr. The reader should note that x; has to be
replaced by ¢; only if

x; € free(@) and x; #1;.

In the following inductive definition this is explicitly taken into account in the quan-
tifier step; in the other steps it follows immediately.

It will become apparent that it is convenient to first introduce a simultaneous substi-
tution for terms. Let S be a fixed symbol set.

8.1 Definition.
ti ifx=ux
(b) cqd=ie i=c
© [ ) = R

For easier reading we use square brackets here and in what follows.
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8.2 Definition.

@ [ =t ]’3""’: f g =4

() [Rr].. ,1])58 '—Rtiig' L g fo-l

© [~] a2t = 0.l

@ (<pvw> = (st vy fonty )

(e) Suppose x,'l,...,xis (i <...< lS) are exactly the variables x; among the

X0, - - ,Xr, such that

x; € free(Ixe) and x; # 1;.

In particular, x # x;,,...,x 7# x;.. Then set
tg...t, . -1
EX(p]xo...x {(px,l :x}’
where u is the variable x if x does not occur in #;,, ..., #;;; otherwise u is the first
variable in the list vy, v, v2,... which does not occurin @,#;,,...,t; .
By introducing the variable u we ensure that no variable occurring in #;,, ..., #;, falls

within the scope of a quantifier. In case there is no x; such that x; € free(3x¢) and
x; # t;, we have s = 0, and from (e) we obtain

[Hx(p] t’ =dx [(p ]

which is dx¢, as we shall see in Lemma 8.4(b).

Examples. For binary P and f we have

(1) [Pvofviva] 325o5t = Pyofvave.

(2) [HVOPVOfVﬂ)z]% = HVO {onfvlvz%}

= v Pvofvifyvivy.

(3) [FvoPvofyiva) 111(1)\\21‘13 ) [onfvlvz \‘j(l)vg] Fv3Pvs fygvs.

At the places where x; occurred free in ¢, we now find in (p)% the term #;.

Hence, if free(¢) C {xop,...,x,}, then we expect that ¢ ;g':: ;’r will hold for an

interpretation J = (2, B) iff ¢ holds in 2, provided we use the assignments J(zy) for
X0, ..., J(t;) for x,. An exact formulation of this property is given in the following
“Substitution Lemma” 8.3. Later we shall frequently refer to this lemma, whereas
we shall rarely return to the technical details of Definition 8.2.°

Before stating the lemma we generalize the definition of ja' Let xo, .. .,x, be pair-
w1se dlstmct and suppose J = (2, B) is an interpretation, and aop,...,a, € A; then let
ﬁ a, be the assignment in 2( with

9 Like the Substitution Lemma, the subsequent results of this section are intuitively clear. The
proofs are straightforward but lengthy, and may be skipped by a reader already familiar with proofs
by induction on terms and formulas.
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g0ty () . {ﬁ(y) iy £ 30,0y X

X0---Xp a; ifyzx,'

and

~ag...dy .
JXQ...X, T ( ’

ay
X ):
8.3 Substitution Lemma. (a) For every term t,

3 (it ) =90 ),

(b) For every formula ¢,
. J(tg)...3(t,
':(P tr i I (2())...x,( )':‘P

Proof. We proceed by induction on terms and formulas in accordance with the defi-
nitions 8.1 and 8.2. We treat some typical cases.

t =x: If x # xg,...,x # x,, then, by Definition 8.1(a), x ;’ =x and therefore,

J(x fo...ty ) =3(x) :3M(x).

X0 ... Xp X0-.-Xp

If x = x;, then x tg .t’ =1¢; and hence,

5 (x fo...ty ) () = 9203 oy 55(00). ::j(tr> ).

X0...-Xr X0..-Xr

Q=Rej...ty: = [Rif...0)] 0

iff  J(R) holds for J (t; L. ﬁgr) ... (by Definition 8.2(b))
iff  J(R) holds for jw (11),... (by (a)

iff 373(@3 = :fr(”) (R) holds for 373(% = ;j{}fr> ),...

iff 373(@3:;;3}”) =Ri| .. .1l

@ = dxy: As in part (¢) of Definition 8.2, let x;,, ..., x;; be exactly those variables x;
for which x; € free(3xy) and x; # ;. Then, for u chosen as in that part,

3 b By f0le

Xr

iff J|:3u[ ]
t;

iff  there is an a € A such that 34 = —l#x
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a(s. J4 (t. a
iff  there is an a € A such that [J4] Iyt T () jux(u) Ey

Xip - Xi

s

(by induction hypothesis)

iff  there is an a € A such that [J4] j—(xl)—xlgL Evy

(by the Coincidence Lemma, since u does not occur in ¢, , ..., )

ift  there is an a € A such that TJM Evy
Xip -
(since u = x or u does not occur in Y (C01nc1dence Lemmal!))

iff  there is an a € A such that [ M ey
(note that x # x;,,...,x # x;,)
- I(ty) ... 3(t,)
iff 7 3 ---Xzs E vy
i 9200).- () ). ) o 3ey
(since fori #iy,...,i #i5, x; ¢ free(Ixy) or x; = 1;) -

In the following lemmas we collect several “syntactic” properties of substitution.

8.4 Lemma. (a) For every permutation 7 of the numbers 0, ..., r,

f.. I7(0) -~ -In(r)
(P)C() Xr _(Pxn 0) - Xa(r)

. fo...1 fo...ti—1 tiy1...L
(b) If0<i<randxi=t, then Q0= = x-S TE 0

In particular, (p% = 0.

(c) For every variable y,

(i) ify € var (t)gg = :;rr), theny € var(tp) U...Uvar(t,) or
(y € var(r) andy #xo, ce Y FE XS
) then'y € var(to) U...Uvar(t,) or
(y € free(p) andy ;é X0y -y Y F Xp).
Proof. By induction, using the definitions 8.1 and 8.2. We give two cases of (c).

(i) i

t = x: In case x # xg, . .., X # x, we have x tg ;’ =X Supposeyevar( ;0:::;2),

then y = x and so (y € var(x) and y ;éxo, ..., ¥y # x;). In case x = x; we have

X 128 tr =1;. Suppose y € var (x, ;8 ), then y € var(;), therefore y € var(ty) U
..Uvar(t,).

¢ = Jxy: Let s,iy,...,i; and u be as in Definition 8.2(e) and let

y € free ([Elxq/] ) = free ( [III_IL)CD
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Then y # u and

tlA
yE free (W—lm)

thus, by induction hypothesis, y # u and (y € var(f; ) U... Uvar(t; ) U{u} or y €

free(y),y #xi,,...,y #Xi,,y # x). Since for i # iy,...,i # iy we have x; ¢ free(y) or
x; =1t;, it follows that y € var(fo) U...Uvar(z,) ory € free(3xy),y # xo,...,y # X,

8.5 Corollary. Suppose free(@) C {xo,...,x,}, where we continue to assume that
X0,y Xy are distinct. Then, for terms 1y, .. tr such that var(t;) C {vo,...,vn—1}, the

formula (p lS in L3. In particular, @< is a sentence. —

)C X

We call the number of connectives and quantlﬁers occurring in a formula ¢ the rank
of ¢, written rk(¢). More precisely:
8.6 Definition.
k(@) := 0 if ¢ is atomic
k(=) :=rk(p)+1
k(@ Vy) := rk(e) +rk(y) +1
tk(3xe) :=rk(@) + 1.

From the definition of substitution one immediately obtains:
8.7 Lemma. rk (‘Px ) =r1k(o). -

The quantifier “there exists exactly one” can be conveniently formulated with the
use of substitution. Let ¢ be a formula, x a variable, and y the first variable which
is different from x and does not occur free in @. Then we write 3=!'x¢ (“there is
exactly one x such that ¢”) for Ix(¢ A Vy((p)y? — x=y)). It can easily be shown that
for every interpretation J = (2, ),

JEI'xe iff thereis exactly one a € A such that 74 = ¢.

8.8 Exercise. For n > 1 give a similar definition of the quantifiers “there exist at
most n” and “there exist exactly n.”

8.9 Exercise. Let P and f be binary and set x = vg, y = v, u = v, v = v3, and
= v4. Show, using Deﬁnition 8.2, that

(a) I3y (Pxu A Pyv) 222 — 333y(Pxu A Pyu),

X y v
(b) IxTJy(Pxu A Pyv) ‘u) f‘b}w = IxJy(Pxv A Pyfuv),

(¢) IxIy(PxuAPyv) z 1); f‘b}lv = IwIy(Pwx A Pyfuv),

(d) [VaTy(Pxy A Pxu)V Jufuu = x]jccf# = Yvaw(Pyw A Pvfxy)V Jufuu = x.

8.10 Exercise. Show that if xo,...,x, ¢ var(fo) U...Uvar(t,), then

9°x0 t’ —||—on Nx (o =to N AX =1 — Q).



54 III Semantics of First-Order Languages

8.11 Exercise. Give a calculus for which the derivable strings are exactly those of

1o.. .1, fo ...t
the formtxo...x,to...trtﬁ or (pxo...xrto...tr(pﬁ.

Hint: For (a) and (c) in Definition 8.1 one can choose the following rules:

if x #x0,...,X # X}
XX0...Xp b0 . 1r X X0, X 7 X

if x = x;;
XX0...Xplo... 0y 1

1 X0...% lo...1 s}

X0 Xy to.. .1
Syt xo. Xy ty.. 1 fS) s

if f € Sand f is n-ary.

“
IS~ ...
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Chapter IV
A Sequent Calculus

In Chapter I we discussed the way mathematicians proceed to develop a particular
mathematical theory: In order to obtain an overview of the theory, they try to find out
which propositions follow from its axioms. To show that a proposition follows from
the axioms, they supply a proof. Now that we have an exact definition of the notion
of consequence, we are sufficiently equipped to give a more thorough discussion
of the goals and methods in mathematics. If S is a symbol set and @ is a set of
S-sentences, we let @& be the set of S-sentences which are consequences of ®. A
mathematical proof of an S-sentence ¢ from the axioms in @ shows that ¢ belongs
to @, For example, consider the set @y, of axioms for groups, where S = Sg,. The
proof of Theorem I.1.1 then shows us that the Sg-sentence VxJyy o x = e belongs

to Cbg. However, in view of the goals of mathematicians and the scope of their
methods, a central question is whether every sentence in @ can be proved from the
axioms in @. In order to answer it we must analyze the notion of proof. But even
if we limit ourselves to statements which can be formulated in first-order logic, we
encounter difficulties at the very outset of such an attempt. The difficulties arise from
the fact that mathematicians do not have an exact notion of proof. They do not learn
what a proof is from a list of permissible inferences; rather they get acquainted with
this notion by doing concrete proofs in the course of their mathematical education.
Furthermore, the collection of commonly accepted methods of proof is continually
being expanded by the addition of new variants. Last, but not least, the development
of new theories often includes the invention of new proof techniques.

In view of this situation we shall not attempt to give an exact description of the whole
spectrum of mathematical arguments. Rather we shall look at some concrete proofs
and try to abstract from them certain basic constituents. From these constituents
we shall build up a precise notion of proof. It will turn out that they are sufficient
to reconstruct all types of mathematical arguments. Thus, we proceed as we did
when we introduced the precise notion of mathematical statement, where instead of
trying to give an exact description we used the first-order languages to give a clearly
defined framework. In the case of first-order languages we shall merely be able to
make it plausible that, in spite of their limited expressive power, these languages
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are in principle sufficient for the purpose of mathematics (cf. Section VIL.2). By
contrast, we can really prove that every sentence in @ is provable from sentences
in @ in the precise sense.

How can we single out basic constituents of mathematical deductions? If we ana-
lyze the proofs in Chapter I, for example, we see that those steps which are directly
related to the meaning of connectives, the quantifiers, and the equality symbol seem
very elementary. We mention three examples. In a proof one can proceed from state-
ments ¢ and y, which have already been obtained, to the conjunction (¢ A ¥);
similarly one can proceed from Pt to dxPx, and from Px and x =t to Pt. We can
represent these rules by the following schemes:

o,V Pt Px, x=t

() (pAy) " IxPx’ Pt

Written in this way, these constituents of proofs can be regarded as syntactic opera-
tions on strings of symbols. Adhering consistently to this point of view, we shall set
up a list of deduction rules (in Sections 2 and 4), in this way obtaining a calculus &.
We shall motivate its form in Section 1. In Section 6 (with a preview in Section 1)
we shall give the fundamental definition for the notion of a formula ¢ being for-
mally provable from a set @ of formulas. This definition will be based on the notion
of derivability in &. Formal provability is the syntactic counterpart of the semantic
notion of consequence.

Throughout this chapter we fix a symbol set S.

IV.1 Sequent Rules

A mathematical proof proceeds from one statement to the next until it finally arrives
at the assertion of the theorem in question. The individual statements depend on
certain hypotheses. These can either be hypotheses of the theorem or additional hy-
potheses temporarily assumed in the course of the proof. For example, if one wants
to prove an intermediate claim ¢ by contradiction, one adds —¢ to the hypotheses;
if a contradiction results, then ¢ has been proved, and the additional assumption ¢
is dropped.

This observation leads us to describe a stage in a proof by listing the correspond-
ing assumptions and the respective claim. If we call a nonempty list (sequence)
of formulas a sequent, then we can use sequents to describe “‘stages in a proof”.
For instance, the “stage” with assumptions ¢y,...,, and claim ¢ is rendered by
the sequent @; ... @, @. The sequence @ ..., is called the antecedent and ¢ the
succedent of the sequent @ ... @, ¢@. From Lemma I1.4.3 it follows that the formu-
las which constitute a sequent are uniquely determined. In particular, the antecedent
and the succedent are well-defined.
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In terms of sequents, the indirect proof sketched above can be represented schemat-
ically as follows:

Qi@ 9 Y
(+) (pl"‘(pn ﬁ()D ﬁw
Thus (+) describes the following argument: If under the assumptions ¢, ..., ¢, and
(the additional assumption) —¢ one can obtain both the formula y and its nega-
tion -y (that is, a contradiction), then from the assumptions ¢y,..., ¢, one can
infer ¢.

In the following we shall use the letters I',A,... to denote (possibly empty)
sequences of formulas. Then we can write sequents as I'Qy, Ay,... and the
scheme (+) in the form

I' - vy
I' =¢ ~y
(++) F—(p

As in (+), we use spaces between elements in a sequent merely for easier reading.

According to the framework we have developed so far, each step in a proof leads
from certain “stages” already attained to a new one and hence, from sequents to a
new sequent. Thus it seems natural to represent deduction rules such as (++) as rules
of a calculus &, which operates on sequents (sequent calculus). Our conception of &
is based upon [18]. For comparison the reader can find calculi of a different nature
in [36].

Before listing the rules of & in the next section, we introduce some further concepts.

If, in the calculus G, there is a derivation of the sequent I"¢@, then we write - I"¢
and say that I" ¢ is derivable.

1.1 Definition. A formula ¢ is formally provable or derivable from a set @ of for-
mulas (written: @ = ¢) if and only if there are finitely many formulas ¢y,..., @,
in @ such thatt ¢y ..., ¢.

A sequent I'@ is called correct if I' |= ¢, more precisely, if {y | v is a member of
I'} = ¢. Since the rules of & are modeled after usual mathematical inferences, it
will turn out that they are correct, i.e., when a rule is applied to correct sequents it
yields a correct sequent. As a result, every formula which is derivable from @ also
follows from &. We convince ourselves of the correctness of each rule as soon as
we introduce it.
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IV.2 Structural Rules and Connective Rules

We divide the rules of the sequent calculus & into the following categories: struc-
tural rules (2.1, 2.2), connective rules (2.3, 2.4, 2.5, 2.6), quantifier rules (4.1, 4.2),
and equality rules (4.3, 4.4). We start with the two structural rules.

2.1 Antecedent Rule (Ant).

r
F’—$ if every member of I is also a member of I'' (briefly: if T CT).

Note that a formula which occurs more than once in I" need only occur once in I,

2.2 Assumption Rule (Assm).

if © is a member of T'.

I' ¢
Correctness. (Ant): If a sequent I'¢ is correct and I' C I'’, then since I” = ¢, also
I'''=o.
(Assm) is correct since @ |= ¢ always holds for ¢ € ®. -

(Assm) reflects the trivial fact that one can conclude ¢ from a set of assumptions
which includes ¢. (Ant) expresses the fact that one can re-order or add to assump-
tions.

Now we state the connective rules. (Remember that we restricted ourselves to the
connectives — and V; cf. (1) on page 33.) The first rule is concerned with nega-
tion and incorporates the commonly used method of proof by cases. In order to
conclude ¢ from I" one first considers the case where a condition y holds and then
treats the case where —y holds. That is, one first has y and then —y as an additional
assumption. We can translate this argument into a rule for sequents as follows:

2.3 Proof by Cases Rule (PC).
I' vyvo
I' -y ¢
r ¢

-

Correctess. Suppose I'y = ¢ and 'y |= ¢ hold. We must show that I' = ¢.
Let J be any interpretation such that J =T, i.e., J = x for every member y of I'.
Either J =y or J = —y. If J |= v then, since I'y = @, it follows that J = ¢. If
J = —y, one obtains the same result because I'—y = @. -

As the second rule concerning negation we take the schema (++) given in Section 1:
2.4 Contradiction Rule (Ctr).

r-¢ v
r ¢ ~y
r ¢
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Correctness. Let '=¢ = v and I'-¢ |= —y. Then there is no interpretation satisfy-
ing I'=¢; hence any interpretation satisfying I" must satisfy ¢, i.e., I" @ is correct.

2.5 V-Rule for the Antecedent (\VA).

r 0 x
r v X
r (ovv) x

The proof that this rule is correct is similar to that for (PC).
2.6 V-Rules for the Succedent (\VVS).

u (b) u
r (¢vy) r (yve)

Correctness. Suppose I' =@ andlet J |=I". Then J |= ¢ and hence both J |= (@ V )
andJ = (y V). =

2.7 Exercise. Decide whether the following rules are correct:

(a)

r 01 4 r 01 7]
r [03) [12) ®) r (0)) [75)
r (g1Vver) (viVvy) I (gVe) (viAy)

(a)

IV.3 Derivable Connective Rules

Using the rules of & which we have formulated so far, we can derive a number
of sequents. In our first example we show that all sequents of the form (¢ \V —¢)
are derivable. Our notation is similar to that used for derivations in previous calculi
(cf. Section I1.3).

1. ¢ ¢ (Assm)
2. ¢ (pV—e) (VS)appliedto 1.
(%) 3. —¢  (Assm)
4. =p (oV—-0) (VS)applied to 3.
5. (9 V—9) (PC) applied to 2. and 4.

Let us consider the rule (TND) (“tertium non datur’)

(pV-9)’
which is not a rule of G. If we add (TND) to G, we do not enlarge the set of derivable
sequents. For if we are given a derivation of a sequent which uses rules of G together
with (TND), we can insert lines 1.-4. of (x) directly before every sequent (¢ V —¢),
which originally was introduced by (TND). In this way we obtain a derivation in &.
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Rules for sequents, whose use in a derivation can be eliminated by a derivation
schema like (), and which, therefore, do not enlarge the set of derivable sequents,
will be called derivable rules. Thus (TND) is a derivable rule. The use of such deriv-
able rules contributes to the transparency of derivations in the sequent calculus. In
the remainder of this section we give some useful examples, also including derivable
rules with premises.

3.1 Second Contradiction Rule (Ctr’).

I vy
I —~y
I ¢

Justification. (The justification shows that the rule is derivable. In the present case
we have to show how one can use rules of & to obtain the sequent I"¢ from the
“premises” I'y and I —y.)

1. I' W premise
2. I’ -y premise
3. I' m¢ vy (Ant)appliedto 1.
4. T =@ -y (Ant) applied to 2.
5. I' ¢ (Ctr) applied to 3. and 4.
3.2 Chain Rule (Ch).
r 9
I' oy
r L4
Justification.
1. T ¢ premise
2. I ¢ y premise
3. I' =¢ ¢ (Ant)appliedto I.
4. I' =9 —¢@ (Assm)
5. I' =¢ y appliedto 3. and 4.
6. I v (PC) applied to 2. and 5.

3.3 Contrapositon Rules (Cp).

I ¢ vy I - —~y
T v b
@ =y =0 ®)
I' —o y I' o -y
Il S d —F—
© F=y o @ 4

Justification of (a).

. ' ¢ Y premise
2. I' =y ¢ v (Ant)appliedto 1.
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3. ' =y ¢ —y (Assm)
4. T' =y ¢ —¢ (Ct')applied to 2. and 3.
5. I' =y =@ —¢ (Assm)
6. I' ~y —¢ (PC) applied to 4. and 5.
34.
I (pvy)
r -
r v
Justification.
. T (V) premise
2. I - premise
3. I (0} —¢ (Ant) applied to 2.
4. I' (0} ¢ (Assm)
5. T (0] v (Ctr) applied to 4. and 3.
6. I v v (Assm)
7. T (V) v (VA) applied to 5. and 6.
8. I v (Ch) applied to 1. and 7.

3.5 “Modus ponens”.

r (p—w)
r 0] .
T v’ that is,

I (—oVy)
r ¢
r v

The justification is analogous to the one given for 3.4.

3.6 Exercise. Show that the following rules are derivable.

(al)

(b)

(dl)

r

4

F ﬁﬁ(p

| e B 1w M

¢
v

(pAy)
(e Y)

¢

@ L 7¢

(©)

(d2)

IV.4 Quantifier and Equality Rules
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Now we give two sequent rules of & which involve the existential quantifier. The
first is a generalization of a scheme already mentioned in the introduction to this

chapter.
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4.1 Rule for 3-Introduction in the Succedent (3S).

r (p%
' Ixop

(3S) says that we can conclude dx¢ from I" if we have already obtained the “wit-
ness” ¢ for this existence claim.
Correctness. Suppose I' |= (p )tc Let J be an interpretation such that J = I". By

assumption, we have J = oL %- Therefore, by the Substitution Lemma, 3=~ ( ) = (p
and hence J = xo.

The second J-rule is more complicated, but it incorporates a method of argu-
ment that is frequently used. The aim is to prove a claim y from assumptions
Q1,...,0,,3x@, on our formal level: to achieve a derivation of the sequent

(%) Qr...0, IxQ ¥

in the sequent calculus. According to the hypothesis 3x¢, one assumes one has an
example — denoted by a new variable y — which “satisfies ¢ and uses it to prove y.!
In the sequent calculus this corresponds to a derivation of

(k%) ¢1...0, (p% v,
where y is not free in (x). Then one regards Y as having been proved from
Q1,...,0,,3x@. We can reproduce this argument in the sequent calculus by a rule

which allows us to proceed from (xx) to (x):

4.2 Rule for 3-Introduction in the Antecedent (FA).
r ox vy

T o v if yis not free in I" 3x¢ y.

C0rrectness Suppose I (p % = Wand yisnot free in I" 3x@ y. Let the interpretation
= (U, B) be a model of I" Ix¢p. We must show that J = y. First, there isana € A
such that TJa = ¢. Using the Coincidence Lemma we can conclude (J ) E ¢ (for

x =y this is clear; for x # y note that y ¢ free(¢) since otherwise y € free(ﬂxq)) con-
a
y
trary to the assumption). Because 3%( ) = a we have (J a) ( )

the Substitution Lemma, ﬁ% = @. FromJ =T andy ¢ free( ) we get Ja =T,

again by the Coincidence Lemma; since I" ¢ 3)7 = v we obtain 3% E yand therefore
J |= w because y ¢ free(y). !

The condition on y made in (JA) is essential. We give an example: The sequent
o y . . . o o .

[x = fy|% ¥y = fyis correct; however, the sequent 3xx = fy y = fy, which we could

obtain by applying (JA) while ignoring this condition, is no longer correct. This

1 Cf. the proof of Theorem I.1.1 with the use of y in line (1).
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can be verified, say, by an interpretation with domain N, which interprets f as the
successor function n+— n+ 1 and y as 0.

From a formula ¢ % it is not, in general, possible to recover either ¢ or ¢. For in-

stance, the formula Rfy can be written as Rx % oras R fx%. Therefore, in applica-

tions of the rules (3S) and (JA), we shall explicitly mention ¢ and ¢ or ¢ and y if
they are not clear from the notation.

The last two rules of & arise from two basic properties of the equality relation.

4.3 Reflexivity Rule for Equality (=).

~
~

4.4 Substitution Rule for Equality (Sub).

r ¢ )LC

ret=r (p%
Correctness. (=): Trivial. (Sub): Suppose I = (p)% and suppose J satisfies I' t =¢'.
Then J = (p)% and hence, by the Substitution Lemma, J @ = @; therefore since

~(+
J(r) =3(¢') we have J @ = . A further application of the Substitution Lemma
yields finally that J = (p%. =

4.5 Exercise. Decide whether the following rules are correct:

e v, L ¢ v,
dxe Ixy’ I Vxo 3xy’
d (p% if 1 dd t inl"V.

F—Vx(p if f is unary and does not occur in xQ.

IV.5 Further Derivable Rules

Since (p% = @, we obtain from 4.1 and 4.2 (for t = x and y = x) the following
derivable rules:

5.1.

9 I oy

() T Zxo ®) F o v if x is not free in " .
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A corresponding special case of (Sub) is

5.2.
r 9
I'x=t (pji

We conclude with some derivable rules dealing with the symmetry and the transitiv-
ity of the equality relation and its compatibility with functions and relations.

5.3.

I' 1=t
I hH=n I' n=n
(@) I nh=n () I' 11=n8
54. (a) Forn-aryR € S: (b) Form-ary f € S:
I' Rt;...t, r n=t
I n=r
r =t
r =1, I fti...ty=ft]...t,
I' Rj...1)

Justification of 5.3 and 5.4. Let x be a variable occurring neither in any of the terms
norinl .

5.3(a):
1. I 1) =1, premise
2. T t1 =t (=) and (Ant)
3. ' 1=t t=t (Sub)appliedto?2. withty =1 =[x=1] %
4. I' to =11 (Ch) applied to 1. and 3.
5.3(b):
1. I’ t) =t premise
2. I t) =13 premise
3. ' =13 t =13 (Sub)appliedto 1.witht; =1, =[] = x] %
4. I' t; =13 (Ch) applied to 2. and 3.

5.4(a) (The justification for 5.4(b) is similar): W.l.o.g. let n = 2.

Rtit, premise
f| =t} premise
1y =t premise
f1=t{  Rtir; (Sub) applied to 1. with Rt 1, = [Rxt,]
Rt{t, (Ch) applied to 2. and 4.
n=t), R, (Sub)applied to 5. with Rejt, = [Rrjx]2
Rtt5  (Ch) applied to 3. and 6.

n
X

Lo U A W —
e e R B Bl
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5.5 Exercise. Show that the following rules are derivable:

I Vxo . I —3x—¢ I Vxo
al , that is, a2
(al) W W‘ (a2) I
bl (P% v b2 % if yi tfree in " V.
(bD) T o v ®2) = Trg iV isnotfreein " vxe
I' oy r o . . .
(b3) m (b4) T Vo if x is not free in I

IV.6 Summary and Example

For the reader’s convenience, we list all the rules of & together.

(Assm) — p ifpel (Ant) 11:,—2 ifrcr’
r vo r-¢ vy
®c) 0 cw oY
11: v r r
VAT (<pku;§ 3 T (wqu;’ r (quj;
r exv .
(3A) T To v if yis not free in I 3x¢ y
I ol
S
I (p%
= — (Sub)

- T
1 re=r ok

If
-

According to Definition 1.1 a formula ¢ is derivable (formally provable) from a
set @ of formulas (written: @ - ¢) if there are an n and formulas ¢y,..., @, in @
such that - @; ... @, ¢. From this definition we immediately obtain:

6.1 Lemma. Forall @ and ¢: ® & ¢ if and only if there is a finite subset ®@g of P
such that &y = @. -

We have already more or less proved the correctness of &:
6.2 Theorem on the Correctness of &. For all @ and @, if ® - @, then D = .

Proof. Suppose @ = ¢. Then for a suitable I" from @ (that is, a I" whose mem-
bers are formulas from @) we have - I"¢. As we have shown, every rule without
premises yields only correct sequents, and the other rules of & always lead from
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correct sequents to correct sequents. Thus, by induction over &, we see that every
derivable sequent is correct, hence also I"@. Therefore I" = ¢ and so @ = ¢. —

We shall prove the converse of Theorem 6.2, namely “if @ = ¢ then @ - ¢”, in
the next chapter. In particular, it will follow that if ¢ is mathematically provable
from &, and hence @ |= ¢, then @ is also formally provable from ®. However,
because of the elementary character of the rules for sequents, a formal proof is
in general considerably longer than the corresponding mathematical proof. As an
example we give here a formal proof of the theorem

Vxdyyox=e
(existence of a left inverse) from the group axioms

@y 1= VaVyVz(xoy)oz=x0(yoz),
Q) = Vxxoe=u,
¢ :=Vxdyxoy=e.

The reader should compare the formal proof below with the mathematical proof of
Theorem I.1.1. The “chain of equations” given there corresponds to the underlined
formulas in the derivation up to line 23. For simplicity we shall write “xy” instead
of “xoy” and we put I' := @y ¢; ¢. The variables u,v,w are chosen according to
the definition of substitution.

1. I Vxxe = x (Assm)
2. I (yx)e = yx 5.5(al) applied to 1.
with r = yx
3. T yx = (yx)e 5.3(a) applied to 2.
4. T e=yz yx = (yx)(yz) (Sub) applied to 3.
5. T'yz=e e=yz 5.3(a) and (Ant)
6. I''yz=e yx = (yx)(y2) (Ant) and (Ch)
applied to 5. and 4.
7. T'yz=e VxVywWz(xy)z=x(yz)  (Assm)
8. I'yz=e Yuvv(yu)v = y(uv) 5.5(al) applied to 7.
witht =y
9. I' yz=e Yw(yx)w = y(aw) 5.5(al) applied to 8.
witht =x
10. I'yz=e (yx)(yz) = y(x(yz)) 5.5(al) applied to 9.
witht =yz
11. I'yz=e yx = y(x(yz)) 5.3(b) applied to 6.
and 10.
12. T'yz=e x(yz)=(xy)z  ywx=y((xy)z2) (Sub) applied to 11.
13. T'yz=e (xy)z = x(yz) 5.5(a2) applied
three times to 7.
4. T'yz=e x(yz) = (xy)z 5.3(a) applied to 13.
15. I'yz=e yx = y((xy)z) (Ch) applied to 14.
and 12.
16. ' yz=e xy=e yx =y(ez) (Sub) applied to 15.
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17. I'yz=e xy=e

18. I'yz=e xy=e
19. T"'yz=e xy=e

20. 'yz=e xy=eye=y

21. T'yz=e xy=e
22. T'yz=e xy=e
23. I'xy=e yz=e

24, T'xy=e yz=ce
25. I'xy=e dzyz=e

26. I' xy=e Vydzyz=e

27. xy=e

28. xy=e

29. dyxy=e
30. Vxdyxy=e

31. ¢
32. T'xy=e

33. I Vxdyxy=e

34. I

IV.7 Consistency

(ve)z=y(ez)

~—

y(ez) = (ve)z
ye)z

VX =

—

YX=yz
ye=y

YX=yz

yX=e

dyyx=e
dyyx=e
Jyyx=e
xy=e
dzxz=e
Jzxz=e
Jixz=e
Vydzyz=e
dyyx=e

dyyx=e

Vxdyyx=e
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with 5.5(al) from
@ as for 10.

5.3(a) applied to 17.
5.3(b) applied to 16.

and 18.
(Sub) applied to 19.

5.5(al) applied to 1.
with ¢ = y and (Ant)
(Ch) applied to 21.
and 20.

(Sub) and (Ant) ap-
plied to 22.

(3S) applied to 23.

(3A) applied to 24.
5.5(b3) appl. to 25.
(Assm)

(3S) applied to 27.
(3A) applied to 28.
5.5(b3) appl. to 29.
5.5(b2) appl. to 30.
(Ant), (Ch) applied

to 31. and 26.
(3A) and 5.5(b3)

applied to 32.
(Ant) and 5.5(b4)
applied to 33.

The semantic consequence relation |= corresponds to the syntactic concept of deriv-
ability F. As a syntactic counterpart to satisfiability we define the concept of con-

sistency.

7.1 Definition. (a) @ is consistent (written: Con @) if and only if there is no for-
mula ¢ such that @ - ¢ and @ - —¢.

(b) @ is inconsistent (written: Inc @) if and only if @ is not consistent, that is, if
and only if there is a formula ¢ such that @ - ¢ and @ - —¢).

7.2 Lemma. For a set of formulas P the following are equivalent:

(a) Inc .
(b) Forall p: DF .
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Proof. (a) follows immediately from (b). Suppose, on the other hand, that Inc @
holds, i.e., @ - y and @ - —y for some formula y. Let ¢ be an arbitrary formula.
We show @ + ¢.

There exist I'1 and I3, which consist of formulas from @, and derivations
Iy and I —y.

By using these, we obtain the following derivation:

m. I vy

n. L, ~y
(n+1). Il I y (Ant)applied to m.

).
(n+2). I I =y  (Ant) applied to n.
(n+3). I ¢ (Ct)appliedto (n+1).,(n+2).

Thus we see that @ I ¢. =
7.3 Corollary. For a set of formulas @ the following are equivalent:

(a) Con .
(b) There is a formula @ which is not derivable from P. B

Since @ - ¢ if and only if Py - ¢ for a suitable finite subset @, of @, we obtain:
7.4 Lemma. For all @, Con @ jff Con Py for all finite subsets @y of D. B

7.5 Lemma. Every satisfiable set of formulas is consistent.

Proof. Suppose Inc @. Then for a suitable ¢ both @ - ¢ and @ - —¢; hence, by
the theorem on the correctness of S, @ = ¢ and ¢ |= —¢. But then @ cannot be
satisfiable. a

Later we shall need:

7.6 Lemma. For all @ and ¢ the following holds:

() o iff Inc PU{-o}.
(b) ®F—-@ iff Inc @U{¢}.
(c) If Con @, then Con ®U{¢} or Con ®U{-¢}.

Proof. (a): If @+ ¢ then @U{—¢} - ¢; since PU{—@} -, DU{-¢} is incon-
sistent. Conversely, let @ U {—¢} be inconsistent. Then for a suitable I" consisting
of formulas from @, there is a derivation of the sequent I" —¢ ¢. From this we
obtain the following derivation:
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I' ¢ ¢
I' ¢ ¢ (Assm)
r ¢ (PC).

This shows that @ - ¢@.
(b): In the proof of (a) interchange the roles of ¢ and —¢.

(c): If neither Con @ U {¢} nor Con @ U {—-¢}, that is, if Inc @ U {¢} and
Inc @ U{—¢}, then (by (b) and (a)) @+ —¢ and @ - ¢. Hence P is inconsistent, a
contradiction to the assumption Con . —

In this chapter we have referred to a fixed symbol set S. Thus, when we spoke of
formulas we understood them to be S-formulas, and when discussing the sequent
calculus & we actually referred to the particular calculus Gy corresponding to the
symbol set S. In some cases it is necessary to treat several symbol sets simultane-
ously. Then we insert subscripts for the sake of clarity. To be specific, we use the
more precise notation @ kg ¢ to indicate that there is a derivation in Gg (consisting
of S-formulas) whose last sequent is of the form I"¢, where I" consists of formulas
from @. Similarly, we write Cong @ if there is no S-formula ¢ such that @ -5 ¢
and @ g ﬁ(P.2

In the next chapter we shall need:

7.7 Lemma. Forn €N, let S, be symbol sets such that
SoCSiCsHC..,

and let @, be sets of S,-formulas such that Consn b, and
Dy C P CPyC....

Let S = U,en Sn and @ = U,,cy Pn. Then Cong P.

Proof. Assume the hypotheses of the theorem, and suppose Incg @. Then, by
Lemma 7.4, Incg ¥ must hold for a suitable finite subset ¥ of @. There is a k such
that ¥ C @ and hence Incg @; in particular, @ g5 vo = vo and P Fg —vp = vo.
Suppose we are given S-derivations for these two formulas. Since they contain only
a finite number of symbols, all the formulas occurring there are actually contained in
some LS, We may assume that m > k. Then both derivations are derivations in the
Sm-sequent calculus, and therefore Incg ;. Since & C P, we obtain Incg Py,
which contradicts the hypotheses of the theorem.

2 The reader should note that for two symbol sets S and §" with S C &', and for @ C LS and (0N LS,
it is conceivable that @ g ¢ but not @ kg @, for it could be that formulas from L5 \ LS are used
in every derivation of ¢ from @ in Sy, and that (later on in the proof) these formulas are then
eliminated from the sequents, say by application of the rules (Ctr), (PC), or (3S). We shall show
that this cannot happen.
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7.8 Exercise. Define (3V) to be the rule

' Jxe Vxo

(a) Determine whether (3V) is a derivable rule.
(b) Let &' be obtained from the calculus of sequents & by adding the rule (V). Is
every sequent derivable in &’?
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Chapter V
The Completeness Theorem

The subject of this chapter is a proof of the completeness of the sequent calculus,
i.e., the statement

(*) For all @ and ¢: If @ |= ¢ then @+ ¢.
In order to verify (x) we show:
(%) Every consistent set of formulas is satisfiable.

From this, (x) can be proved as follows: We assume for & and ¢ that @ = ¢, but
not @ - ¢. Then & U{—¢} is consistent (as not @ - ¢ and by Lemma IV.7.6(a))
but not satisfiable (as @ = ¢ and by Lemma I11.4.4), a contradiction to (xx).

To establish (xx) we have to find a model for any consistent set @ of formulas. In
Section 1 we shall see that there is a natural way to do this if @ is negation complete
and if it contains witnesses. Then we reduce the general case to this one: in Section 2
for at most countable symbol sets, and in Section 3 for arbitrary symbol sets. Unless
stated otherwise, we refer to a fixed symbol set S.

V.1 Henkin’s Theorem

Let @ be a consistent set of formulas. In order to find an interpretation J = (2, )
satisfying &, we have at our disposal only the “syntactical” information given by
the consistency of @. Hence, we shall try to obtain a model using syntactical objects
as far as possible. A first idea is to take as domain A the set TS of all S-terms, to
define 8 by

B(vi):=v; forieN
and to interpret, for instance, a unary function symbol f by

f2t):=ft forteA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 71
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and a unary relation symbol R by
R¥:={tcA|®F Rt}

Then, for a variable x we have J(fx) = f2(B(x)) = fx. Here a first difficulty arises
concerning the equality symbol: If y is a variable different from x, then fx # fy,
hence J(fx) # J(fy). If we choose @ such that @ F fx = fy (e.g., D = {fx = fy}),
then J is not a model of @. Namely, by the Correctness Theorem IV.6.2 it follows
that @ |= fx = fy, and with J |= @ we would have J(fx) = J(fy).

We overcome this difficulty by defining an equivalence relation on terms and then
using the equivalence classes rather than the individual terms as elements of the
domain of J.

Let @ be a set of formulas. We define an interpretation 3% = (T® B%). For this
purpose we first introduce a binary relation ~ on the set 75 of S-terms by

11. 1 ~1 lﬁf b1 =1
1.2 Lemma. (a) ~ is an equivalence relation.

(b) ~ is compatible with the symbols in S in the following sense:
Ifty ~1t],...,ty ~1,, then for n-ary f € §

fti.ty~ ft).. .1,
and forn-aryR € S
DRy ...ty iff PERr...1.
The proof uses the rule (=) and IV.5.3, 5.4. We give two cases as examples:

(1) ~ is symmetric: Suppose #; ~ f, that is, @ -t} =1,. By IV.5.3(a) we obtain
dH1n=1,le.,th~1.

(2) Let f be an n-ary function symbol from S, and assume | ~ 1{,....t;, ~ 1,
ie, Pt =t1f,..., @t 1, =1, Then by IV.5.4(b), ® & ft1...1, = ft]...1}, ie.,
ftio ity ~ f]...1). -

Let ¢ be the equivalence class of ¢:
f={eTS|t~1},
and let 7% (more precisely: 7%+5) be the set of equivalence classes:
T®:={t|teT5}.

The set 7% is not empty. We define the S-structure T over 7%, the so-called term
structure corresponding to @, by the following clauses:

1.3. Forn-ary R € S,
RE°H .4, :iff ®F Ry .. .1,

1.4. Forn-ary f €5,

o
2, 0) = ft .t
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1.5. Forc e S, CTD =C.

By Lemma 1.2(b) the conditions in 1.3 and 1.4 are independent of the choice of the
representatives f1,...,t, of fi,...,f,, hence RE" and f‘rp are well-defined.
Finally, we fix an assignment 3% by
1.6. B®(x) =%
We call 3% := (T®,B®) the term interpretation associated with ®.
1.7 Lemma. (a) Forall t, J%(t)=7.
(b) For every atomic formula ¢,
ke iff e

(c) For every formula ¢ and pairwise distinct variables xi, ... ,x,,

() 3% =3 ... 30 iff therearety,....t, € TS with 3% ):(pt1

(i) I®=Vay...Vx,@ iff foralltermsty,... t, € TS, 3% = (p t”

Xn®

Proof. (a) By induction on terms. The assertion holds for t = x by 1.6 and for r = ¢
by 1.5. If t = ft;...t,, then

IP(ftr. 1) = 57 (3%(01), .., 3% (1)
= fTP (f1,...,1;) (by induction hypothesis)
=Tti. 1, (byl4).
0 IPEn=n iff 3%n)=73%0n)
ifft 1=t (by(a)
iff tH~n
iff @1 =mn.
3 =Ry ...ty iff RYH..I,
iff ®FRy...1, (byl3).

© @) 3% = 3y... 3,0
iff thereare ay,...,a, € T® with jtb 611 an s

iff therearety,...,t, € TS with J% < t] t” Eo (asT®={7|teT5))

iff  therearety,....t, € TS with 34’% =g (by (@)

iff  there are ..., 1, € TS with 3% = L= (by Lemma 111.8.3).

(ii) follows easily from (i). —
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By part (b) of the previous lemma, J? is a model of the atomic formulas in @, but
not in general of all formulas in @: If, for instance, S = {R} and & = {IxRx}, then,
by part (c) of the lemma, if 3% = @, there should be a term ¢ such that 3xRx + Rt; so
in our case there should be a variable y such that 3xRx - Ry, and this can easily be
refuted (cf. also Exercise 1.12(a)). We will be able to show that 3% is a model of &
only if @ satisfies certain closure conditions, as pointed out for 3 in the example
just given. These conditions are made precise in the following definition.

1.8 Definition. (a) D is negation complete iff for every formula ¢,
P or DPF 0.

(b) @ contains witnesses iff for every formula of the form Jx¢ there exists a term
t such that @ F (Ixe — (p)%)

The following lemma shows that for a consistent set @ which is negation complete
and contains witnesses, there is a parallelism between the property of being deriv-
able from @ and the inductive definition of the satisfaction relation. This will allow
us to show that the term interpretation J is a model of ®.

1.9 Lemma. Suppose that @ is consistent and negation complete and that it con-
tains witnesses. Then the following holds for all ¢ and y:

(a) DF=-¢ iff not @t .
(b) (V) iff PH@ordt .
(c) @Fdx@ iff there isatermtwith@l—(p%.

Proof. (a) Since @ is negation complete, we have @ - ¢ or @ - —¢; and since P is
consistent, @ - —¢ iff not @ - ¢.

(b) Firstlet @ - (¢ V y). If not @ I @, then ® + —¢ (since P is negation complete),
and IV.3.4 gives @ I~ y. The other direction follows immediately by the V-rules
(VS) for the succedent.

(c) Assume @ F Jx¢. Since @ contains witnesses, there is a term ¢ with @ +
(Ixp — (p%); using Modus ponens, IV.3.5, we get & (p%. Conversely, let @ - (p%
for a term ¢. Then the rule (3S) of the J-introduction in the succedent gives
@+ Ixe. -

1.10 Henkin’s Theorem. Let @ be a consistent set of formulas which is negation
complete and contains witnesses. Then for all @,

(*) e iff Pro.

Proof. We show (x) by induction on the number of connectives and quantifiers in ¢,
in other words, by induction on rk(¢) (cf. Definition II1.8.6). If tk(¢) = 0, then ¢ is
atomic, and Lemma 1.7(b) shows that () holds. The induction step splits into three
separate cases.
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() p=-y: IPE-y iff notd®Ey
iff not @t y (byinduction hypothesis)
iff @F -y (by Lemma 1.9(a)).

@ e=(yvy): 3% E=(yVv)
iff 3PEy or 3Py
iff &y or ®F ) (byinduction hypothesis)
ifft &+ (yVy) (byLemma 1.9(b)).

3) ¢ =3ry: 3% =Ty
iff thereisaz with 3% = wL (by Lemma 1.7(c)(i))
iff  thereis ar with @ - l//% (by induction hypothesis,
as rk(l[/%) =rk(y) < rk(¢@); cf. Lemma II1.8.7)
iff @ F dxy (by Lemma 1.9(c)). —

1.11 Corollary. If @ is a consistent set which is negation complete and contains
witnesses, then J% = @ (and hence P is satisfiable). =

1.12 Exercise. (a) Let S:= {R} with unary R and let @ := {3xRx}U {-Ry |y isa
variable}. Show:
— @ is satisfiable and therefore consistent.
— Fornotermt € TS, &+ Rt.
— If 3= (A,B) is amodel of @, then A\ {J(¢) |t € T} is nonempty.

(b) Again, let S= {R} with unary R and let x and y be distinct variables. For
@ = {RxV Ry} show:
— Not @ - Rx and not @ - —Rx, i.e., P is not negation complete.
~ Not 3% = &.

1.13 Exercise. Fix a symbol set S. Consider J for an inconsistent set @. Does J®
depend on the inconsistent set @?

V.2 Satisfiability of Consistent Sets of Formulas
(the Countable Case)

By Corollary 1.11, every consistent set of formulas which is negation complete and
contains witnesses, is satisfiable. We now prove that any consistent set of formulas
is satisfiable, by showing how to extend it to a consistent set of formulas which
is negation complete and contains witnesses. In this section we settle the case of
symbol sets which are at most countable.

In the following let S be at most countable. First we treat the case where only finitely
many variables occur free in the consistent set ® of formulas, i.e., where free(®) :=
Ugca free(9) is finite. We need two lemmas.
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2.1 Lemma. Let & C LS be consistent and let free(®) be finite. Then there is a
consistent set ¥ such that ® C¥ C LS and ¥ contains witnesses.

2.2 Lemma. Let ¥ C LS be consistent. Then there is a consistent, negation com-
plete set @ with' ¥ C © C LS.

Lemma 2.1 and Lemma 2.2 enable us to extend a consistent set ¢ of formulas with
finitely many free variables in two stages to a consistent set of formulas which is
negation complete and contains witnesses. First of all, we extend @ to ¥ according
to Lemma 2.1, and then ¥ to ® according to Lemma 2.2. The set © is consistent and
negation complete; it contains witnesses because ¥ does already. Hence by Corol-
lary 1.11, @ is satisfiable, and since @ C @, P is also satisfiable. We summarize:

2.3 Corollary. Let @ be consistent, and let free(®) be finite. Then P is satisfiable.—

Proof of Lemma 2.1. By Lemma 11.3.3, LS is countable. Let Ixo@o, 3Ix1Q1,... be
a list of all formulas in L5 which begin with an existential quantifier. Inductively
we define formulas yp, y1,..., which we add to @. For each n, y, is a “witness
formula” for 3x, ¢,.

Suppose y,, is already defined for m < n. Since free(®) is finite, only finitely many
variables occur free in @ U {y,, | m < n}U{3x,0,}. Let y, be the variable with
smallest index distinct from these. We set

W, = (3x, 0, — (p,,%—:‘l).
Now let
¥:=dU{y,v,...}

Then @ C ¥ and W clearly contains witnesses. It remains to be shown that ¥ is
consistent. For this purpose let

D, :=DPU{y, | m<n}.

Then &y C ) C P, C ... and ¥ = UJ,,cy Py- By Lemma IV.7.7 (for the symbol
sets § = Sp = §1 = ...) the proof will be complete if we can show that each &, is
consistent. We proceed by induction on 7.

As &y = @, we have Con Py by hypothesis. For the induction step assume that @,
is consistent. Suppose, for a contradiction, that @, = @, U{y,} is inconsistent.
Then for every ¢ there exists I over @, such that=I" y, @, i.e.,

FI(—3x,0, Vv ‘Pﬂ)yTZ) ®.
Thus, there is a derivation
m. I' (23900 V @ut) @

If @ is a sentence, we can extend this derivation as follows:
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(m+1). I' =3x,¢, —3x,¢, (Assm)
(m+2). T 35,0, (-39, V @u32) (vS) applied to (m+1).

(m+3). I' =3x,0, ¢ (Ch) applied to (m+2).
and m. (with (Ant))

(. o, % ¢ (analogously)
+1. I' Ix,0, ¢ (JA) applied to £. (y, does not occur
free in I" 3x,¢, @)
“+2). I ¢ (PC) applied to (¢ + 1). and (m+ 3).

For @ = Jvyvg = vg and for @ = —Ivgvy = vy, this gives @, - Fvgvy = vy and
@D, = ~Fvgvy = vo, respectively. Hence Inc &, which contradicts the induction
hypothesis. —

Proof of Lemma 2.2. Suppose V' is consistent and let ¢, @1, ¢, ... be an enumera-
tion of LS. We define sets of formulas @, inductively as follows:

@() =Y
and
0,U{e,} ifCon®,U{e,},
@ﬂ+1 = .
e, otherwise,
and we set

0= UnGN @n.

First of all, ¥ C @. Clearly all ®, are consistent, and hence by Lemma IV.7.7, © is
consistent as well. Finally, @ is negation complete. For if ¢ € L5, say ¢ = ¢,, and
not ® - —¢, then Con ® U{¢} (by Lemma IV.7.6(b)) and therefore Con @, U{¢@}.
S0 0,1 =06, U{e}, hence ¢ € O and therefore O |- @. .

Now we drop the assumption that free(®) is finite.

2.4 Theorem. IfS is at most countable and ® C LS is consistent, then ® is satisfi-
able.

Proof. We reduce this theorem to Corollary 2.3 by replacing the free variables by
new constants. Let cg, ¢y, ... be distinct constants which do not belong to S, and set

S = SU{Co,Cl,...}.
For ¢ € L’ denote by n(¢) the smallest n with free(¢) C {vo,...,v,_1}. Let
0---Cn(p)

;L co. .-
¢ '—(pVQ...V

n(q}):i and P :={¢ | pc P}

First (by Corollary I11.8.5), free(®’) = 0, i.e.,
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(1) @' is a set of §’-sentences.
Now it will suffice to show that
(2) Cong @/,

for then we know from the special case proved in Corollary 2.3 that @’ is satisfiable,
say by the interpretation 3’ = (21, B'). Since @’ is a set of sentences (cf. (1)), we can
(by the Coincidence Lemma) choose 8’ such that B/(v,) = ¢, i.e., 7' (va) = ¥ (cn)
for all n € N. Then (using the Substitution Lemma) for ¢ € ® we have 7’ |= @, since

JE (p%zgz;j. Hence 7’ is a model of @, i.e., P is satisfiable.

We prove (2) by showing that every finite subset &) of @' is satisfiable, and thus,
by Lemma IV.7.5, consistent (with respect to §'). Let &) = {¢],...,¢,}, where
O1,...,0, € P. Since {@y,...,¢,} is a subset of P, it is consistent (with respect
to S), and since only finitely many variables occur free therein, it is satisfiable
(cf. Corollary 2.3). Choose an S-interpretation J = (2, ) such that

() TE{e,-... 0}

and expand 2 to an §'-structure A’ with ¢ = J(v;) for i € N. For this new S'-
interpretation 3’ = (', B) the Substitution Lemma yields for ¢ € L5:

~ . ~ CO---Cplp)—
e iff J’i=<p7m___vn$;7}.

By (%), 7" is a model of &)). .

The following exercise shows that the assumption “free(®) is finite” in Lemma 2.1
is necessary.

2.5 Exercise. Let S be arbitrary and let @ = {vo =¢ |t € TS} U {3voIvi—vo =1 }.
Show that Con @ holds and that there is no consistent set in LS which includes &
and contains witnesses.

V.3 Satisfiability of Consistent Sets of Formulas
(the General Case)

In this section we no longer assume that S is countable. In Section 2 the set @ we
started with was consistent and free(®P) was finite. We extended & to a consistent
set containing witnesses by adding a formula (Ix¢ — (p%) with a “new” variable y
for each formula of the form Jx¢. If @ is uncountable, we run out of variables. We
solve this problem by adding constants to the symbol set which will take over the
role of the variables. The claims corresponding to Lemma 2.1 and Lemma 2.2 are:

3.1 Lemma. Assume ® C LS with Cong D. Then there is an S" DS and a set ¥
such that @ CW¥ C LS and Cong ¥, and ¥ contains witnesses with respect to S



V.3 Satisfiability of Consistent Sets of Formulas (the General Case) 79

(that is, for every formula of the form 3x¢ € LS there is a term t € TS such that
P (Ixp — L)),

3.2 Lemma. Assume ¥ C L® with Cong V. Then there is a set ® such that ¥ C
O C LS and O is consistent and negation complete with respect to S.

As we obtained Corollary 2.3 from Lemma 2.1 and Lemma 2.2, we likewise have
from Lemma 3.1 and Lemma 3.2:

3.3 Corollary. If @ C LS and P is consistent, then P is satisfiable. B
The following argument will lead to a proof of Lemma 3.1.

Let S be an arbitrary symbol set. Associate with every ¢ € L5 a constant ¢ which
isnotin S. For @ # y let ¢y # cyy. We set

§* :=SU{caxp | Ixep € L5}

and

X

W(S) = {(Elxq) =) | Ip e LS}.

3.4. For @ C LS, if Cong & then Cong. @ UW (S).

Proof. Suppose Cong @ holds. We show that every finite subset ®; of @ UW(S) is
consistent with respect to S* by proving that it is satisfiable. Let

Dy = DPyU {(Elxl(pl — (pl%),...,(ﬂx,,(pn — (p,,%)},

where @) = ;NP and 3x1 @y, ..., 3x, @, € LS. Here ¢; stands for c3,,,.

First, using Corollary 2.3, we show that @ is satisfiable. Then, from a model J
of @y we get a model of @ by a suitable interpretation of the constants.

We choose a finite (and hence at most countable) subset Sy C S such that &y U
{3101, ..,3x,0,} € L. Since Cong @ holds, so does Cong 9, and hence also
ConS0 @,. Because free(dy) is finite, it follows from Corollary 2.3 that Py is satis-
fiable.

Let J = (2, B) be an S-interpretation which satisfies &y and fix an element « in A.
For 1 <i <n we choose a; € A so that

(*) IE E e if T 3ae;,
and a; = a otherwise. We extend 2 to an S*-structure 2A* as follows: For 1 <i<n

let

A
¢ =a,

and interpret the remaining constants of the form c3, by a. Let 3* = (2*, ). Since
no constant ¢z, occurs in @y, it follows from J E &, that 7* |= ®y. Furthermore,

7 g — (Pi%
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(and this shows that @ is satisfiable). In fact, if 3* |= Jx;¢; then TJ*% E @; by (%).

Since a; = J*(¢;) it follows by the Substitution Lemma that 3* = (p,%. .
Proof of Lemma 3.1. Let @ C LS and suppose Cong @. We define a symbol set S’
and ¥ C L5 with the following properties:

(a) SCSand ® C V.

(b) Cong Y.

(c) Y contains witnesses.

For this purpose we define symbol sets S, and sets @, of formulas by induction
on n:
So:=S8 and S,y :=(Sy)",
Dy):=D and D, :=D,UW(S,).
(For the definitions of (S,)* and W(S,,) see the definitions before 3.4.)

From the construction it follows that

S=85CScHc...,

&, C LS forn € N,

D=P, C P CP,C....
We set S’ := U,en Sn and ¥ := ey @y Then (a) holds. Using 3.4 one can easily
show ConSn &, by induction on n, and hence, by Lemma IV.7.7, that Cons, v,

Therefore, (b) also holds. Finally, ¥ contains witnesses. In fact, let 3x¢ € L.
Then, dx¢p € LS+ for a suitable n. Thus for some constant ¢ € Sn+1, the formula
(3x@ — @) is an element of W (S,) and, hence, an element of . 4

Proof of Lemma 3.2. In the proof of Lemma 2.2 we made essential use of the count-
ability of LS. For arbitrary S we no longer have this property at our disposal. We
resort to Zorn’s Lemma, which we now state in a form suited for our purposes. The
reader can find a proof of this lemma in books on set theory, e.g., in [26, 27].

Let M be a set and let 4 be a nonempty set of subsets of M. 7 is called a chain in 4
if U C 4, Y # 0, and if for V|,V, € U we have V] C V, or V, C V). Then Zorn’s
Lemma says:

3.5. Iffor every chain 0 in i the union  Jycq; V belongs to L, then there is at least
one maximal element in 4, i.e., an element Uy for which there is no Uy € A such that
Uy C U].1

Now, let ¥ C LS and Cong V. Set M := LS and
U:={P|¥C & CLS and Cong P}.

Clearly, ¥ € 4l and so 4l is not empty. Let U be a chain in l. The set @1 := Ugpecay P
is an element of &, since ¥ C ©; C LS and Cong ©. The consistency of ®; can be
proved as follows: If @y is a finite subset of @y, say @y = {¢y,..., @, }, then there

1 We write Uy C Uy if Uy C Uy and Uy # Uj.
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are @y,..., P, € U with ¢; € P; for 1 <i < n. Since Y is a chain, we can number
the @; such that & C &, C ... € &,. Thus Oy C &,, and by Cong P, we have
Cong 6.

Now we can apply Zorn’s Lemma (3.5) to &I, thereby obtaining a maximal ele-
ment O in . From the definition of § we know that ¥ C ® C LS and Cong 6. On
the other hand @ is also negation complete. For if ¢ € LS, then by Lemma IV.7.6(c),
Cong ®U{@} or Cong ® U{—¢}; by maximality of ©® we have @ = © U{¢} or
O = O U{~¢}. Therefore ® - ¢ or O - —¢. -

V.4 The Completeness Theorem

As already mentioned in the introduction of this chapter, we can obtain the com-
pleteness of the sequent calculus from Theorem 2.4 (for at most countable §) and
from Corollary 3.3 (for arbitrary S):

4.1 Completeness Theorem. For @ C LS and ¢ € L5:
If @ = @ then Dt ¢. .
From it, together with the Theorem on Correctness IV.6.2, we have:
For®CLSandpecl®, ®kE¢ iff ®rgo,
and from Corollary 3.3 and Lemma I'V.7.5 we obtain:

For @ C LS5, Sat® iff Cong .

In Section II1.4 we saw that the concepts of consequence and satisfiability are actu-
ally independent of the particular choice of S. It follows from the results above that
the concepts of derivability and consistency are also independent of S (cf. the foot-
note on page 69). Thus we can simply write “"" and “Con”, omitting the subscript.

4.2 Theorem on the Adequacy of the Sequent Calculus.

(@ PFo iff Pko.
(b) Sat @ iff Con ®. &

Historical Note. The program of setting up a calculus of reasoning was first for-
mulated and pursued by Leibniz, although traces of it may be found in the works
of earlier philosophers (e.g., Aristotle and Llull?). At the beginning of last century,
Russell and Whitehead developed a calculus, and within it, gave formal proofs for a
large number of mathematical theorems. In 1928, Gédel [13] proved the Complete-
ness Theorem. The method of proof used in this section is due to Henkin [15].

2 Ramon Llull, latinized Raimundus Lullus (1232-1316).
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Chapter VI

The Lowenheim—Skolem Theorem
and the Compactness Theorem

The equivalences of I and |= and of Con and Sat, respectively, form a bridge be-
tween syntax and semantics which allows us to transfer properties of - to |= and of
Con to Sat and vice versa. When proving the independence of + and Con from the
underlying symbol set at the end of the previous chapter, we transferred properties
of semantic notions to syntactic ones. In Section 2 we make use of this connection in
the other direction and get several important results for |= and Sat. Together with the
theorems in Section 1 they will provide us with a deeper insight into the expressive
power of first-order languages.

VI.1 The Lowenheim-Skolem Theorem

The domain of the model J® defined in Section V.1 consists of equivalence classes
of terms. We use this fact to obtain the following theorem:

1.1 Lowenheim—Skolem Theorem.! Every at most countable and satisfiable set

of formulas is satisfiable over a domain which is at most countable (i.e., it has a
model whose domain is at most countable).

Proof. First, let @ be an at most countable set of S-sentences which is satisfiable and
hence consistent. Since each S-formula contains only finitely many S-symbols, there
are at most countably many S-symbols in @. Therefore we may assume without loss
of generality, that S itself is at most countable. Since @ is satisfiable, @ is consistent,
and the proofs in Section V.1 and Section V.2 show that there is an interpretation
which satisfies @ and whose domain A consists of classes 7 of terms, where ¢ ranges
over T5. Because T* is countable (cf. Lemma II.3.3), A is at most countable.

This argument can easily be transferred from sets of sentences to sets of formulas;
for, if @ is a set of S-formulas and

1 Leopold Lowenheim (1878-1957), Thoralf Skolem (1887-1963).
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where cg,c1,... are new constants, then @ and @’ are satisfiable over the same
domains (cf. the proof of Theorem V.2.4). —

The sentence VxVyx = y has only finite models. For a unary function symbol f, the
sentence VxVy(fx = fy — x = y) A —VxTJy fy = x has only infinite models, since
there is no function on a finite set which is injective but not surjective.

If one re-examines the proof of the Completeness Theorem for the case of uncount-
able symbol sets, one obtains the following generalization of Theorem 1.1, which
we formulate for readers who are familiar with the concept of cardinality:

1.2 Downward Lowenheim—Skolem Theorem. [fa set @ C LS is satisfiable, then
it is satisfiable over a domain of cardinality not greater than the cardinality of LS.

In the Lowenheim—Skolem Theorems a certain weakness of first-order languages is
already apparent. In the case of the symbol set S5, for example, there cannot exist
a set @ of sentences which characterizes the ordered field R~ = (R, +,-,0,1,<) of
the real numbers up to isomorphism (in the sense that exactly 3= and the structures
isomorphic to 93< are the models of &). Any such set @ of S;;-sentences would be
at most countable and satisfiable (since 93 = & must hold); then by Theorem 1.1
there would be an at most countable structure 2 such that 2 |= &. But this could
not be isomorphic to A< since the domain of 8= is uncountable.

In analysis, JR< is characterized up to isomorphism, say, by the axioms for ordered
fields and the so-called completeness axiom (“Every nonempty set which is bounded
above has a supremum”). Since the axioms for ordered fields can be formulated as
Ss-formulas, we see that the completeness axiom cannot be phrased in terms of
Sr-formulas.

1.3 Exercise. Show that every at most countable set of formulas which is satisfiable
over an infinite domain is satisfiable over a countable domain.

VI.2 The Compactness Theorem

From the definition of - and Con we obtained directly (cf. Lemma IV.6.1 and
Lemma IV.7.4):

(a) @@ iff thereis afinite @y C P such that Dy - ¢.
(b) Con @ iff for all finite &y C @, Con Py.

Using the Adequacy Theorem V.4.2 we rephrase these results for the corresponding
semantic concepts:

2.1 Compactness Theorem. (a) (for the consequence relation)

D= iff thereis a finite @y C P such that Oy = @.
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(b) (for satisfiability)
Sat @ jff for all finite &y C P, Sat P.

The Compactness Theorem is so called because, in a suitable topological reformu-
lation, it says that a certain topology is compact (cf. Exercise 2.5).

The Lowenheim—Skolem Theorem and the Compactness Theorem play a dominant
role in the semantics of first-order languages and in applying them to mathematical
structures. In Chapter XIII we shall show that, in a certain way, they even character-
ize the first-order languages.

We now use the Compactness Theorem to obtain variants of the Lowenheim—
Skolem Theorem.

2.2 Theorem. Let @ be a set of formulas which is satisfiable over arbitrarily large
finite domains (i.e., for every n € N there is an interpretation satisfying ® over a
finite domain which contains at least n elements). Then P is also satisfiable over an
infinite domain.

Proof. Let

¥:=@U{¢>,|2<n}
(¢>, was introduced in I11.6.3). Every interpretation which satisfies ¥ is a model
of @ and has an infinite domain. Therefore we need only prove that ¥ is satisfiable.

By the Compactness Theorem it is sufficient to show that every finite subset ¥ of ¥
is satisfiable. For each such ¥ there is an ng € N such that

(%) H C PU{@g>, |2 <n<np}.

According to the hypothesis of the theorem there is an interpretation J satisfying @,
whose domain contains at least ng elements. By (), J is also a model of 'F. B

2.3 Upward Lowenheim—Skolem Theorem. Let @ be a set of formulas which is
satisfiable over an infinite domain. Then for every set A there is a model of @ which
contains at least as many elements as A. (We say that M has at least as many ele-
ments as A if there exists an injective map from A into M.)

Proof. Let @ C LS. For each a € A let ¢, be a new constant (i.e., ¢q ¢ S) such that
cq # ¢ for distinct a, b € A. First, we show that the set

¥Y:=dU{-c,=cp|a,beA, a#b}
of SU{c, | a € A}-formulas is satisfiable.

Because of the Compactness Theorem we can restrict ourselves to showing, for
every finite n-tuple of distinct elements ay,...,a, € A, that

(+) DPU{cy; =ca; | 1 <1, j<n,i#j}

is satisfiable (cf. the argument in the previous proof). By hypothesis, there is an S-
interpretation J = (8, §) which satisfies @ and whose domain B is infinite. There-
fore there are n distinct elements by,...,b, € B. We let cgf :=b;for 1 <i<n.Then
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the interpretation ((%, CZB], . ,cgz) ,[3) satisfies the set (+). Since every finite subset
of ¥ is satisfiable, there is an interpretation J' which satisfies ¥ and hence also sat-
isfies @. Let D be the domain of 7. For a,b € A with a # b we have 7' |= —¢, = ¢p.
Hence J'(c,) and J'(cp,) are distinct elements of D. Therefore the map w: A — D,

where 7(a) = J'(c,), is injective. Thus D has at least as many elements as A. !

For example, let @ = Py, be the set of group axioms. Since there are infinite groups,
Theorem 2.3 proves the existence of arbitrarily large groups. Similarly, one can
show that there are arbitrarily large orderings and arbitrarily large fields. For each
of those theories this fact can easily be shown using algebraic methods specific to the
theory. However, first-order logic provides us with a framework and with methods to
state and prove such results in a general form. Investigations of this kind on (classes
of) algebraic structures belong to the field of model theory. For further reading we
refer to [8, 21, 41].

The idea of the previous proof is used in the proof of the following theorem, which
we state here for readers familiar with the notion of cardinal number.

2.4 Theorem of Lowenheim, Skolem, and Tarski. Let @ be a set of formulas
which is satisfiable over an infinite domain and let x be an infinite cardinal greater
than or equal to the cardinality of . Then ® has a model of cardinality K.

Proof. Let @ and x be given as in the statement of the theorem. Let A be a set of
cardinality k. We may assume that @ C LS for a symbol set S of cardinality < k.
Then the symbol set SU{c, | a € A} given in the proof of the Upward Lowenheim—
Skolem Theorem 2.3 has cardinality k, as does the set of SU{c, | a € A}-formulas.
Again, let ¥ := @ U{—c, =¢p | a,b € A, a # b}. By the Downward Lowenheim—
Skolem Theorem 1.2 there is a model J’ of ¥ (and hence of @) whose domain D
has cardinality < k. On the other hand, since —¢, = ¢; € ¥ for distinct a,b € A, the
set D has cardinality > k; hence its cardinality is exactly . -

2.5 Exercise. Let S be a symbol set. For every satisfiable set @ of S-sentences
let 2(p be an S-structure such that 2 = @. Furthermore, write X := {2 | @ C
L§, Sat @}, and for every S-sentence ¢ define Xy := {A € £ |2 = ¢}.

(a) Show that the system {X,, | ¢ € L3} is a basis for a topology on X.

(b) Show that every set Xy, is closed.

(c) Use the Compactness Theorem to show that every open covering of X has a
finite subcovering, so that X is (quasi-)compact.

VIL.3 Elementary Classes

For a set @ of S-sentences we call
Mod’® := {2(| 2 is an S-structure and A |= P}

the class of models of . Instead of Mod®{ @} we sometimes write Mod® ¢.
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3.1 Definition. Let £ be a class of S-structures.

(a) Ris called elementary if there is an S-sentence ¢ such that & = Mod®¢.
(b) R is called A-elementary if there is a set @ of S-sentences such that R =
Mod® &.

Every elementary class is A-elementary. Conversely, because
Mod®® = Myeq Mod® o,
every A-elementary class is the intersection of elementary classes.

From an algebraic point of view we can formulate the question of the expressive
power of first-order languages as follows: Which classes of structures are elemen-
tary or A-elementary, i.e., which classes can be axiomatized by a first-order sen-
tence ¢ or by a set @ of first-order sentences?

Let us give some examples.

3.2. The class of fields (as Sy-structures) and the class of ordered fields (as Sg-
structures) are elementary. For example, the first class can be represented in the
form Mod’« @, where @ is the conjunction of the field axioms in IIL.6.5. Similarly,
the class of groups, the class of equivalence structures, the class of partially defined
orderings (ct. I11.6.4), and the class of (directed) graphs are elementary.

Let p be a prime. A field § has characteristicp if 15+, +15= 0%, that is, if § sat-
—————

times
isfies the sentence y, := 1+ ...+ 1 = 0. If there is n(l)) prime p for which § has char-
\ﬁ,—/
p times
acteristic p, then § is said to have characteristic 0. For every prime p the field Z/(p)
of the integers modulo p has characteristic p. The field R of real numbers has char-
acteristic 0. The class of fields of characteristic p coincides with Mod> (oF A x,,)
and, hence, is elementary. The class of fields of characteristic 0 is A-elementary; it
can be represented as Mod** ({@r } U{=yx, | p is prime}). The following consider-
ations will show that it is not elementary.

Let ¢ be an S,-sentence that is valid in all fields of characteristic 0, i.e.,
{or}U{-xp | pis prime} = ¢.
By the Compactness Theorem there is an g (depending on ¢) such that

{or}U{=2p | pisprime, p <no} = @.

Hence, ¢ is valid in all fields of characteristic > ny. Thus we have proved:

3.3 Theorem. An Sy-sentence which is valid in all fields of characteristic 0 is valid
in all fields whose characteristic is sufficiently large. b

We conclude from this that the class of fields of characteristic 0 is not elementary,
for otherwise, there would have to be an S,-sentence ¢ which is valid precisely in
the fields of characteristic 0.
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As an instance of Theorem 3.3 one obtains the well-known algebraic result that two
polynomials p(x) and o(x), whose coefficients are integral multiples of the unit
element, and which are relatively prime over all fields of characteristic 0, are also
relatively prime over all fields of sufficiently large characteristic. To verify this, one
rewrites the statement that p(x) and o(x) are relatively prime as an S,.-sentence @.
In the case p(x) := 3x*> + 1 and &(x) := x> — 1 one can take for ¢ the sentence

—JuoTu; IwoIw 320321 22V ((uo +up -x) - (wo+wy-x) = (1+1+1)-x-x+1
A (uo+ur-x)-(z0+z21-x+z2-x-x)=x-x-x—1)
A —=FugJuy x(ug +uy - x) - (1+14+1) - x-x+1)=x-x-x—1.2

Here “... =x-x-x— 17 stands for “... 4+ 1 = x-x-x". (The symbol “—" does not
belong to Sy;!)

3.4. The class of finite S-structures (for a fixed S), the class of finite groups, and the
class of finite fields are not A-elementary. The proof is simple: If, for example, the
class of finite fields were of the form ModSMCP, then @ would be a set of sentences
having arbitrarily large finite models (e.g., the fields of the form Z/(p)) but no
infinite model. That would contradict Theorem 2.2. .

On the other hand, Exercise 3.7 below shows that the corresponding classes of infi-
nite S-structures (groups, fields) are A-elementary.

3.5. The class of torsion groups is not A-elementary. We give an indirect proof,
assuming for a suitable set @ of Sy;-sentences Mod3= @ to be the class of torsion
groups. Let

¥:=@U{-yxo...ox=e|n>1}.
—
n times

Every finite subset ¥ of ¥ has a model: Choose an ny such that ¥ C ¢ U

{—xo0...ox=e| 1 <n<np}. Then every cyclic group of order ny is a model
n times

of ¥ if x is interpreted by a generating element. Now let (&, 3) be a model of P.

Then B(x) does not have finite order, showing that & is a model of & but not a

torsion group, a contradiction. —

3.6. The class of connected graphs is not A-elementary. Here, a graph (G,R©)
is said to be connected if, for arbitrary a,b € G with a # b, there are n > 2 and
ai,...,a, € G with

ai=a, a,=b and ROaa;, fori=1,...,n—1

(i.e., if for any two distinct elements in G there is a path connecting them). For
n > 0, the (n+ 1)-cycle &, with the vertices 0,...,n is a connected graph. More
precisely, &, is the structure (G,,R%") with G, := {0,...,n} and

2 Note that a polynomial of the kind in question is uniquely determined by its values as a function
if the underlying field is large enough.
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RO = {(ii+ 1) |i <n}U{(i,i—1)| 1 <i<n}U{(0,n),(n,0)}.

To give an indirect proof of 3.6, we assume that, for a suitable set @ of {R}-
sentences, Mod{®} & is the class of connected graphs. For n > 2 we set

VW, = —x=yA-3x ... (0 ExAX, = YAR XA AR, 1)
and
¥:=dU{y,|n>2}.

Then every finite subset ¥ of ¥ has a model: For ¥, choose an ng > 0 such that ') C
PU{y, |2 <n<np}; then By, is amodel of ¥, if x is interpreted by 0 and y by ng.
If (2(, B) is a model of P, there is no path connecting 8 (x) and (y). Therefore 2 is
a model of @, but not a connected graph. This contradicts the assumption on @. -

3.7 Exercise. Let R be a A-elementary class of structures. Show that the class £~
of structures in & with infinite domain is also A-elementary.

3.8 Exercise. If £ is a class of S-structures, ¢ C Lg and & = Mod® &, then @ is
said to be a system of axioms for K. Show:
(a) Riselementary if and only if there is a finite system of axioms for .
(b) If KRis elementary and R = Mod® @, then there is a finite subset @y of & such
that & = Mod® &,

3.9 Exercise. Let £ and K be classes of S-structures such that £ C K. Let K be
the class of S-structures which are in £ but not in £, that is & = 8\ K. Further-
more, let K be elementary and K| be A-elementary. Show:
(a) R, is elementary iff Ry is A-elementary

iff R is elementary.

Conclude:
(b) The class of fields whose characteristic is a prime is not A-elementary.

3.10 Exercise. A set @ of S-sentences is called independent if no ¢ € @ is a con-

sequence of @\ {¢@}. Show:

(a) Every finite set @ of S-sentences has an independent subset & such that
Mod’® = Mod* &y

(b) If S is at most countable then every A-elementary class of S-structures has
an independent system of axioms. Hint: Start by defining a system of axioms
@0, @1, ... such that = @11 — ¢; fori € N.

3.11 Exercise. Let @ be the finite system of axioms for vector spaces expressed in
terms of the symbol set S = {F,V,+,-,0,1,0,e,x} (cf. Section I1.7.2). Show:

(a) For every n the class of n-dimensional vector spaces is elementary.

(b) The class of infinite-dimensional vector spaces is A-elementary.

(c) The class of finite-dimensional vector spaces is not A-elementary.
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V1.4 Elementarily Equivalent Structures

Isomorphic structures satisfy the same sentences of first-order logic and thus cannot
be distinguished by a set of first-order sentences. Contrary to that, structures that
satisfy the same first-order sentences may not be isomorphic. In this section we
present some basic results concerning the relationship between isomorphism and
indistinguishability in first-order logic.

We begin by introducing two new concepts.

4.1 Definition. (a) S-structures 2 and B are called elementarily equivalent (writ-
ten: A = B) if for every S-sentence @ we have 2 = ¢ iff B = ¢.

(b) For an S-structure 2 let Th(2A) := {¢ € L3 | A |= ¢} be the (first-order) theory
of 2.

4.2 Lemma. For S-structures 2 and ‘B,
B=2A iff BEThA).

Proof. If B = A then, since A |= Th(A), also B = Th(2). Conversely, if B = Th(A)
then, given an S-sentence @, we examine the two possibilities: (i) If 2 = ¢, then
¢ € Th(2() and hence B = @. (i) If not A |= @, then ~¢ € Th(2); thus B = —¢
and therefore not B = ¢. —

In the following, let 2 be a fixed S-structure. We consider

(1) the class {B | B =} of structures isomorphic to 2,
(2) the class of structures which satisfy the same sentences as %, i.e., the class
{B | B = A} of structures elementarily equivalent to 2.

From the Isomorphism Lemma IIL.5.2 it follows directly that isomorphic structures
are elementarily equivalent, that is

+) {(B|B2A C{B|B=2A.

4.3 Theorem. (a) If 2 is infinite, then the class {8 | B = U} is not A-elementary;
in other words, no infinite structure can be characterized up to isomorphism in
first-order logic.

(b) For every structure 2, the class {8 | B = U} is A-elementary; in fact {B |
9B =9A} = Mod® Th(A). Moreover, {B | B = A} is the smallest A-elementary
class which contains 2.

From Theorem 4.3 together with (+) we obtain that for an infinite structure 2l the
class {8 | B = 2(} must be a proper subclass of {8 | B = 2(}; in particular:

4.4 Corollary. For each infinite structure there exists an elementarily equivalent,
nonisomorphic structure. B

Proof of Theorem 4.3. (a) We assume 2l to be infinite and @ to be a set of S-sentences
such that
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(%) ModS® = {B | B = 2}.

The set @ has an infinite model, and therefore, by the Upward Lowenheim—Skolem
Theorem 2.3, it has a model 5 with at least as many elements as the power set of A.
Hence ‘B is not isomorphic to 2l (cf. Exercise II.1.5), in contradiction to (x).

(b) From Lemma 4.2 it follows immediately that {5 | 5 =2} = Mod>Th(2(). Now,
if ModS@® is another A-elementary class containing 2, then 2 = @ and therefore
B = @ for every B with B = 2; hence {B | B = A} C Mod® @. 4

Theorem 4.3(b) shows that a A-elementary class contains, together with any given
structure, all elementarily equivalent ones. In certain cases one can use this fact
to show that a class K is not A-elementary. To do this one simply specifies two
elementarily equivalent structures, one of which belongs to £, and the other does
not. We illustrate this method in the case of archimedean fields.

An ordered field § is called archimedean if for every a € F there is a natural num-
ber n such that a <* 1¥ 4-... + 1F. For example, the ordered field of rational num-
5,—/
n times
bers and the ordered field 93< of real numbers are archimedean. We show that there
is an ordered field elementarily equivalent to 93< which is not archimedean. This
will prove:

4.5 Theorem. The class of achimedean fields is not A-elementary.
Proof. Let
¥ :=Th(R)U{0<x, 1<x,2<ux,...},

where 0,1,2.... stand for the Sy-terms 0,1,1 4+ 1,.... (We shall write n for the
sum with n entries 1.) Every finite subset of ¥ is satisfiable, for example, by an
interpretation of the form (SR<, 8), where f3(x) is a sufficiently large natural number.
By the Compactness Theorem there is a model (%8,7) of . Since B |= Th(R~),
B is an ordered field elementarily equivalent to 93<, but (as shown by the element
¥(x)) it is not archimedean. 4

The application of the Compactness Theorem in the preceding proof is typical and
has already been used several times (cf. Theorem 2.2, Theorem 2.3, and para-
graph 3.5). In each case the problem consists in finding a structure with certain
properties which can be expressed in first-order logic by means of a suitable set ¥
of formulas. To prove satisfiability of ¥ one employs the Compactness Theorem. In
the preceding proof ¥ contains (in addition to Th(9R<)) formulas which guarantee
that there is an element which violates the archimedean ordering property. The Com-
pactness Theorem says in this case that, from the existence of ordered fields with
arbitrarily large “finite” elements, one can conclude the existence of an ordered field
with an “infinitely large” element. We shall give some further applications of this
method.

The system of axioms IT from Exercise III.7.5 characterizes the structure 1 up to
isomorphism. However, 1 cannot be characterized up to isomorphism by means of
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first-order formulas (cf. Corollary 4.4). Hence the induction axiom, being the only
second-order axiom of I, cannot be formulated as a first-order formula or as a set
of first-order formulas.

A structure which is elementarily equivalent, but not isomorphic to 91 is called a
nonstandard model of arithmetic. By the Upward Lowenheim—Skolem Theorem 2.3
there exists an uncountable nonstandard model of arithmetic. We now prove:

4.6 Skolem’s Theorem. There is a countable nonstandard model of arithmetic.

Proof. Let
Y :=ThMU{x=0, x=1, «w=2,...}.

Every finite subset of ¥ has a model of the form (91, B), where B (x) is a sufficiently
large natural number. By the Compactness Theorem there is a model (2(,7) of P,
which by the Lowenheim—Skolem Theorem and the countability of ¥ we may as-
sume to be at most countable. 2l is a structure elementarily equivalent to 1. Since
for m # n the sentence —m = n belongs to Th(1), 2 is infinite and hence is count-
able. 2 and Ot are not isomorphic, since an isomorphism 7 from 91 onto 2 would
have to map n =n" to a% (cf. (i) in the proof of the Isomorphism Lemma II1.5.2),
and thus y(x) would not belong to the range of 7. -

Considering the set Th(MN<)U{-x=0, ~x =1, -x = 2,...}, we obtain analo-
gously:

4.7 Theorem. There is a countable structure elementarily equivalent to U~ which
is not isomorphic to N=. (In other words, there is a countable nonstandard model
of Th(MN<)). -

What do nonstandard models of Th(9t) or Th(91<) look like? In the following we
gain some insight into the order structure of a nonstandard model 2 of Th(91<) (and
hence also into the structure of a nonstandard model of Th(91); cf. Exercise 4.9).

In 91 the sentences

Vx(0=xV0<x),
0<1IAVx(0<x— (1=xV1<x)), 1<2AVx(1<x— (2=xV2<Xx)),...
hold. They say that O is the smallest element, 1 the next smallest element after 0, 2

the next smallest element after 1, and so on. Since these sentences also hold in 2L,
the “initial segment” of 2 looks as follows:

: % % % >

In addition, A contains a further element, say a, since otherwise 2 and 9N~ would
be isomorphic. Furthermore, 1< satisfies a sentence ¢ which says that for every
element there is an immediate successor and for every element other than O there
is an immediate predecessor. From this it follows easily that A contains, in addition
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to a, infinitely many other elements which together with a are ordered by <* like
the integers:

04 14 24 a

If we consider the element a +4 a we are led to further elements of A:

} % % > K > <o >
0 14 2 a at+ta

The reader should give a proof of this and also verify that between every two copies
of (Z,<) in 2 there lies another copy.

The examples in this and the previous sections show that there are important classes
of structures which cannot be axiomatized in first-order logic. On the other hand,
this weakness of expressive power also has pleasant consequences. For example,
the argument establishing that the class of archimedean fields is not axiomatizable
yields a proof of the existence of non-archimedean ordered fields; and the fact that
the class of fields of characteristic 0 cannot be axiomatized by means of a sin-
gle Syr-sentence is complemented by the interesting result of Theorem 3.3. Using
similar methods, one can obtain structures elementarily equivalent to the ordered
field R< of real numbers which contain, in addition to the real numbers, infinitely
large elements and infinitely small positive elements (so-called infinitesimals). Such
structures can be used in a development of analysis which avoids the €-0-technique
(nonstandard analysis; cf. [16, 25, 34]).

4.8 Exercise. Show: If an S;;-sentence ¢ is valid in all non-archimedean ordered
fields, then ¢ is valid in all ordered fields.

4.9 Exercise. Let the Sy-structure 2 be a model of Th(9). Let the binary rela-
tion < be defined on A as follows: For all a,b € A,

a<rb iff (a = b and there is ¢ € A such that a +4c=b).
Show that (21, <) is a model of Th(9<).

4.10 Exercise. If 2( is a model of arithmetic (that is, 20 = Th(91)) and if a,b € A,
then « is said to be a divisor of b (written: a|b) if a A¢ = b for a suitable ¢ € A.
Let Q be a set of prime numbers. Show that there is a model 2l of arithmetic which
contains an element a whose prime divisors are just the members of Q, that is, for
every prime p:

M+ .. +1%a iff peo.
~—_———
p times

Conclude that there are at least as many pairwise nonisomorphic countable models
of arithmetic as there are subsets of N.
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4.11 Exercise. Let 2 = (A, <*) be a partially defined ordering (cf. I1.6.4). We say
that <4 (or also (A, <A)) has an infinite descending chain if there are elements
ap.ay,as,... in field <4 such that

Lo<Aay <Aap <Aa.

Show: (a) (N, <™) contains no infinite descending chain; on the other hand, if 2 is
a nonstandard model of Th(91<), then (A, <*) contains an infinite descending
chain.

(b) Let <€ Sand @ C Lg. Assume that for every m € N there is a model 2 of @
such that (A, <*) is a partially defined ordering and field < contains at least m
elements. Then there exists also a model B8 of @ such that (B, <?) is a partially
defined ordering containing an infinite descending chain.
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Chapter VII
The Scope of First-Order Logic

In Chapter I we realized that investigations into the logical reasoning used in mathe-
matics require an analysis of the concepts of mathematical proposition and proof. In
undertaking such an analysis, we were led to introduce the first-order languages. We
also defined a notion of formal proof which corresponds to the intuitive concept of
mathematical proof. The Completeness Theorem then shows that every proposition
which is mathematically provable from a system of axioms (and thus follows from
it) can also be obtained by means of a formal proof, provided the proposition and
the system of axioms admit a first-order formulation.

In this chapter we discuss what has been achieved so far and what implications this
has for the foundations of mathematics. To start our discussion let us consider the
following questions:

(1) One goal of our investigations was a clarification of the notion of proof. How-
ever, we carried out mathematical proofs before the notion of proof was made pre-
cise. Are we not trapped in a vicious circle? Furthermore, even if there are no prob-
lems of this kind in our approach, how can we justify the rules of the sequent calcu-
lus &?

(2) We realized, particularly in Chapter VI, that the first-order languages have cer-
tain deficiencies in expressive power. Hence the question: What effect does the re-
striction to first-order languages have on the scope of our investigations?

We deal with the second question in Section 2. There we shall see that the first-
order languages are in principle sufficient for present-day mathematics. Hence, the
following discussion pertaining to the first question applies, in fact, to the whole of
mathematics.
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VII.1 The Notion of Formal Proof

In answering question (1), we want to show that no mathematical proofs are needed
to introduce the notion of formal proof. In our discussion we also investigate the
nature of the sequent rules and consider possible means of justifying them.

In Section 2 we shall argue that a finite set S of concretely chosen symbols suffices
to represent the statements and arguments arising in mathematics. Therefore, in this
discussion we can specify the symbols as concrete signs; thus terms, formulas, and
sequents are concrete strings of symbols and not abstract mathematical entities such
as are, for example, formulas in a language whose symbol set is {c, | r € R}.

The notion of formal proof is based on the manipulation of symbol strings such
as terms, formulas, and sequents. These manipulations are governed by a series of
calculi, like the calculus of terms and the sequent calculus. The application of rules
in these calculi consists of simple syntactic operations. We illustrate this in the case
of the sequent calculus. To clarify the aspect we have in mind, let us start by a
comparison with the rules of chess.

The rules of chess permit certain operations on concrete objects, the chess pieces.
Applying a rule, that is, making a move, consists of proceeding from one configu-
ration of the pieces to another. Each individual rule of chess is so simple that those
who know the rules — even if they are not chess players — can carry out moves by
themselves, or can check moves to determine whether they were made according to
the rules.

A similar situation pertains in the case of sequent rules. Clearly the rules are moti-
vated by the intended meanings, but their application does not require any knowl-
edge of these meanings: one merely performs concrete syntactic operations on
strings of symbols. Those who know the rules — even if they are not logicians or
mathematicians — can apply them and check whether an application has been car-
ried out correctly. Admittedly, when dealing with sequents, we have often relied on
results proven mathematically (for example, we invoked the unique decomposition
of a sequent into formulas when speaking of the succedent). But this can be avoided
if, when applying a rule, we not only note the sequent, but also keep a record of how
the symbol strings in it were obtained. We give some examples:

(a) Let ®; and @, be sequents which occur in a derivation. One reads from the
record accompanying the derivation that ®; was obtained by forming a string from
¢, ..,¢, and that ®, was obtained similarly from yy,..., y,. If one wants to
apply the rule (VA), for example, one must first check whether n = m > 1, and
whether the symbol strings ¢; and y; agree for every i # n— 1. If so, one can apply
(VA) by forming the symbol string @y ... @,—2(@n—1 V Yu—1)@, from the compo-
nents Qo,...,Pn—2,Pn—1, Yn_1,¢n,(,V,). Moreover, one notes in the record that
this symbol string was obtained from the components @y, ..., 0,—2, (@u—1 V Wy—1),
and @,.
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(b) An application of the rule (=) consists of writing down a sequent of the form
t =t, where the term ¢, for its part, has to be given by means of a derivation in the
calculus of terms (cf. Definition 11.3.1).

(c) Similarly, when one uses the rule (3A) to proceed from the sequent I” (p% Y to

the sequent I" 3x¢ v, one must supply a derivation of ¢ x y (p% in the substitu-
tion calculus (cf. Exercise I11.8.11), and, for every x in I" 3x@y, one must supply
a derivation of y y in the calculus of nonfree occurrence for variables (cf. Exer-
cise I1.5.2) in order to show that the condition “y is not free in I 3x¢ v is fulfilled.
Then, starting from the sequent I” (P)XC Vv, one needs only to write down the sequent
I' 3xo y.

From these examples it becomes clear that an application of the sequent rules con-
sists of purely syntactic manipulations, which can be carried out without any ref-
erence to mathematical arguments. Since, by definition, a formal proof is just a
sequence consisting of sequents, each of which is obtained by an application of a
sequent rule (to preceding sequents), it is obvious from our previous remarks that
no mathematical proofs are needed in order to introduce the notion of formal proof.
Thus, our approach is not circular. The proofs we have given before defining the
notion of formal proof, and the mathematical tools we have used in building up the
semantics, merely served the purpose of gaining insight into first-order languages
and of motivating our development.

A word of warning is in order when considering this reduction of the notion of
proof to a triviality by the calculus of sequents: We have seen that only patience, not
mathematical talent is needed to verify a formal proof in accordance with the rules.
However, it is a completely different matter to understand the idea of a proof, not to
speak of developing such ideas oneself. Likewise, in chess there is also a great dif-
ference between knowing the rules and being able to checkmate a skillful opponent.
Thus when determining the notion of formal proof we did not really touch upon
the more creative part of mathematical activity (and this includes not only the de-
velopment of proof ideas, but also the introduction of adequate concepts, setting up
suitable systems of axioms, and finding new interesting conjectures). On the other
hand, the formal character of the sequent rules leads to new interesting questions:
It is possible to implement the syntactic manipulations on a computer and write a
program which, for example, checks whether a proof is correct (in the sense of the
sequent calculus), or which systematically produces all possible derivations. How
far can we go using such computational methods, and what are their limitations? In
Chapters X and XI we shall discuss these questions in more detail.

Does our formal notion of proof provide a justification of common mathematical
reasoning? Certainly not; for we have merely imitated methods of inference in the
framework of a precisely defined language. However, we can at least claim that
the sequent rules correspond to the normal usage of connectives, quantifiers, and
equality in mathematics. For example, the V-rules reflect the use of the inclusive
“or”, according to which the disjunction of two propositions is true if and only if at
least one of the propositions is true. Admittedly, such usage of “or” rests on certain



98 VII The Scope of First-Order Logic

assumptions; for example, it must be meaningful to speak of the truth or falsehood
of a mathematical proposition, and every such proposition must be either true or
false (tertium non datur). In traditional mathematics (which in this regard is also
called classical mathematics) these assumptions are accepted. Thus the rules of the
sequent calculus are based upon the classical usage of the logical connectives.

Some mathematicians engaged in foundational questions, among them intuitionists,
do not share the classical point of view. An intuitionist associates with the assertion
of a mathematical proposition the requirement that it be proved in a “constructive”
way. For instance, an existential statement must be proved by presenting an example,
and a disjunction must be proved by establishing one of its members. To illustrate
this, we consider the following two statements.

A: Every even number > 4 is the sum of two primes (Goldbach’s conjecture);

not A: Not every even number > 4 is the sum of two primes.

From the classical point of view, the proposition (A or not A) is true. However,
an intuitionist cannot assert (A or not A) since neither the proposition A nor the
proposition (not A) has hitherto been proved (even using classical methods).

This example already shows that mathematics as pursued by an intuitionist, so-
called intuitionistic mathematics (cf. [19]), differs considerably from classical math-
ematics. Intuitionists investigate “mental mathematical constructions as such, with-
out reference to questions regarding the nature of the constructed object, such as
whether these objects exist independently of our knowledge of them ” (cf. [19], p. 1).
By contrast, some mathematicians adopt the classical point of view from the con-
viction that “the objects in mathematics, together with the mathematical domains,
exist as such, like the platonic ideas” (cf. [35], p. 1), i.e., that propositions concern-
ing these objects describe properties which either do or do not hold, and hence are
either true or false.

We see from this discussion that the possibilities for justifying methods of math-
ematical reasoning (and specifically for justifying a proof calculus) depend essen-
tially on epistemological assumptions. We shall continue to adopt the classical point
of view.

The interested reader will find more information in [5].

VIL.2 Mathematics Within the Framework of First-Order Logic

In this section we wish to discuss the second question raised at the beginning of this
chapter: How serious is the restriction to first-order languages?

To treat this question we start with the example of arithmetic. In this case, the weak-
ness of the expressive power of first-order languages manifests itself in the fact that
the structure Mg = (N, 5,0) (cf. I11.7.3) cannot be characterized up to isomorphism
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in L1%9} On the other hand, according to Dedekind’s Theorem, 1, can be charac-
terized in a second-order language by the Peano axioms (cf. I11.7.4):

P1) Vx-ox=0
(P2) VaVy(ox=0y—x=y)
(P3) VX((XOAVx(Xx — Xox)) — VyXy).

Let us call a structure which satisfies (P1)-(P3) a Peano structure. Then we can
formulate Dedekind’s Theorem as follows:

2.1. Any two Peano structures are isomorphic.

Since Peano structures cannot be characterized in the first-order language, one might
suspect that the result 2.1 cannot be formulated in the framework given by first-order
logic, and in particular, that the proof of Theorem III.7.4, which involves (P1)—(P3),
cannot be carried out within this framework. Nevertheless, this can be achieved, as
we now show.

First, let us note that in 2.1 a statement is made about {&,0}-structures. We want to
interpret 2.1 as a statement about a domain which comprises as elements all Peano
structures and also with any two such structures an isomorphism between them. Fur-
thermore, this domain should contain the elements and subsets of Peano structures,
since these play a role in the formulation of (P1)—(P3) and in the proof of 2.1.

To avoid drawing arbitrary boundaries and enable us to apply our discussion to
other propositions besides 2.1, we shall consider as domain the totality of all objects
which are treated in mathematics; we call it the (mathematical) universe. This uni-
verse contains not only “simple” objects, such as the natural numbers or the points
of the euclidean plane, but also “more complicated” objects, such as sets, functions,
structures or topological spaces. A mathematician assumes in his arguments that the
universe has certain properties: for example, that for every two objects a; and a; the
set {aj,a} is an object as well, likewise for any two sets M, M, the union M| UM,
and for every injective function f the inverse f~'. Mathematical statements can then
be regarded as propositions about the universe. From this point of view, 2.1 says that
for every two Peano structures 2( and ‘B in the universe there is another object in the
universe which is an isomorphism between 2( and 8.

It is possible to present in a suitable first-order language a rather simple set of
sentences expressing all the properties of the universe which mathematicians use.
Proposition 2.1 can be formalized in this language. In other words, 2.1 can be for-
malized as a proposition about the universe in a first-order language L® appropriate
to the universe, just as the proposition “there is no largest real number” can be
formalized as a proposition about the structure (R, <¥) in the language Li<} appro-
priate to (R, <®).

In order to give a concrete impression, we carry out the essential steps of this idea
more carefully: A preliminary analysis of the totality of mathematical objects leads
us to a symbol set S which is suitable for the universe. In a second step we present
parts of a system @y C LS of axioms which comprise the properties of the universe
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used in mathematics. (A complete presentation of such a system &Py follows in Sec-
tion 3.) Finally, we indicate how to obtain a first-order formalization of 2.1 in LS.

When introducing the universe, we spoke of “simple” objects (numbers, points, ...)
and “complex” objects (sets, functions, ...). For the sake of simplicity we make use
of the empirical fact that the whole spectrum of “complex” objects can be reduced
to the concept of set. (We shall carry out this reduction for ordered pairs and func-
tions.) We call the “simple” objects urelements. Thus, the universe contains only
urelements and sets. The sets consist of elements which are either urelements or
else sets themselves. Therefore @y collects basic properties of (urelements and) sets
and hence is called a system of axioms for set theory.

We use the unary relation symbols U (*“... is an urelement”) and M (*... is a set”) to
distinguish between urelements and sets, and we use the binary relation symbol €
for the relation ... is an element of ...”. Thus we are led to the symbol set S :=
{U,M, &}.

Now we give four axioms from @y which formalize simple properties of the uni-
verse.

(A1) Vx(UxVMx) “Every object (of the universe) is an urelement or a set.”
(A2) Vx—(UxAMx) “No object is both an urelement and a set.”

(A3) VaVy((MxAMyAVz(z€x <> z€y)) »x=y) “Two sets which contain the
same elements are equal.”

(Ad) VxVyFz(MzAVu(uez+ (u=xVu=y))) “Forevery two objects x and y,
the pair set {x,y} exists.”

The set z, whose existence is guaranteed by (A4), is uniquely determined by (A3).
Repeated application of (A4) yields the existence of the set {{x,x},{x,y}}. This set
is normally written (x,y) and called the ordered pair of x and y. It is not difficult to
show from (A1)-(A4) that

(x,y)=(,y) iff x=xandy=y.
Ordered triples can then be introduced by

(x,3.2) == ((x,y),2)-

In order to obtain formalizations in LS which are easier to read, we introduce a
number of abbreviations.

C xCy “xisasubsetofy” for MxAMyAVz(z€x — z€Y)

Instead of treating “x C y” as an abbreviation we could have added the binary rela-
tion symbol C to S and expanded @y by adding the axiom

VaxVy(x Cy <+ (MxAMyAVz(z€x — ZEY))).

Both approaches are equivalent, as we shall see in Section VIIIL.3.
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(OP) OPzxy “zis the ordered pair of x and y” for
MzAVu(uez < (Mu A(Yw(veu < v=x)VWw(vEu <+ (v=xVv=y)))))
(OT) OTuxyz “uis the ordered triple (x,y,z)” for
Mu A Fv(OPuvz A OPvxy).
(E) Euxy “The ordered pair (x,y) is an element of u” for
Mu A 3z(z€u A OPzxy).

(F) Fu “uis a function, that is, a set of ordered pairs (x,y), where y is the value
of uat x” for

Mu AVz(z€ u — IxTyOPzxy) AVaVyYy ((Euxy AEuxy') —y =y')

By means of (F) the concept of function is reduced in the usual manner to that of
set: A function f with domain A is considered as the set {(x, f(x)) | x € A}, which
is also referred to as the graph of f.

(D) Duv “vis the domain of the function u” for

Fu AMv AVx(x€v < JyEuxy).
(R) Ruv “vis the range of the function u” for

Fu AMv AVy(y€v < IxEuxy).

For simplicity, we regard a {o,0}-structure (contrary to Definition III.1.1) as an
ordered triple (x,y,z) consisting of a set x, a function y: x — x and an element z
of x. Then the following abbreviation “PSu” expresses that u is a Peano structure,
whereby parts (1), (2), and (3) are formulations of the Peano axioms (P1), (P2), and
(P3), respectively.
(PS) PSu for IxIyTz(OTuxyz A Mx A zex A Fy A Dyx AFv(RyvAv Cx) A

(1) Vw(wex — —Eywz) A

(2) VYwVwW'W((Eywv AEyw'v) - w=w') A

(3) WX ((« CxAzeX ANYWYv((wex AEywy) —vex)) — X' =x)).

/2>

The final abbreviation “Iwuu’” states the property that w is an isomorphism from
the Peano structure « onto the Peano structure u':

D Iwur’ for PSuAPSu' A\FwA
AxTFyTzIx' 3y 37 (OTuxyz A OTu'x'y'7 ADwx ARwx' A
VrvswW (Ewrv AEwsv') — r = 5) AEwzz' A
YWAYr((Eyvr AEww') — 3 (Ewrr AEYV'F))).

Thus the following is a formalization of 2.1, Dedekind’s Theorem:
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(+) Yuvv(PSu APSv — Iwlwuy).

Clearly, (+) is a {U,M, €}-sentence. So we have attained our goal of formulating
2.1 within a first-order language. This was possible because we did not distinguish
between different types of mathematical objects, such as natural numbers and sets
of natural numbers, but simply treated all objects in the universe as first-order ones
(compare (P3) and (3) in (PS)).

We can achieve even more: Recall that the system @, (which we have given only in
part) captures all properties of the universe needed for mathematical reasoning. By
rewriting in LS the proof of Dedekind’s Theorem from Section II1.7, one can obtain
a derivation of the assertion (+) from axioms of ®y. Hence we have:

2.2, @y Vuvv(PSuAPSy — Fwlwuv).

More generally: Experience shows that all mathematical propositions can be for-
malized in LS (or in variants of it), and that mathematically provable propositions
have formalizations which are derivable from ®y. Thus it is in principle possible to
imitate all mathematical reasoning in L® using the rules of the sequent calculus. In
this sense, first-order logic is sufficient for mathematics.

At the same time this experience shows that the properties of the universe which
are expressed in @y are a sufficient basis for a set-theoretic development of math-
ematics. Thus @y is a formalization of the set-theoretic assumptions about the uni-
verse upon which the mathematician ultimately relies. Since these set-theoretic as-
sumptions can be viewed as the background for all mathematical considerations, we
call @y, in this context, a system of axioms for background set theory.

On the other hand, @ itself, like any other system of axioms, can also be the object
of mathematical investigations. For example, one can ask whether & is consistent
or study the models of @y. In this context @y is called a system of axioms for object
set theory.

A model of @ is of the form 2 = (A, U4, M4, &%) and is, like every structure, an
object of the universe, that is, an object in the sense of background set theory. The
same is true of the domain A. Thus, as an object of the universe, A is distinct from
the universe. Nevertheless, in a model 2 = (A, UA,MA, SA) of &y, all set-theoretical
statements hold which are derivable from @y; but note that, for example, ag’b (for
a,b € A) does not mean that a is an element of b, i.c., that a € b holds.

Let us emphasize once again that @, plays two roles: First, it is an object of math-
ematical investigation, second, it gives a formalized description of basic properties
of the universe. In other words, it is both a mathematical object and a framework for
mathematics.

Thus we have two levels, object set theory and background set theory, which must
be carefully distinguished. Many paradoxes arise from a confusion of these two
levels. In Section 4 we shall discuss this in more detail. For the present we merely
mention Skolem’s paradox. It is well known that there are uncountably many sets
(for example, there are uncountably many subsets of N). This fact can be formalized
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by a sentence @, which is derivable from &y. By the Léwenheim—Skolem Theorem
there is a countable model 2( of @y and hence of ¢. The countable model 2l thus
satisfies a sentence which says that there are uncountably many sets in 2(!

VIL.3 The Zermelo-Fraenkel Axioms for Set Theory

We now present, in full, a system of axioms for set theory. Our exposition will be
rather sketchy; for a more detailed treatment we refer the reader to [26, 27].

In Section 2 we assumed that the universe consists only of sets and urelements, and
we saw by means of set-theoretic definitions for concepts such as “ordered pair’” and
“function” that this assumption is really no restriction. Furthermore, experience has
shown that one can even replace the urelements arising in mathematics by suitable
sets. Later, as an example, we shall give a set-theoretic substitute for the natural
numbers.

Since we are abandoning the use of urelements, the symbols U and M become super-
fluous. Therefore, we formulate the axioms in L€} , where the variables are intended
to range over the sets of the universe. The resulting system of axioms, called ZFC, is
originally due to Zermelo, Fraenkel,! and Skolem, and includes the axiom of choice.

ZFC contains the axioms EXT (axiom of extensionality), PAIR (pair set axiom),
SUM (sum set axiom), POW (power set axiom), INF (axiom of infinity), AC (axiom
of choice), FUND (axiom of foundation) and the axiom schemes SEP (separation
axioms) and REP (replacement axioms):

EXT: VaVy(Vz(z€x <> z€y) 2 x=y)
“Two sets which contain the same elements are equal.”

SEP: For each ¢(z,x1,...,x,)* and arbitrary distinct variables x,y which are also
distinct from z and the x;, the axiom

Vxp ... Vx,Vx3yVz(z€y <> (z€X A Q(2,%1,...,%,)))

“Given a set x and a property P which can be formulated by an {& }-formula ¢, the
set {z € x| z has the property P} exists.”

PAIR: VxVyJzVw(wez <> (w=xVw=y))
“Given two sets x,y, the pair set {x,y} exists.”

SUM: VxIyWz(zey <> Iw(wexAzew))
“Given a set x, the union of all sets in x exists.”

! Ernst Zermelo (1871-1953), Abraham Fraenkel (1891-1965).

2 Here and in the following we write Y(y1,...,yn) to indicate that the variables occurring free
in y are among the distinct variables yy,...,y,.
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POW: Vx3hyWz(z€y <> Yw(wez — wex))
“Given a set x, the power set of x exists.”

To formulate the remaining axioms more conveniently, we introduce more symbols
and define their meaning. The considerations in Section VIII.3 show that formulas
which contain these symbols can be regarded as abbreviations of {€ }-formulas. The
symbols and their definitions are:

0 (constant for the empty set):
Vy(@ =y <> VzzE€Yy).
C (binary relation symbol for the subset relation):
VaxVy(x Cy ¢ Vz(z€x — z€Y)).
{.} (binary function symbol for pairing):
VavywWz({x,y} =z Vw(wez < (w=xVw=y))).
(For the term {y,y} we often write the shorter form {y}.)
U (binary function symbol for the union):
VxVwWz(xUy =z Vw(wez > (WEXVwEY))).
N (binary function symbol for the intersection):
VaVyVz(xNy =z Vw(wez < (WEXAWEY))).
P (unary function symbol for the power set operation):
VxVy(Px =y > Vz(z€y <> Yw(w€z = wex))).
The remaining axioms of ZFC are as follows:

INF: 3x(@exAVy(yex — yU{y}ex))
“There exists an infinite set, namely a set containing 0,{0},{0,{0}},....”

REP: For each @(x,y,x,...,x,) in L€} and all distinct variables u,v which are
also distinct from x,y and the x;, the axiom

Vxr .V, (Va3 e (e, xe, o xy) —
YuwWy(yev <> Ix(x&uh @(x,y,x1,...,%,))))
“If for parameters xi, ..., x, the formula @(x,y,x1,...,x,) defines a map x — y, then
the range of a set under this map is again a set.”
AC: Vx((-0exAVuvv((uexAvexN—-u=v)—unNv=0)) —
Ivw(wex — 3 1zze wny))

“Given a set x of nonempty pairwise disjoint sets, there exists a set which contains
exactly one element of each set in x.”
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As the axiom FUND of foundation is not needed for the following considerations,
we shall formulate it at the end of this section.

Within the framework of ZFC one can now introduce the notions of ordered pair,
ordered triple, function, etc. as we did in the preceding section, and, by examples,
give evidence that all mathematical propositions can be formalized in L€}, and that
provable propositions correspond to sentences derivable from ZFC.

As stated earlier, we now show in the case of the natural numbers that one can
replace the urelements by suitable sets: In our present framework we exhibit a Peano
structure which can play the role of 915.

The sets 0:=0, 1 := {0}, 2:= {0,{0}},... will play the role of the natural numbers
0,1,2,....Thus 0=0, 1= {6}, 2= {G,T}, and in general 77 = {6,7, e 7n/:/l} Let
us call a set inductive if it contains @, and if whenever it contains x it also contains
xU {x}; then the smallest inductive set assumes the role of N. It remains to show
that the statement “there is a smallest inductive set” is derivable in ZFC. We give a
guideline as to how to proceed. By INF there exists an inductive set, say x. Using
SEP we obtain the set

o:={z|z€x and z € y for all inductive y},

which can be shown to be the smallest inductive set, i.e., @ is inductive and for every
inductive y, @ C y. The function v: @ — @ with v(x) := xU{x} for x €  (i.e., the
function v = {(x,xU{x}) | x € o}) plays the role of the successor function. One
can see that (o, v,6) is a Peano structure.

The definition of @ as a smallest inductive set forms the basis for definitions and
proofs by induction on the natural numbers. During his research on topics of anal-
ysis, G. Cantor® was led to definitions and proofs by transfinite induction. Such
definitions and proofs run over ordinal numbers, an extension of the natural num-
bers into the infinite. The sets @ and @ + 1 := w U {w} are the first infinite ordinal
numbers. The theory of ordinal numbers forms a cornerstone in Cantor’s founda-
tional papers, where he introduces the notion of set into mathematics and creates set
theory as a new mathematical discipline (cf. [7]).

We close our presentation of ZFC with an important methodological aspect by
briefly discussing the so-called continuum hypothesis. This hypothesis was stated
at the end of the nineteenth century by Cantor and has had a crucial influence on the
development of set theory. We first give an intuitive formulation.

Two sets x,y are said to be of the same cardinality (written: x ~ y) if there is a
bijection from x to y. A set is finite if and only if it is of the same cardinality as an
element of ; it is countable if it is of the same cardinality as . The set R of real
numbers (the “continuum’) is uncountable (cf. Exercise II.1.3).

3 Georg Cantor (1845-1918).
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Now the continuum hypothesis states: Every infinite subset of R is either countable
or of the same cardinality as R. Using canonically defined symbols R, Fin, Count,
and ~, this statement can be formulated in L€} in the following form:

Vx((x € RA—=Finx) — (CountxV x ~ R)).

This formula is often denoted by “CH” (Continuum Hypothesis). The question of
whether the continuum hypothesis holds corresponds to the question of whether CH
is derivable from ZFC.

Godel showed in 1938:

3.1. IfZFC is consistent, then not ZFC - —=CH,
and P. Cohen showed in 1963:

3.2. IfZFC is consistent, then not ZFC - CH.

Thus if we assume that ZFC is consistent (cf. Section 4), then neither CH nor ~CH
is derivable from it. For an exposition of these results we refer the reader to [26].

The axiom system ZFC embodies our knowledge of the intuitive concept of set
which mathematicians, in fact, use. In view of the results of Godel and Cohen, we
see that our concept is so vague that it does not definitely decide the truth or false-
hood of the continuum hypothesis. One can even show (cf. Section X.7) that it is not
possible to present “explicitly” an axiom system ¥ for set theory, which decides ev-
ery set-theoretic statement (in the sense that for every {€}-sentence y either ¥ + y
or ¥ - —wy).

Finally, we formulate the axiom of foundation:

FUND: Vx(-x=0 — dy(yexAyNnx=0))
“Every nonempty x contains an element that has no element in common with x.”

The axiom becomes important when set theory itself is an object of mathematical
investigation. It essentially contributes to the form of the universe of sets. For exam-
ple, it excludes sets u with u € u (apply it to the set x = {u}). Moreover, the universe
gains a clear structure: It consists exactly of those sets, which, starting from the
empty set, can be obtained by an iterated application of (more exactly: by transfinite
induction over) the formation of power set.

VIIL.4 Set Theory as a Basis for Mathematics

We now supplement our previous discussion by treating three aspects: In Sec-
tion 4.1, taking ZFC as an example, we show how the question of the consistency
of mathematics may be made precise by the use of suitable first-order axioms suf-
ficient for mathematics. In Section 4.2 we discuss misunderstandings which may
arise from a confusion of object set theory with background set theory. Finally, in
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Section 4.3 we show how first-order logic, like every other mathematical theory, can
be based on set theory.

4.1. In the preceding sections we have emphasized the experience that mathemat-
ical statements can be formalized in L€} and that provable statements lead to for-
malizations which are derivable from ZFC. Taking this for granted, suppose it were
possible in mathematics to prove both a statement and its negation. Let ¢ be a for-
malization of this statement. Then both ZFC F ¢ and ZFC F —¢ would hold, and
thus ZFC would be inconsistent. Therefore, a proof that ZFC is consistent could be
regarded as strong evidence for the consistency of mathematics. In fact, the question
of the consistency of ZFC is one of the key problems of foundational investigations.
In an explicit formulation it asks: Is there a derivation in the sequent calculus of a se-
quent of the form @; ... @,(@ A—¢), where ¢y, ..., @, are ZFC axioms? We thus see
that the problem of consistency is of a purely syntactic nature. Therefore, one might
hope to solve it by elementary arguments concerning the manipulation of symbol
strings by sequent rules. (Hilbert also demanded a proof of such an elementary na-
ture to recognize “that the generally accepted methods of mathematics taken as a
whole do not lead to a contradiction.”) However, by Gddel’s Second Incomplete-
ness Theorem, such a consistency proof for ZFC is not possible if ZFC is consistent
(cf. Section X.7). A proof is not even possible if one admits all the auxiliary means
of the background set theory described by ZFC. In particular, one cannot prove the
existence of a model of ZFC (since Sat ZFC would imply Con ZFC). Nevertheless,
the fact that ZFC has been investigated and used in mathematics for decades and no
inconsistency has been discovered, attests to the consistency of ZFC.

In the following considerations we assume ZFC to be consistent.

4.2. We investigate the relationship between background set theory and object set
theory by first discussing Skolem’s Paradox (cf. Section 2). In terms of ZFC the
paradox can be formulated as follows: ZFC, being a countable, consistent set of
sentences, has a countable model 21 = (A, &) according to the Léwenheim—Skolem
Theorem. On the other hand, 2 satisfies an {€}-sentence ¢ (derivable from ZFC)
which says that there are uncountably many sets in A. If, for simplicity, we again
use defined symbols, we can write

¢ := 3x—~3y(Function y Ainjective y A Domain (y) = x ARange (y) C o).

The sentence ¢ symbolizes the property of the universe that there exists an uncount-
able set (and hence, also that uncountably many sets exist). Since 2( is a model of
ZFC, we have 2l |= ¢, i.e., there is an a € A (for x) such that

(*) 2 = —Jy(Function y A ... ARange (y) C ®)[a].

The set {b € A | be”a} is at most countable because it is a subset of A. Therefore in
the universe there exists an injective function whose domain is {b € A | b€*a} and
whose range is a subset of @. However, this does not contradict (x). For (x) merely
says that in 2 there is no injective function defined on a with values in ®*, or more
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exactly, that there is no b € A such that Function”b, injective” b, Domain” (b) =a,
and RangeA(b) C A@*; that is, a is uncountable in the sense of .

From this example we see that it is necessary to distinguish carefully between the
set-theoretical concepts (which refer to the universe) and their meaning in a model.

Let us consider another example. The set of sentences
Y :=ZFCU{c,e® |rcR}U{—c,=cs|nseR,r#s}

is satisfiable, as one can easily show using the Compactness Theorem. Let B =
(B, €%) be a model of ¥ (more exactly, the {€}-reduct of a model of ¥). Then
{b € B | be®@”} is an uncountable set. On the other hand, ®® (being the set of
natural numbers in ‘B) is Countable® (that is, we have Countable®? o?).

As before, let 2 = (A,€") be a countable model of ZFC. Then {a € A | ag’@"} is
countable because it is a subset of A, and we obtain:

(1) There is no bijection from {b € B | beB@®®} onto {a € A | ag” @},

since one set is uncountable, whereas the other one is countable. At first glance (1)
seems to contradict Dedekind’s Theorem, according to which every two Peano struc-
tures are isomorphic. To analyze the situation, we take a formalization y of this
theorem as an {€ }-sentence, for example as

v = VxVy((Peanostructure x A Peanostructure y) — x isomorphic y).
Then we have
) ZFCF .

However, (1) and (2) do not contradict each other. (2) merely says that in each
individual model € of ZFC every two Peano structures are isomorphic (in the sense
of €), whereas (1) speaks of Peano structures in different models of ZFC.

4.3. We provide a set-theoretic development of first-order logic, i.e., we show that
its concepts can be based on the concept of set, as we have done already for functions
and Peano structures. To be specific, we restrict ourselves to the symbol set S =
{P',P2,...} with n-ary P". Our first goal is to give a set-theoretic substitute for
S-formulas.

As a substitute for the variables we use the elements 6,T, ... of ®. The roles of the
symbols —,V, 3, = are assumed by the ordered pairs = := (0,0), V := (0,1), 3 :=
(0,2), and = := (0,3). For the P" (for n > 1) we take the ordered pairs P* := (1,x)
where x € @\ {0}. (Similarly, one could, for example, let ordered pairs (2,x) with
x € o\ {0} stand for function symbols. In order to represent uncountable symbol
sets, one could use an appropriate set of larger cardinality instead of ®.)

Now formulas of the form v,, = v, correspond to triples (x,=,y) with x,y € ®. These
triples are the elements of the set

A= = o x {=} x 0.
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Ordered pairs of the form (P*, z), where x € @\ {0} and z is a function from x into ®,
play the role of formulas of the form P"v,, ...vy, ,. (For instance, the formula
P3yv4vs corresponds to the ordered pair (P°,z) with z = {(0,1),(1,4),(2,5)}.)
Thus, we are led to the set At® of atomic “relational” formulas

AR .= {(P*,2) |x€ @\ {0} and z: x — ®}.

Likewise, one can define the set of all S-formulas set-theoretically to be the smallest
set A which satisfies the conditions:

- ArFUARR C A;

ify €A, then (5,y) € A;

if y,z € A, then (y,V,z) € A;

if x€ wandyc A, then (ﬁ,%)’) €A.

We can now give a natural set-theoretic description of the notions of sequent and
derivation, developing in this way the whole syntax set-theoretically. Semantic con-
cepts such as the notions of structure or consequence can also be introduced set-
theoretically. By doing so, we obtain a set-theoretic formulation of the Complete-
ness Theorem. All considerations can be carried out in L€} on the basis of ZFC.
In particular, the Completeness Theorem can be formalized as an { € }-sentence and
can be derived from ZFC.

What benefits do we obtain from such a set-theoretical treatment? We mention three
points.

(1) The mathematical development of first-order logic (as given in the first six chap-
ters) can be founded upon the axiomatic basis of ZFC.

(2) The set-theoretic treatment enables us to deal with uncountable symbol sets in
a precise manner. Appropriate variations of this approach make it possible to define
other languages, e.g., languages with infinitely long “formulas” of the form ¢q Vv
@1V @2V ... (Chapter IX).

(3) In our discussion concerning the formal notion of proof and the scope of first-
order logic, we did not appeal to the Completeness Theorem. This was done to
avoid becoming trapped in a vicious circle, since the Completeness Theorem itself
requires a proof. In a set-theoretical framework, one can investigate more closely
the assumptions which are needed for a proof of the Completeness Theorem. Doing
this one finds that a considerably weaker axiom system than ZFC is sufficient for
the proof (cf. [3]).

4.4 Exercise. A reader who has been confused by the discussion of this chapter
says, “Now I’'m completely mixed up. How can ZFC be used as a basis for first-
order logic, while first-order logic was actually needed in order to build up ZFC?”
Help such a reader out of his dilemma. Hint: Again, be careful in distinguishing
between the object and the background level.
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Chapter VIII
Syntactic Interpretations and Normal Forms

In this chapter we collect some results that show to what extent we can choose
different symbol sets for a mathematical theory. For instance, the expressive power
of first-order languages for group theory does not depend on the choice of Sgp or
Ser as symbol set. The notion of syntactic interpretation will turn out to be a central
concept in this context. In the section about normal forms we show that, for different
syntactic properties, one can find for each formula a logically equivalent one which
has this property, e.g., one which has syntactically an especially simple form.

We start with a preliminary investigation which will allow for some technical sim-
plifications.

VIII.1 Term-Reduced Formulas and Relational Symbol Sets

Terms in a formula usually contain “nested” occurrences of function symbols. For
instance, the { f, g}-formula

Q:=Vx fgx=y

(with unary f,g) contains the nested term fgx. But ¢ is logically equivalent to the
formula

Vxdu(gx =uAN fu=y),

which contains no more nested terms, and which, in this sense, is “term-reduced”.
We show this fact in general.

1.1 Definition. An S-formula is called term-reduced iff its atomic subformulas have
the form Rx; ...x,, Xx=y, fx1...x, =X, Or c=X.

The result just mentioned can now be formulated as follows:

1.2 Theorem. With every S-formula Wy one can associate a logically equivalent,
term-reduced S-formula y* with free(y) = free(y*).
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Proof. For y € LS let x,x3,x3, ... be the enumeration of the variables not occurring
in Y in the order induced by vg,v1,vs,.... First we define y* for formulas y of the
form ¢ = x; this is done by induction on the term ¢:

=x*=y=x
forc e S:

for n-ary f € S:
[fr1...ctn=x" =3 ... 3 ([l =] A A =] A fxrox =x).
For the remaining atomic formulas y we define y* as follows:
If #, is not a variable,
1 =0]" = I([=x]" At =x1]%),
and if R € S is n-ary,
[Rty...ty]* =Ty ... 3, ([t =x1]* A A [ty = X0 ARXy ... xy).

Finally we set

Y] =y
(Vi V)™ = (¥ Vys);
[Fxy]* := Ixy*.
Using this definition, it is quite easy to prove the claim. —

The following consideration gives a first example showing us how useful term-
reduced formulas can be.

A symbol set is called relational if it contains only relation symbols. Sometimes it
is convenient, as for example in Chapter XII, to be able to restrict oneself to rela-
tional symbol sets. We show how function symbols and constants can be replaced
by relation symbols in order to obtain a relational symbol set. The idea is to consider
the graph of a function, rather than the function itself.

Let S be an arbitrary symbol set. For every n-ary f € S let F be a new (n—+ 1)-ary
relation symbol, and for ¢ € S let C be a new unary relation symbol. Let S” consist
of the relation symbols from S together with the new relation symbols. Thus S” is
relational.

We associate with every S-structure 2l an S"-structure 2" by replacing the functions
and constants by their graphs. We define:

(1) A" :=A;
2) forPeS:
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(3) form-ary f € S: )
F = the graph of /2,

that is,
F¥ay.. .apa iff fay,...,a,) = a
4) forceS:
C¥ := the graph of A,
that is,

C¥a iff P =a.
Then the following holds:

1.3 Theorem. (a) For every w € LS there is W' € LS such that for all S-interpre-
tations 3 = (2, B),

LB Ey i By
(b) For every y € LS there is v~ € L such that for all S-interpretations J =

(2L, B),
@LB)Ey " i (AB) =

Proof. (a) By Theorem 1.2 it suffices to define y” for term-reduced y. This is done
inductively:

[Ry1...ynl" :=Ry1...yn;
x=y" i=x=y;
fyr-yn=x]" = Fyi...ynx;
[c=x]":=Cx;
[l =y
(vivy)" = (yiVy);
[Fxy]" = Ixy”

The proof of the equivalence is easy.

(b) We argue similarly; in particular we set

[Fty...tot] "= f11...tn =1,
[Ct]":=c=t. =

From Theorem 1.3 we obtain immediately:

1.4 Corollary. For S-structures 2l and *B,

A=B iff A =9 .
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VIIL2 Syntactic Interpretations

We now aim towards the notion of syntactic interpretation. In the following parts A
to D we present some motivating examples.

A. Axiom Systems for Groups

. . .S
We introduced two axiom systems for the class of groups: the system Py, in L

with Sg; = {0, e} and the system Py, in ngrp with Serp = {0, !, e}. For Sy := {o}
we have the following axiom system @, C ng:
D, := {VaVyVz(xoy)oz=xo(yoz), Jz(Vxxoz=xAVxIyxoy=z)}.

All three axiom systems are equivalent in the sense that the same statements are
expressible in each of these languages and the same statements provable in the cor-
responding axiom system. For instance, the Sgp-sentence
Vxxox l=e
corresponds to the Sy-sentence
Fz(Vxxoz=xAVxdyxoy=z),

and, in this case, the first sentence is provable from P, and the second from Pg.

B. Axiom Systems for Orderings

Let S := {<}. In I1.6.4 we introduced the axiom system P4 for the class of order-
ings. Often one extends the symbol set by a symbol < whose interpretation is given
by

VxVy(x <y <+ (x <yVx=y)).
In the new symbol set §' := {<, <} we have the axiom system

@/

ord -

= Qg U{VaVy(x <y (x <yVx=y))}.

Since < can always be replaced by its definition, we can associate with each §'-
formula ¢ an S-formula @< such that

D= iff Dyqg = oc.

It is in this sense that L5 and LS have the same expressive power for the class of
orderings.

C. Rings

If in the axiom system @yq for fields (cf. II1.6.5) we leave out the axiom Vx(—x =0 —
Jy x-y = 1) about the existence of the multiplicative inverse and the commutative
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law VxVy x-y = y-x for the multiplication, we obtain the axiom system @, for rings,
more precisely: for rings with 1. Every field (as an Sy-structure) is a ring. The set of
integers, under the natural interpretation of the S,.-symbols, forms a ring, the ring
of integers. For n > 1, the n x n-matrices over R under the usual interpretation of
the symbols from Sy also form a ring 01(n).

Let 2 be a ring. An element a € A is a unit in 2( iff there is some b € A such that
a-*b=b-"a=1.1Inthe ring of integers only 1 and —1 are units, in the rings ()
the units are the invertible matrices.

We set, with x for vo and y for v;
e:=TFylx-y=1Ay-x=1).
Then
ER):={acA|A[¢€ld}

is the set of units in 2. It is easy to show that 1% € E(2A), that E(2) is closed under
multiplication, and that E (2() with 1% and the multiplication even forms a group (as

an Sg-structure), the group E(A) of units in 2. It turns out that in 2 one can talk

. Sar .
about ¢(2) in the sense that for every ¢ € L' there exists a ¢’ € Lga' such that

(©) CAEQ iff AEg.

For example, if ¢ is the commutative law VxVy xoy = yox, then ¢’ can be chosen
to be the S,-sentence

VxVy((s/\s%) — XY=y x).

D. Relativizations

An important aspect of the translation of the commutative law into the language of
rings which we just discussed is the restriction or, as we shall say, the relativization
of the quantifiers to the set of units. Relativizations have already come up in I11.7.2:
If one regards a vector space as a one-sorted structure, then the domain consists of
scalars and vectors. When formulating the vector space axioms in the corresponding
language, one must relativize the field axioms to the set of scalars and the group
axioms (for the vectors) to the set of vectors. For the field axiom Vx(—x =0 —
Jyx-y = 1) this can be done by using the relation symbol F for the set of scalars
and reformulating the axiom as Vx(Fx — (-x =0 — Jy(FyAx-y=1))). Similarly,
the formula in the field language

Q0 :=Vx(x=0Vx=1),
when relativized to F, becomes

oF = Vx(Fx— (x=0vx=1)).
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In a vector space, @F just says that the field of scalars satisfies ¢. It turns out that, in
this sense, one can transform every formula of the language L% into the language
of vector spaces.

E. Syntactic Interpretations

A common feature in all previous examples is the fact that in one structure one talks
about another structure: in groups as Se-structures about groups as Sg-structures, in
orderings with underlying symbol set {<} about orderings with underlying symbol
set {<, <}, in rings about the group of units, and in structures (e.g., vector spaces)
about substructures whose domains are given by unary relation symbols (e.g., scalar
fields). The concept of syntactic interpretation comprises the aspect common to all
of these examples: A syntactic interpretation of a symbol set S’ in a symbol set S
will allow us to talk in S-structures about induced S’-structures.

For this purpose, an S-formula @g (v) will be specified in order to define the do-
main of the intended §’-structure, and for each relation symbol (function symbol,
constant) in S’ an S-formula describing a relation (function, element) will be given.
We write @ (v, ...,v,_1) for a formula ¢ € L3 and ¢(to, . ..,t,_1) for (p%.
2.1 Definition. Let S and S’ be symbol sets. A syntactic interpretation of S' in S is
amapl: §'U{S'} — L5 where

1(S') is a formula Qg (vo) € L7,
I(R) is a formula @g(vo,...,vy—1) € L3 for n-ary R€ 5,
I(f) is aformula @f(v,...,va—1,va) € Ly, | forn-ary f € 5,

I(c) is aformula @.(vo) force S
In many applications one has @g (vo) = vo = vo.

The following set @; of S-sentences says that @g (vy) defines the domain of an §'-
structure.

oy (vo),
Yvo... Vv, 1 (((pS/(vo) VAR (pS/(v,,,l)) —

370 (@ (V) A@r(vo, -+, Vut1,vn))) for f € §' n-ary,
I o (@g (vo) A @c(vo)) force S

Dy

If @5 (vo) = vo = v, then Py is equivalent! to
{Vvo.. .Vv,,,ﬂ:lvn(pf(vo, s Vn1,Vn) | £ €8 n-ary}U {Elzlvo(pc(vo) lces'}.

For an S-structure 2/ with 2 |= &; we define an S'-structure 2~/ as follows:

Al:={acA|AE og[a]};

I 'We call two sets @ and ¥ of S-sentences equivalent if Mod’® = ModSW. Then, in particular,
@ =y iff ¥ |= x forall y € LS.
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for n-ary R € ' and ay,...,a, 1 €A™/,
—I .
RA ap...a,—1 Ciff Ql):(pR[ao,...,an_l];

for n-ary f € §" and ay, ...,a,_1,a € A7,

—I .

A (ao,...,an-1) =a :iff A orlao, ..., an—1,al;
force Sandae A,
A =a iff A= ld].

If Re SN is n-ary and Qg = Rvg...v,_1, we say that [ is the identity on R. Sim-
ilarly, 7 is the identity on f € S (for n-ary f) and c € §', if @f = fvg...vp_1 = vy
and @. = ¢ = vy, respectively. If S C ', pg = vy = vp, and if  is the identity on all
symbols from S, then

A Mg =2
for all S-structures 2( with 2 = &;.

Using a syntactic interpretation of " in S we can talk in S-structures about induced
§'-structures:

2.2 Theorem on Syntactic Interpretations. Let I be a syntactic interpretation of S’
A

in S. Then, with every W € LS one can associate a ' € LS with free(y!) C free(y)

such that for all S-structures A with A |= ®; and all assignments B in A,

() BBV iff ATB)EW
In particular, for y € L,
ARy iff A=y

Before proving the theorem we want to apply it to clear up the claims in the parts A
to C. The relativization from part D will be discussed at the end. In the sequel we
use x,y,... for vo,vy,....

In the ring-theoretic example from part C, concerning the group of units, we choose
the syntactic interpretation I of Sgr = {0, e} in Sy = {+,-,0,1} given by
(psgr('x) = E(x),
@o(x,3,2) ==Xy =2
Then &y is equivalent to
{3xe(x), vavy(e(x) Ae(y) = elx-y))},

and for a ring 2 we have 2 |= & and A~/ = &(2l). For ¢ € ngr the equivalence (x)
in 2.2 says

CWEe iff A=l
which is the claim (o) in part C (if we set ¢ := ¢').
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In the example about orderings in part B we define the syntactic interpretation / of
§'={<,<}in S = {<} as follows:

Py (x) = x

P<(xy) = x <

P<(x,y) == (x <

=x;
Ys

yVx=y).
Then @ is equivalent to the empty set, and ¢! is a {<}-sentence for ¢ € Lg/ =
L{<=} Theorem 2.2 yields for every ¢ € Lg’ and every S-structure 2

A= iff ARl
Since A = @y implies A~ = @  d ( ! 4 Was defined above in part B), and since
for every §'-structure B with B |= @/ ; we have Bs = Porq and (Bls) ' =B, we
obtain
Do iff Dol

Finally we discuss the group theoretic example from part A. We use the following

syntactic interpretation / of Sgrp, in Sg:

(PSgrp( ) EX=X,

@o(x,3,2) = x0y =2,
0-1(x,y) = Iz(Vuuoz=uNxoy=z),
Q. (x) :==Vyyox=y.

Then we can argue as in the previous example and obtain: If 20 = (A,0%) is a group
(as an Sg-structure) with identity element e* and inverse function ’IA, then A~! =
(A,oA,*IA,eA), and for all @ € ng'p we have

A= iff AR

and
Dyp =@ iff Dy = 0.

We now turn to the proof of Theorem 2.2. It suffices to define y/! for term-reduced
w € LS. (Then, for arbitrary y € LY, we can set y/ := [y*]!, where (according
to Theorem 1.2) y* is a term-reduced S'-formula logically equivalent to W with
free(y) = free(y*).) We set

[Rxo...xp-1]" :== @r(x0,...,xp—1) forn-aryRE€S';

I':= @/(x0,...,xp—1,x) forn-ary f €S';
= @q(x) force §';

and
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(ol = o
(@1 V@) = (9] Vo))
[Bxg]" = Ix(gg (x) A @').

Using this definition it is not difficult to prove (x). We demonstrate the step involving
a quantifier. So, let 2( be an S-structure with 2( |= &y, and let 8 be an assignment
in A=, Then:

(A,B) = [Fxg)" iff  (A,B) = Zx(gy (x) A @)
iff forsomeacA, (ABY) = @y(x)and (A, LL) ¢
iff forsomeacA™, (A L) ¢
iff forsomeac A, (Qlfl,ﬁ%) E ¢ (ind. hypothesis)
iff (A ,B) E xo. .

Finally, we come back to the relativizations as introduced in part D and present, as
a further application of Theorem 2.2, a precise statement of the connection between
a formula and its relativization.

Let S = S"U{P}, where P is a unary relation symbol not contained in S’. Let the
syntactic interpretation / of S’ in S be the identity on the symbols from ', and let

q)s/(V()) = Pvy.
Then @ is equivalent to
{FvoPvo} U {Pc|ce S} U
{Wo .. .1 (Pvo A ... APV = Pfvy...vp1) | f €S, fisn-ary},
and for an S-structure (21, P4) we have:
() (A,PY) =@, iff P*isS'-closed in 2L
(2) If P4 is §'-closed in 2, then (A, P4)~" = [PA]*.

Recall that for an S-closed subset X of an S-structure 2 we denote by [X]% the
substructure of 2 with domain X; cf. p. 39.

Ifye LS, we also write y? for y!, and we call y” the relativization of y to P.
Hence (1) and (2) yield (note that P4 being S-closed implies that it is SU {P}-
closed):

2.3 Relativization Lemma. Ler 2l be an SU{P}-structure such that P € S and P is
unary. Suppose the set P* C A is S-closed in 2. Then for v € L3,

PPy i ARy

This means: The relativization W* says in 2 the same as y does in [PA]*. B
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It is easy to give a direct proof of the Relativization Lemma. For this purpose one
defines for y € LS the formula y* € L5V} inductively by

yf =y, if yis atomic
[—y]” = -y
(v1vyn)” = (v V)
[FAxy]? = Ix(PxAyl).

Then one shows by induction on y that for all assignments 8 : {v, | n € N} — P4,

(P B Ew iff (APB) =y’ 4

2.4 Exercise. Let U and V be distinct unary relation symbols, U,V ¢ S. Assume
(A,UA,V4) to be an SU{U,V }-structure such that U4 and V4 are S-closed in A
and U4 C VA. Show that for (ONS LS,

QUL VY = ([9"]Y + ¢Y).

2.5 Exercise. Let < and < be two binary relation symbols. Show that for every

Qc Lé<} thereisa y € L({)S}, and that for every y € L({)S} thereisa @ € L({)<} such

that (a) and (b), respectively, hold:

(a) An ordering (A,<*) satisfies ¢ iff the corresponding ordering (A,<*) in the
sense of “<” satisfies y.

(b) An ordering (A,<*) in the sense of “<” satisfies y iff the corresponding or-
dering (A, <) satisfies @.

2.6 Exercise. In the discussion of groups following the statement of Theorem 2.2,
interchange the roles of Py, and Dg.

2.7 Exercise. (a) Give a syntactic interpretation / of S, in Sy such that
forall € Lg*: (N, +,-,0,1) = ¢ iff (Z,+,-0,1) = ¢

Hint: Natural numbers can be written as sums of four squares of integers.
(b) Prove the analogue of (a) obtained by interchanging the roles of N and Z.

2.8 Exercise. Prove Theorem 1.3 using Theorem 2.2 by applying suitable syntactic
interpretations.

VIIL.3 Extensions by Definitions

In some of the previous examples we dealt with two axiom systems: the axiom
systems @y and Py, for group theory (part A), and the axiom systems @4 and
!, for orderings (part B).

Usually mathematicians do not work with two or more symbol sets for one and
the same theory, but consider a single underlying symbol set which possibly is ex-
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tended by “defined” symbols. Thus, in group theory one can start with the sym-
bol set Sy = {o} and extend it to Serp = {0, ~!, e} by the defined symbols for the
inverse function and the unit element. For orderings one can start with § = {<}
and extend S to S’ = {<, <} by the defined symbol <. We proceeded in the same
way when discussing set theory in Section VII.3; there we extended the symbol set
S = {€} successively by the defined symbols @, N, U.... Our goal in this section is
to analyze these extensions by definitions. To clarify our intuitive expectation and to
explain the idea, we take the transition from S, = {o} to Sy = {0, e} in the example
from group theory. We use x, y, z for vy, vy, vs.

The starting point is the axiom system ®, C L,*. We notice that the unit element is
uniquely determined, namely

P, = I xVyyox=y.

Hence, we can introduce a new constant ¢ to denote the unit element and fix its
interpretation by the following definition:

O, :=Vx(e=x <> Vyyox=y),
thus arriving at the new symbol set Sg; = {0, e} and the extension
Py U{5.}

of @, by the definition J, as the new axiom system. (It is easy to show that the
sets P, U {J, } and P, of Sg-sentences are equivalent.) Introducing e simplifies the
notation, but we do not expect any major changes by this transition from L5¢ to LSer,
This can be made precise as follows:

. .. . b2l S
(E1)  “Extensions by definitions are conservative” For all ¢ € L,

D, U{O} = iff D=0

(thus, adding definitions does not increase the set of provable sentences of the

original language).
(E2)  “Defined symbols can be eliminated” For the syntactic interpretation / of Sy,

in §; with

@5, (x) :=x=x
@o(x,,2) ==x0y =z
Pe(x) :=Vyyox=y
the following holds for all y € LS
P U{S} Ex < 2

(E3)  “The elimination of defined symbols respects the theory” For I as in (E2)

and ¢ € LSg‘,

D, U{S}IEQ iff D=l
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Note that (E3) follows immediately from (E1) and (E2), since for ¢ € ngr we have
D, U{S} = iff DU{S} =@ (by(E2)
iff @, = ¢! (by (E)).

We now turn to the Theorem on Definitions. It will show immediately that (E1) to
(E3) are fulfilled.

3.1 Definition. Let @ be a set of S-sentences.

(a) Suppose P ¢ S is an n-ary relation symbol and @p(vy,...,v,—1) an S-formula.
Then we say that

Yo .. .an_l(on...v,,_l <~ (pp(v07...,vn_1))

is an S-definition of P in ®.
(b) Suppose f ¢ S is an n-ary function symbol and @ (vo,...,v,—1,v,) an S-
formula. We say that

Yo . V(0. . Va1 =V > @F(V0, ..., Va—1,Vn))
is an S-definition of f in @ provided
D= Vvo...an,lElzlvn(pf(vo, e sVn—1,Vn)-

(c) Suppose ¢ ¢ S is a constant and @.(vo) an S-formula. We say that
Yvo(c =vo <> @:(vo))
is an S-definition of ¢ in @ provided
@ = 3 e (vo).
Thus
VxVy(x <y<> (x <yVx=y))

is an {< }-definition of < in Py,

Vx(e =x <> Vyyox=y)
is an Sg-definition of e in @y, and

VaVyVz(zNy =z <> Yw(w ez > (WEXAWEY)))

is an {&}-definition of N in ZFC.

Let S be given, and let s be a relation symbol, a function symbol, or a constant with
s ¢ S. Furthermore, let @ C Lg and let s be defined in @ as in Definition 3.1 by the
S-formula ;. We define, in the obvious way, the associated syntactic interpretation /
of &’ := SU{s} in S to be the identity on the symbols from S and

(I(S') =) @ (vo) :=vo =vo, I(s5) := @y.
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So Py is logically equivalent to

— the empty set of sentences if s is a relation symbol,
— {Wo ... W1 37,0 (vo, . .., vu—1,vn) } if s is an n-ary function symbol f,
— {37 @ (v)} if s is a constant c.

Therefore, we have:
(*)  for every S-structure 2 with A |= @: A = &y
(+*) for every SU {s*}-structure (2A,s*) with 2 |= &:
(A5 =6 iff A= (As).
Now we easily reach our goal:

3.2 Theorem on Definitions. Let @ be a set of S-sentences, s a new symbol, & an
S-definition of s in ® and I the associated syntactic interpretation of SU{s} in S.
Then:

(a) Forall € L,
PU{stEe iff PEo.

(b) Forall y € L3V,

PU{S} Ex X"

(c) Forall p € Lgu{s}’

PU{SIEe if PE¢.

Proof. (a) For the proof of the non-trivial direction, assume that ® U{d;} = ¢, and
let 2 be an S-structure with 2 = @. By (x), 2~ is defined, say 21~/ = (2, s*). Then
by (+x) it follows that (2, 5s4) = @ U{8,}, therefore by assumption (2l,54) = ¢, and
hence 2 |= ¢ by the Coincidence Lemma II1.4.6.

(b) Let y € Lgu{s} and let (2, s*) be an (SU {s})-structure such that
(2,51) = D8},

By the Theorem 2.2 on Syntactic Interpretations, the following holds for the struc-
ture A" (= (A, s1); cf. (+x)):

s Ex i ARy
iff (A5 =y

(c) This easily follows from (a) and (b). =

3.3 Exercise. Generalize Theorem 3.2 to the case of more (possibly infinitely
many) definitions of new symbols.

3.4 Exercise. Formulate precisely and show: For a set @ of S-sentences the fol-
lowing holds: An extension by definitions of an extension by definitions of @ is an
extension by definitions of &.
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3.5 Exercise. Let P be a k-ary relation symbol, P ¢ S, and @' a set of (SU{P})-
sentences which implicitly defines P, in the sense that for every S-structure 2l and
all P', P> C A* the following holds:

If (24, P') = @ and (2, P?) |= @', then P! = P2

Then, by Beth’s Definability Theorem (see Exercise XIII.3.7), there is an explicit
definition of P with respect to @', i.e., there is an S-formula @p(vo,..., v¢_1) such
that

(o4 EWo.. Y1 (Pvy...vi1 < op(vo,...,Vi—1)).

Using this, show that there is a set @ of S-sentences and a definition dp of P in @
SU{P}

such that for all ¢ € L,
PU{dp}t e iff P Eo;

thus @' is, up to equivalence, an extension of @ by definitions.

VIII.4 Normal Forms

In this section we show that one can associate with every formula a logically equiv-
alent formula which has a special syntactic form.

Let S be a fixed symbol set. For an arbitrary set @ of S-formulas let (D) be the
smallest subset of LS which contains & and is closed under the formation of nega-
tions and disjunctions, i.e., the smallest subset A of LS containing @ such that for
any ¢ and W in A also —¢ and (¢ \VV ) are in A. Note that @ C LS implies (®) C L.

4.1 Lemma. Let ¢ C Lf. Suppose A and B are S-structures, and ay, . .., a,—1 € A,
by,...,b,_1 €B. If

) A Qlao,.art] i B @lbo,... b 1]
holds for all ¢ € @, then (x) holds for all ¢ € (D).

Proof. The set of formulas ¢ for which () holds includes @ and is closed under the
formation of negations and disjunctions.

4.2 Lemma. Let @ ={¢y,...,¢,} be a finite set of formulas. Then every satisfiable
Sformula in {®) is logically equivalent to a formula of the form

(+) (Voo N AWon) V-V (Wo A Win)

where k < 2" and for i < k and j < n, the formula Vi j equals @; or —@;. In
particular, there are only finitely many pairwise logically nonequivalent formulas
in (D).

Thus, we see that every formula in (@) is logically equivalent to a disjunction of
conjunctions of formulas from {@o,. .., ®,, ~@o,...,~@,}.
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Proof. We choose an r such that @ = {@y,...,¢,} C L}. For a structure 2/ and an
r-tuple d := (ag,...,a,_1) € A" let

M Yiad == Yo A A,

where

W; -{(Pi7 if Ql):q)l'[a()w'war—l]y
i- ﬁ(pl-’ if A ‘: ﬁ(pi[ao’.“ ,ar_l].

Then
(2) Ql': ll/(m’ar)[a(),...,ar_l],

and Viad) is a conjunction of the form of the conjunctions in (+). Moreover, for
any ‘B and by,...,b,_| € B,

3) %|:l//(m7ar)[bo,...,b,_1] iff fori=0,...,n,
A = @ilao,...,a—1] iff B E @ilbo,...,br—1]
iff  (cf. Lemma 4.1) for all ¢ € (D),
A= @lag,...,ar—1] iff B E=e@bo,...,b—1].
From (1) it follows that the set

{W(op| A is an S-structure and a € A"}

has at most 2"+ elements.

The proof is complete if we can show that every satisfiable ¢ € (P) is logically
equivalent to the disjunction y of the finitely many formulas from the set

{W(2,4| 2 is an S-structure, acA’, A= @lao,...,ar1]}.
In a suggestive notation, we write
X = \/{1//(Ql 4|2 is an S-structure, acA”, A= @lao,...,ar1]}.

To verify the equivalence between ¢ and J, assume first that B = @[by,...,b,_1].

Then Vs ) is a member of the disjunction x. Since B Vs 4 [bo,- .- br—1]

(cf. (2)), it follows that B = x[bo,...,b,—1]. Conversely, if B = x[bo,...,br—1],
then by definition of ) there is a structure 2l and there are ay, ...,a,—1 € A such that

Qllz(p[am...,a,_l] and B )Zl//@mr)[bo,...,b,_]}.

Then, by (3), by, ...,b,— satisfy the same formulas of (@) in 9B as ao, ..., a,—1 do
in 2L In particular, B = @[by,...,b,_1]. -

A formula which is a disjunction of conjunctions of atomic or negated atomic for-
mulas is called a formula in disjunctive normal form. A formula which contains no
quantifiers is said to be quantifier-free. As a corollary to Lemma 4.2 we obtain
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4.3 Theorem on the Disjunctive Normal Form. Every quantifier-free formula is
logically equivalent to a formula in disjunctive normal form.

Proof. Let ¢ be a quantifier-free formula. If ¢ is not satisfiable, then ¢ is logically
equivalent to —vg = vy. If ¢ is satisfiable and vy, ..., y, are the atomic subformulas
in @, then @ € ({yo,...,¥,}). The claim now follows from Lemma 4.2. !

We turn to formulas which may contain quantifiers. A formula y is said to be in
prenex normal form if it has the form Qoxg . .. Qp—1Xm—1 Wo, Where Q; =Jor Q; =V
for i < m and vy is quantifier-free. The quantifier block Qoxg ... Q,—1x,—1 is called
the prefix and g the matrix of y.

4.4 Theorem on the Prenex Normal Form. With every formula ¢ one can asso-
ciate a logically equivalent formula  in prenex normal form with free(p) =

free(y).

Proof. First, we note some simple properties of logical equivalence. For simplicity,
we abbreviate ¢ =|= y by ¢ ~ y.

(1) If @ ~ y, then —¢ ~ —y.

(2) If @y ~ yy and @; ~ yq, then (@oV @1) ~ (Yo V y).

(3) If o ~yand Q=T or Q =V, then Qx¢ ~ Oxy.

@) 3@ ~ Vxm@, Vi@ ~ Ix—0.

(5) Ifx ¢ free(y), then (Ixe V y) ~ Ix(@V ), (Vx@V y) ~Vx(@VVy),
(vVIxg) ~Ix(yV @), and (y VVxp) ~Vx(yV @).

We shall see how one can transform a given formula into prenex normal form by
repeated applications of (1)—(5). For instance, if ¢ = =3xPx V VxRx we can proceed
as follows:
—=dxPx V VxRx ~ Vx—Px V VxRx (by (2) and (4))
~ Vx—Px V YyRy (since VxRx ~ VyRy and by (2))
~ Vx(=Px V VyRy) (by (5))
~ Vx¥y(=Px V Ry) (by (3) and (5)).

In general, we argue as follows: For ¢ € L5 let qn(@) be the quantifier number of ¢,
i.e., the number of quantifiers occurring in ¢. Using induction on n, we prove:

(%) For ¢ with qn(¢@) < n there is a W € LS in prenex normal form such
" that ¢ ~ v, free(@) = free(y), and qn(¢) = qn(y).
We leave the arguments for “free(¢) = free(y)” to the reader.

n=0:1If qn(¢@) = 0, then ¢ is quantifier-free and we can set y := ¢.

n > 0: We show (x), by induction on ¢. Suppose qn(¢) < n. The quantifier-free
case is clear. If ¢ = —¢’ and qn(¢@) > 0, then qn(¢’) = qn(¢) > 0, and by induction
hypothesis there is a formula of the form Qxy which is a prenex normal form for ¢’
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(where qn(Qxy) = qn(¢) and where y may contain quantifiers). By (1) and (4),
¢ ~ QO 'x=yx (where V! := 3 and 37! := V). Since qn(—x) = qn(Qxy) — 1 =
qn(@) — 1 < n—1, there exists a formula y logically equivalent to =) which is
in prenex normal form such that qn(y) = qn(—y). By (3), Q" 'xy is a formula
logically equivalent to ¢ with the desired properties.

Let ¢ = (¢’ V ¢") and let gn(@) > 0, e.g., qn(¢’) > 0. By induction hypothesis
there is a formula of the form Qxy which is a prenex normal form for ¢@’. Let y be a
variable which does not occur in Qxy or in ¢”. It is then easy to show that

Qxy ~ Qyx3
and thus, by (2) and (5), to obtain

o=(¢' V")~ (Qyx2 V ¢")
~Oy(x3 V 9").

Since qn(x% V @")=qn(@)—1<n—1, we can find a formula ¥ in prenex normal
form which is logically equivalent to ( x% V @"). Qyy has the desired properties.

Let ¢ = Ax¢’. Since qn(¢@’) < n—1 there is a formula ¥ in prenex normal form
which is logically equivalent to ¢’. Then Jxy/ is a formula in prenex normal form
which, by (3), is logically equivalent to ¢ and has the same quantifier number as ¢@.

4|

If ¢ and y are formulas such that
Sat ¢ iff Sat y,

we call ¢ and y equivalent for satisfaction. If, in the Theorem on the Prenex Normal
Form, the condition of logical equivalence is weakened to ¥ |= ¢ and equivalence
for satisfaction, the formula y can, in addition, be chosen universal, i.e., in such a
way that its prefix contains only universal quantifiers. The following example serves
as an illustration. Let § = {R} and let @ be the S-formula VxJyRxy. We set §' :=
{R, f} with unary f and y := VxRxfx. Then y is universal and v |= ¢. Hence
each model of v is a model of @. On the other hand, let (A,R*) be a model of
VxdyRxy. As we have, for every a € A, an element b € A with RAab, we can choose
an interpretation f of f in such a way that R'af" (a) foralla € A, i.e., (A,R*, f) =
VxRx fx. Hence VxRx fx has a model, too.

4.5 Theorem on the Skolem Normal Form. With each formula ¢ one can asso-
ciate a universal formula y in prenex normal form with ¥ = ¢ and free(¢) =
free(y) such that @ and W are equivalent for satisfaction. Besides the symbols
from @, the formula v may contain additional function symbols or constants.

Proof. We describe how we can “construct” y from ¢. Often such a y is called a
Skolem normal form of @.
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Let ¢ be an S-formula. According to Theorem 4.4 we can assume that ¢ is in prenex
normal form, say,

O =01x1...0mXn P,

where @ is quantifier-free. We proceed by induction on the number of existential
quantifiers in the prefix Q1xi ... QuXy,-

If the number equals zero, we set ¥ := ¢. In the induction step, let ¢ be of the form

© =Vx1 .. Vg1 Ors2Xk42 - - - OmXm Po-

We may assume that x1,...,x; are pairwise distinct. Let

01 = Qi12Xk42 - - - OmXim Po

and let f be a new k-ary function symbol if k£ # 0 and a constant if k = 0. We show

for
fX1 co Xk
Xk+1

V= Vxy . VY
(1) If Sat ¢, then Sat .
@ VEe.
Then we are done: As the prefix of Y’ contains fewer existential quantifiers than
the prefix of @, the induction hypothesis yields a formula y in Skolem normal form
such that

(3) v and v are equivalent for satisfaction and free(y’) = free(y).
@ yvEY.
As free(y’) = free(@), (1)—(4) yield that v is a formula with the desired properties.

To prove (1), let 2 be an S-structure and J = (2, ) a model of ¢. Then, for all

ai,...,ar € A, we have

~d]...dg
Jxl Xy ': 1915

hence, we can choose a function fA on A such that

A
forallaj,...,a €A 3“1"'akf (ar,....ax) Eor.
X1 ... X Xk+1

By the Substitution Lemma II1.8.3 we get

forallay,....ap €A: (U, f1),B) Lt o o [H

Therefore, ((2A, f4), B) is a model of Vx; ... Vx; ¢ fx)ékiﬂxk, so v/ is satisfiable.

To prove (2), let 3 = ((A, f4), B) be a model of y’. Then for all ay,...,a; € A,
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~day...dg fxl...xk
Jxl...xk ':(Pl Xk+1

hence,

ag...dg
X1 ... Xk ':Elxk+1(p]’

and thus J is a model of ¢@. —

J

4.6 Exercise. Let ¢ be an S-sentence and y the universal sentence that we get
from ¢ by the preceding proof. Furthermore, let §' O S with v € Lg. Show for
every S-structure 2l that the following are equivalent:

Q) Al p.

(ii) There is an §'-expansion 2" of 2 that is a model of .

4.7 Exercise (Conjunctive Normal Form). Show: If ¢ is quantifier-free, then ¢ is
logically equivalent to a formula which is a conjunction of disjunctions of atomic or
negated atomic formulas.

4.8 Exercise. Let S be a relational symbol set and suppose ¢ € Lg is of the form
Ixo...3x,Yy0 ...y ¥ with ¥ quantifier-free. Show that every model of ¢ contains a
substructure with at most 7+ 1 elements which also is a model of ¢. Conclude that
the sentence Yx3yRxy cannot be logically equivalent to a sentence of the same form

as Q.

4.9 Exercise. Show: With every universal formula ¢ one can associate a logically
equivalent formula y of the form Vx; ... Vx;yo where yy is quantifier-free.
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Chapter IX
Extensions of First-Order Logic

We have seen that the structure 91 of natural numbers cannot be characterized in
first-order logic. The same situation holds for the field of real numbers and the class
of torsion groups. As we showed in Chapter VII, one can, at least in principle,
overcome this weakness by a set-theoretical formulation: One introduces a system of
first-order axioms for set theory, e.g., ZFC, which is sufficient for mathematics, and
then, in this system, carries out the arguments that are required, say, for a definition
and characterization of 1. However, this approach necessitates an explicit use of set
theory to an extent not usual in ordinary mathematical practice.

The situation may encourage us to consider languages with more expressive power,
which permit us to avoid this detour through set theory. For example, we can directly
characterize the natural numbers by means of Peano’s axioms in a second-order
language. However, already at this stage we wish to remark that in order to set up
the semantics of such a language and to prove the correctness of inference rules,
one has to make more extensive use of set-theoretic assumptions (for example, of
the ZFC axioms) than for first-order logic.

There is another reason for introducing and investigating more powerful languages.
We saw that results such as the Compactness Theorem are useful in algebraic in-
vestigations (cf. Section VI.4). Therefore, it seems worthwhile to seek other, more
expressive languages in the hope of obtaining tools for more far-reaching applica-
tions in mathematics.

In this chapter we introduce the reader to some of the languages that have been
considered with these aims in mind.

IX.1 Second-Order Logic

The difference between second-order and first-order languages lies in the fact that
in the former one can quantify over second-order objects (for example, subsets of
the domain of a structure) whereas in the latter this is not possible.
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1.1 The Second-Order Languages LISI. Let S be a symbol set, that is, a set of re-
lation symbols, function symbols, and constants. The alphabet of LISI contains, in
addition to the symbols of L5, for each n > 1 countably many n-ary relation vari-
ables V{,V[',V3,.... To denote relation variables we use letters X, Y, ..., where we
indicate the arity by superscripts, if necessary. We define the set quI of second-order
S-formulas to be the set generated by the rules of the calculus for first-order formulas
(cf. Definition I1.3.2), extended by the following two rules:

(a) If X is an n-ary relation variable and #1,...,#, are S-terms, then Xty ...7, is an
S-formula.
(b) If ¢ is an S-formula and X is a relation variable, then 3X ¢ is an S-formula.

1.2 The Satisfaction Relation for LISI. A second-order assignment Y in a struc-
ture 2l is a map that assigns to each variable v; an element of A and to each relation
variable V" an n-ary relation on A. We extend the notion of satisfaction from LS
to LISI by taking (a) and (b) into account as follows:

If 2 is an S-structure, Y a second-order assignment in 2 and J = (21, y), then we set:

@) JEXn...t, :iff y(X) holds for I(s1),...,T(t,).
(b") Forn-ary X: JE3X¢ :iff thereisa C C A" such that 3% Eo

(where 3% = (Ql, y%) and y% is the assignment that maps X to C but otherwise
agrees with 7).

We let Z; denote second-order logic, that is, the logical system given by the lan-
guages LIS1 together with the satisfaction relation for these languages. Similarly, .3
denotes first-order logic. For the present, we still use the term “logical system” in
an informal sense. A precise definition will be given in XIII.1.

1.3 Remarks and Examples. (1) One defines the free occurrence of variables and
relation variables in second-order formulas in the obvious way and can then prove
the analogue of the Coincidence Lemma II1.4.6. In particular, when ¢ is an LISI-
sentence, i.e., a formula that neither contains free variables nor free relation vari-
ables, it is meaningful to say that 2( is a model of @, written 2 = @.

(2) Let VX @ be an abbreviation for =3X—¢. Then
JEVX"e iff forallCCA™ I = e.

(3) If X is a unary relation variable, then the following formalizations of Peano’s

{0',0}
I

axioms, which we already encountered in I11.7.3, are L -sentences:

(P1) Vx—0ox=0;
(P2) aVy(ox=0y —>x=Yy);
(P3) VX((XOAVx(Xx— X0ox)) — VyXy).
Hence, by passing from first-order logic to second-order logic we have gained ex-

pressive power, since no first-order axioms can characterize the structure (N, ,0)
up to isomorphism.
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(4) The ordered field R< of the real numbers is, up to isomorphism, the only com-
pletely ordered field. Therefore, if Yiz< is the conjunction of the axioms for ordered
fields (cf. I11.6.5) and the second-order S,.-sentence “Every nonempty set that is
bounded above has a supremum,” i.e.,
VX ((IxXxAIyWVz(Xz = z2<y))
— W(Vz(Xz = (2<yVz=y)) AVx(x <y — Jz(x <zAX2)))),

then the following holds for all S5;-structures 2l

ALy iff AR

(5) Let S be arbitrary. Then the Lﬂ—sentence
(+) VxVy(x =y <> VX (Xx < Xy))

is valid: two things are equal precisely when there is no property that distinguishes
them (the identitas indiscernibilium of Leibniz). Thus, in the development of LISI we
could have done without the equality symbol, using (+) to express equality.

(6) When setting up the second-order languages we could have introduced, in addi-
tion to relation variables, function variables which can also be quantified. This pro-
cedure would increase convenience, but not the expressive power of the languages.
We illustrate this by means of an example (cf. the elimination of function symbols
in Section VIIL.1).

Let g be a unary function variable and let ¢ be the “second-order formula”
Veg(VxVy(gx =gy —» x=y) — Vxdyx = gy).

Then (for the natural extension of the notion of satisfaction) the following holds for
every structure 2l:

A= iff every injective function from A to A is surjective
iff A is finite.

Considering the graph of a unary function instead of the function itself, we can use
a binary relation variable X and replace ¢ by the following formula:

Grin 1= VX (Va3 yXxy AVAYIVz((Xxz A Xyz) — x =) — VyIxXxy).

The formulas ¢ and @g, have the same models. Therefore,
A= ¢y iff A is finite.

In later examples we shall often use function variables to obtain formulas that are
easier to read.

(7) In 4 one can introduce operations such as substitution and relativization by
definitions analogous to those for .£7. One can also verify basic semantic properties
such as the analogue of the Isomorphism Lemma II1.5.2.
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The situation is different when we consider deeper semantic properties such as the
Completeness Theorem, the Compactness Theorem, and the Lowenheim—Skolem
Theorem: the price we have to pay for being able to quantify over second-order
objects is the loss of all these central properties.

1.4 Theorem. The Compactness Theorem does not hold for ‘4.
Proof. The following set of sentences is a counterexample:
{@int U{@=n [n =2}

This set is not satisfiable, but, of course, every finite subset is satisfiable. =
1.5 Theorem. The Lowenheim—Skolem Theorem does not hold for “A;.
Proof. We give a sentence Qe € L?I such that for all structures £,

A= @une  iff A is uncountable.
Then @y is satisfiable, but it has no model that is at most countable.

To define @yn. we use an L?I-formula Wiin (X), similar to @, with just one free unary
relation variable X, for which

(2,7) E van(X) iff  y(X) is finite.

(We leave it to the reader to write down such a formula.) Clearly, a set A is at most
countable if and only if there is an ordering relation on A such that every element has
only finitely many predecessors. So, using a binary relation variable Y, we define

Q<cip i= TY (Vx=Yxx AVaVWz((Yxy AYyz) — Yxz)
AVXVY(YxyVx =y V Yyx) AVxIX (W (X) AVy(Xy <> Yyx))).

Then we have
A= Q< iff A is at most countable.

Hence we can set Qupc := " QP<cbl- -

1.6. For first-order logic we obtained the Compactness Theorem from the existence
of an adequate system of derivation rules (cf. V1.2). For ‘A4 there is no correct and
complete system of derivation rules. Otherwise we could use the same argument as
we did for ] to prove the Compactness Theorem for #7;.

This negative result does not, of course, hinder us from setting up correct rules for
second-order logic. For example, one can add to the first-order rules the following
correct rules for quantification over relation variables:

I ¢ I' oy

F HX(p_; T Xo v if X is not free in " y.
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In the introduction to this chapter we provided two motivations for investigating
more expressive languages, namely: (a) to facilitate the formalization of mathemat-
ical statements and arguments, and (b) to supply us with more powerful tools for
mathematical investigations. In regard to (a) and (b), what have we accomplished
by second-order logic?

To begin with, we note that by supplementing the second-order rules presented
above, one can obtain a system largely sufficient for the purposes of mathemat-
ics. (However, by 1.6, one never gets a complete system, so that the choice of rules
can only be made from a pragmatic point of view, and not with the aim of attain-
ing completeness.) In addition, bearing in mind that mathematics can be formulated
more conveniently in a second-order language, one can tend toward the opinion that
progress in the sense of (a) has indeed been made. However, as far as (b) is con-
cerned, % is hardly an appropriate system. The results 1.4 and 1.5 already hint at
this. The expressive power of second-order languages is so great that results such as
the Compactness Theorem or the Lowenheim—Skolem Theorem, which are of value
for mathematical applications, no longer hold. In view of these remarks it is natural
to investigate other extensions of first-order logic (cf. Sections 2 and 3).

By considering a further aspect, we explain how, in a certain sense, second-order
logic has overshot the mark: We show that set theory, as based on ZFC, is not suffi-
cient to decide basic semantic questions for .£7;. We demonstrate this by presenting
a sentence Qcy € LI@l that is valid if and only if Cantor’s continuum hypothesis CH
holds. Since neither CH nor its negation can be proved in ZFC (cf. VIL.3), the valid-
ity of @cy can neither be established nor refuted within the framework of ZFC. CH
says:

For every subset A of R, either A is at most countable, or there is a
bijection from R onto A.

D

The sentence @cy will be essentially a formalization of (1).
First, similar to @<, we can easily give a formula Y.< (X) with the property
(A,7) E x<cmi(X) iff  y(X) is at most countable.

Further, there is a formula @r such that

2) A= or iff A and R have the same cardinality.
Note that for the S;;-sentence Ygz< introduced in 1.3(4) and for all S;,-structures 2,

A= yp<  iff AZRS,
So, to satisfy (2), we can choose ¢ to be an L%-sentence that says:
“There are functions +, -, elements 0, 1, and a relation < such that yg<.”

(We leave it to the reader to write down @ as a second-order sentence.) Now we
can take as ¢cy a sentence that says that “if the domain is of the same cardinality
as R, then every subset of the domain is either at most countable or else of the same
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cardinality as the domain”, i.e., as @cy we can take the sentence
Pr = VX (Y<eor(X) V Ig(VxVy(gx = gy = x = y) AVy(Xy < Fxgr =))).

It is easy to prove (cf. (1)) that E @cy iff CH holds.

1.7 Exercise (The System £} of Weak Second-Order Logic). For every S, we set
L};’S = LISI. Change the notion of satisfaction for A by specifying, for 7 = (2, y):

J =y 3X"@  Ciff  there is a finite C C A" such that I& = ¢.

Thus, only quantifications over finite sets (and relations) are allowed. Show:

(a) There is a second-order sentence ¢ and a structure 2 such that 2 |=,, ¢ but not
A= 0.

(b) For each sentence ¢ € L}”I"S there is a sentence ¥ € L§j such that for all S-
structures A, A=, @ iff AE=y.

(c) The Compactness Theorem does not hold for Lj;. (However, the Lowenheim—
Skolem Theorem does hold for Ljj. This follows from the result 2.4 in the
following section; cf. Exercise 2.7.)

IX.2 The System %,

In VI.3.5 we showed that the class of torsion groups cannot be characterized in first-
order logic. But we can axiomatize this class if we add to the group axioms the
“formula”

(*) Vx(x=eVxox=eVxoxox=eV...).

Thus we gain expressive power when allowing infinite disjunctions and conjunc-
tions. Such formations are characteristic of the so-called infinitary languages. In
the simplest case one restricts to conjunctions and disjunctions of countable length.
This leads to the system %, . (The notation %%, o follows the systematic termi-
nology usual in the study of infinitary languages, cf. [4]). To define the formulas
of %, » We use the jargon of calculi. Nevertheless it should be noted that the rule in
2.1(b) below is not a rule of a calculus in the strict sense, since it has infinitely many
premises. (For example, in order to obtain the “formula” () one must already have
obtained the formulas x = e, xox =e, ....) A precise version of such “calculi” and
their usage can be given within the framework of set theory (cf. VII.4.3). For exam-
ple, the definition of formulas and proofs by induction on formulas can be based on
the principle of transfinite induction.

2.1 Definition of £, . Compared with the first-order language LS, we add the fol-
lowing to constitute the language L, ,:

(a) the symbol V/ (for infinite disjunctions);
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(b) to the calculus of formulas the following “rule”:
If @ is an at most countable set of S-formulas, then \/ @ is an S-formula (the
disjunction of the formulas in ®);

(c) to the definition of the notion of satisfaction the following clause:
If @ is an at most countable set of L5 ,-formulas, 2 an S-structure, 8 an as-
signment in 2, and J = (2, B), then

JEV® :iff Tk ¢ forsome ¢ € P.

There are many classes of structures that can be characterized in %%, o, but not in
first-order logic. Examples are:

the class of torsion groups, characterized by the conjunction of the group axioms
and

...OX = >
VxV{xo...ox=e|n>1},

n times

the class of fields with characteristic a prime, by the conjunction of the field axioms
and

1+...+41=0 i s
V{I+...+ | p prime}

p times

the class of archimedean ordered fields, by the conjunction of the axioms for ordered
fields and

V. <l+...+1|n>1},
xV{x<l+..+1|n=1}

n times

the class of structures isomorphic to (N, 5,0), by the conjunction of the first two
Peano axioms and

=0... >
Vx\V{x 0'. c0|n>0},
n times

the class of connected graphs, by the conjunction of the axioms for graphs and
VxVy(-x =y — \/{Elzo v Jzy(x =20 ANy =2y ARzoz1 A ... ARZy—12,) |0 > 1}).

2.2 Remarks. (a) For an at most countable set & let A @ be an abbreviation for the
Lo, o-formula =\/{—¢ | ¢ € @}. Then

JEA® iff forallpe ®, JE .
The formula A @ is called the conjunction of the formulas in ®.

(b) The definition of the set SF(¢@) of subformulas of a formula ¢ in .Z, , is ob-
tained from the corresponding definition for first-order formulas in I11.4.5 by adding
the clause
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SE(V @) :={V @} UUyeq SF(W).

It can be proved for arbitrary ¢ that SF(¢) is at most countable. The proof is
by induction on formulas; we give the \/-step: Let ¢ = \/ @, where by induc-
tion hypothesis SF(y) is at most countable for every y € &. Since SF(\/ ®) =
{V @}UUyco SF(y) is an at most countable union of at most countable sets, SF(¢@)
is at most countable. In particular, for every ¢ € Lg,l o there exists an at most count-

able §' C S such that ¢ € L, ,,.

(c) Define the set free(\/ @) of variables occurring free in the formula \/ @ to be
Uyea free(y). The formula \/{v, = v, [ n € N} has infinitely many free variables.
However, one can easily prove by induction that in case free(¢) is finite, free(y) is
also finite for any subformula y of ¢. In particular, subformulas of %%, ,-sentences
have only finitely many free variables.

Consider the L%l o-sentence
Viin == V{=@>n [ n>2}
(for @, cf. I11.6.3). Then for every structure 2{ we have
2= g, iff  Ais finite.
Hence the set of sentences {Wgin } U{@>, | n > 2} is an example showing
2.3 Theorem. The Compactness Theorem does not hold for Ly, . -

Nevertheless, many results for .47 have their counterparts in %%, ». We mention
some examples and refer the reader to [24] for more information.

(1) The analogue of the Lowenheim—Skolem Theorem holds (see 2.4).

(2) One can extend the sequent calculus & for first-order logic by the following
“rules” for V/:

I' ¢ y foreverypecd

VA F Vo v ;
r .
(VS) F—\/g ifpcd.

Here I' stands for a finite sequence of .4, ,-formulas.

In this way one obtains a correct and complete “calculus”: For %, ,-sentences
Q1,...,0n, ¢, the sequent @ ... @, ¢ is derivable if and only if it is correct. However,
one must allow infinitely long derivations as is obvious from (\/A).

(3) An analysis of (2) shows that by suitably generalizing the concept of finiteness
one can transfer other results from 4] to £, ». Among these is the Barwise Com-
pactness Theorem for £, o, cf. [3].

2.4 Lowenheim—Skolem Theorem for %}, . Every satisfiable £, »-sentence has
a model over an at most countable domain.
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Since for every £, »-sentence ¢ there is an at most countable S such that ¢ € Lﬁ,l >
2.4 follows directly from

2.5 Lemma. Let S be at most countable, ¢ an Lg,l o-sentence, and B an S-structure
such that B |= @. Then there is an at most countable substructure 24 C B such that

A= 0.

Proof. We first present the idea of the proof. Let By be a nonempty at most count-
able subset of B that is S-closed, i.e., that contains all ¢® for ¢ € S and is closed
under application of f% for f € S. Then By is the domain of an at most countable
substructure B of B. If one tries to prove by induction that By = ¢, the proof
breaks down at the point where 3-quantifiers are considered. For example, in the
simple case where ¢ is of the form dxPx, one must ensure that there is a b € By
such that P2 b. Therefore we shall close By with respect to all possible existential
requirements arising from subformulas of ¢.

Let us turn to the proof. For pairwise distinct variables xi,...,x, we denote by
y(x1,...,x,) a formula y with free(y) C {x1,...,x,}. We write © = y[ay,...,a,]
if ¥ holds in ® when the variables x; get the assignment g; for 1 <i <n.

Let ¢ be given. We define a sequence Ag,A;,A»,... of at most countable subsets
of B so that form € N

@ Ap CApyr;

(b) for y(xy,...,x,,x) € SE(@) or ¥ = fxj...x, = x (with n-ary f € S) and
ai,...,an € Ay, if B = Ixylay,...,a,), then there is a € A4 such that
B Evylay,...,a,,al.

Let Ag be a nonempty at most countable subset of B that contains {c¢® | ¢ € S}.
Suppose A,, is already defined and is at most countable. In order to define A, 1, for
every formula y(xj,...,x,,x) that belongs to SF(¢) or has the form fx;...x, =x
(with n-ary f € S), and for all ay,...,a, € Ay with B = Ixy|ay,...,a,] we choose
a b € B such that B = ylay,...,a,,b|. Let A}, be the set of b’s chosen in this way.
Since SF(¢) and A,, are at most countable, so is A),. We set A, 11 := A,, UA,,.
Then A,,+1 is at most countable, and (a) and (b) are satisfied.

For

A= UmENAm
we have:
(1) A is at most countable.

(2) A is S-closed. By choice of Ao, we need only show that A is closed under [

for n-ary f € S. Let ay,...,a, € A. Since the sets A,, form an ascending chain,
ap,...,ay lie in some Ag. As B = 3x fx;...x, =x [ay,...,a,], by (b) the element
f*(ay,...,a,) lies in Ay, 1, hence in A.

By (1) and (2), A is the domain of an at most countable substructure 2 of 5. There-
fore we are done if we can show:
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(*) A= o.
This follows immediately from the following claim:
For all y(xi,...,x,) € SF(¢) and all ay,...,a, €A,
A= vylay,...,ay] iff BlEylar,... a4

We prove () by induction on v, but limit ourselves to the 3-case.

(%)

Let y(xi,...,x,) = Ixx(x1,...,X,,x), and suppose aj,...,a, € A. Assuming that
A = 3xylay,. .., a,], we obtain successively:

There is an a € A such that A |= x[ay,...,an,a.
There is an a € A such that B = x|ai,...,as,a] (induction hypothesis).
B = xxlars ..., an]-

Conversely, if B = 3xxlai,...,an], we choose k such that ay,...,a, € A;, and we
obtain successively:

There is an a € Ay, such that B | xlai,...,an,a] (by (b)).
There is an a € Ay such that 20 = x[ay,...,as,a] (induction hypothesis).
A = Ixxlai,. .., an)- —

Consider an at most countable set @ of first-order sentences and let ¢ := A @. Then
it follows from 2.5 that every model of @ has an at most countable substructure
which is also a model of &. In particular, this yields a proof of the Lowenheim—
Skolem Theorem for first-order logic which does not rely on the proof of the Com-
pleteness Theorem.

Note that an %, o-sentence characterizing (N, 0,0) has no uncountable model;
hence in %, » we do not have the analogue of the upward Lowenheim—Skolem
Theorem VI.2.3.

To conclude this section, we give a mathematical application of Lemma 2.5 by
choosing ¢ appropriately.

We consider groups as Sgrp-structures with Sgrp := {0,e, "'}. A group & is said to
be simple if {¢“} and G are the only normal subgroups of &. If for @ € G we denote
by (a)e the normal subgroup of & generated by «, then clearly

®issimple iff (a)g = & foralla € G with a # €C.
Since
<a>(’5 = {goazogal _“gnaangl ‘ ne N7Z07"'7zn S Zagoy"'7gl1 S G}’

. . .. S S
the class of simple groups can be axiomatized in L ¢, by the conjunction ¢ of the
group axioms and the sentence
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Vx(-x=e— Vy\/{ﬂuo .o Juy,
V= uoxrug " upxu, | 20, z0 € Z} [n €NY).

2.6. If & is a simple group and M a countable subset of G, then there is a countable
simple subgroup of & that contains M.

Proof. Let §' := Sgrp U{cq | a € M}, where c, are new constants for a € M. We
expand & to an §'-structure &', interpreting each ¢, by the corresponding a, and
apply Lemma 2.5 to &’ and ¢. 4

2.7 Exercise. Show that for every LK’S—sentence ¢ (cf. Exercise 1.7) there is an
Lg,lw-sentence v with the same models, that is, (2 |=,, ¢ iff 2 = y) for all S-
structures 2(. Conclude that the Lowenheim—Skolem Theorem holds for .Z}}.

2.8 Exercise. Show that the following classes can be axiomatized by an .Z, -
sentence:

(a) the class of finitely generated groups;
(b) the class of structures isomorphic to (Z, <).

2.9 Exercise. (a) For arbitrary S, show that L‘Z,l » 1S uncountable.

(b) Give an uncountable structure B (for a suitable countable symbol set S) such
that there is no countable structure 2 satisfying the same L‘Z,l o-sentences as ‘B.

IX.3 The System %)

The system %} is obtained from first-order logic by adding the quantifier Q, where
a formula Qx¢ says “there are uncountably many x satisfying ¢.”

3.1 Definition of ). Compared with the first-order language LS, we add the fol-
lowing to constitute the language Lz:

(a) to the alphabet: the symbol Q;

(b) to the calculus of formulas the rule: If ¢ is an S-formula, then so is Qx;

(c) to the definition of the notion of satisfaction the clause: If ¢ is an S-formula
and J = (2, B) an S-interpretation, then

JEOxe iff {a€A|J% | @} is uncountable.

The system . has more expressive power than .#7. For example, the class of at
most countable structures can be axiomatized in %) by the sentence ~Qxx = x. For
S = {<} let ¢ be the conjunction of the axioms for orderings and

(Oxx =xAVx—Qyy < x).

Then ¢p is an Lz-sentence characterizing the class of uncountable orderings in
which every element has at most countably many predecessors. These so-called
o -like orderings play an important role in investigations of .Zp.
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Note that the sentence @, or even the sentence Oxx = x, has an uncountable, but
no at most countable model. Hence, the strict analogue of the Lowenheim—Skolem
Theorem VI.1.1 does not hold for .Z. However, each satisfiable .Z-sentence has
a model of cardinality < ¥; cf. Exercise 3.3.

One can set up an adequate sequent calculus for ) by adding the following rules to
the sequent calculus G for first-order logic. (After each rule an explanatory comment
is given, containing the essence of a correctness proof.)

r
%— if y is not free in ¢
I Oyox

(Renaming of bound variables);

if y and z are distinct from x

-Ox(x=yVx=7z)
(“Singletons and pair sets are not uncountable”);

r vx(¢—v)
I Ox¢p — Oxy

(“Sets having uncountable subsets are uncountable”);

I' —QOxdyp
I Oyxe
I'  xQyo

(“If the union of at most countably many sets is uncountable then at least one of
these sets is uncountable™).

One can show (cf. [23]) that this calculus allows for the derivation of exactly the
correct sequents. Furthermore, the Completeness Theorem holds for countable sets
® of Lé—formulas: D = @ iff @+ ¢. As for first-order logic we conclude (cf. Sec-
tion VL.2):

3.2 Zp-Compactness Theorem. For every countable set ® of Lg-formulas, P is
satisfiable if and only if every finite subset of @ is satisfiable. -

The following example shows that the Compactness Theorem does not hold for
uncountable sets of formulas. Let S be an uncountable set of constants and let

@ :={-c=d|cdeS,c#d}U{-Qxx=x}.
Then every finite subset of @ is satisfiable, but @ itself is not.

In Chapter VI we saw that the Compactness Theorem and the Lowenheim—Skolem
Theorem are useful for mathematical applications. None of the extensions of .}
which we have discussed in this chapter satisfies both theorems. The Compact-
ness Theorem fails for % o, the Lowenheim—Skolem Theorem for .%j, and
both for 4. Does there exist any logical system at all that has more expressive
power than first-order logic and for which both the Compactness Theorem and the
Lowenheim—Skolem Theorem hold? In Chapter XIII we give a negative answer.
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3.3 Exercise. Show that every satisfiable .#p-sentence has a model over a domain
of cardinality at most X; (where X, is the smallest uncountable cardinal). Hint:
Use a method similar to that in the proof of Lemma 2.5: for formulas Qx¢ that hold
in ‘B, add X elements satisfying ¢.

3.4 Exercise. Let £ be obtained from .Zp by changing the notion of satisfaction
3.1(c) as follows:

JE0Oxe iff {acA|T% = ¢} is infinite.

Show that the Compactness Theorem does not hold for .Z3, but that the Lowenheim—
Skolem Theorem does.
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Chapter X
Computability and Its Limitations

Only in methodological questions have we thus far referred to the fact that applica-
tions of sequent rules consist ultimately of mechanical operations on symbol strings
(cf. VIL.1). In this chapter we make stronger use of this formal-syntactic aspect in
mathematical considerations about logic as well. Let us give an initial idea, taking
as an example the system of axioms @ = {@p, @1, @2} for group theory. It follows
from the Completeness Theorem that for all Sg;-sentences @,

Py =@ iff Dy ko
Thus ¢ is a theorem of group theory

Ser
Thyr :={y € L) | Py = v}

if and only if the sequent @y @, is derivable. By systematically applying the
sequent rules one can generate all possible derivations and thus compile a list of

Ser - .
the theorems of Thg: One adds a sentence ¢ € L;* to the list if one arrives at a
derivation whose last sequent is @y @; @, Q.

Hence there is a procedure by which one can, in a “mechanical” way, list all the-
orems of Thg. It should be plausible that one could use a suitably programmed
computer to carry out such a procedure. Of course, one would have to be able to
increase the capacity of the computer if necessary since the derivations and the se-
quents and formulas therein can be arbitrarily long. A set such as Thg, that can be
listed by means of such a procedure is said to be enumerable.

Of course, the enumeration procedure just sketched yields many trivialities such as
Vx(x = x — x = x). Moreover, one does not know how soon it will yield any use-
ful theorem. On the other hand, group theorists are mainly interested in specific
statements ¢ relevant for their investigations. The aim is to determine for such a ¢
whether @ € Thg; or not. Usually this is accomplished either by a proof of ¢ or by a
counterexample to ¢ (i.e., a group & with & = —¢). Often it is difficult to accom-
plish either of the above. So it is natural to ask whether there is a procedure that can
be applied to arbitrary Se-sentences and that decides for each of these sentences,
in finitely many steps, whether it belongs to Thg, or not. In other words, can one
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program a computer so that whenever it is given an Sg-sentence @ it “computes”
whether ¢ belongs to Thy, or not? If such a procedure exists for a given theory, we
call that theory decidable.

The present chapter is devoted to questions of this kind. First we discuss the con-
cepts of enumerability and decidability in more detail, in Section 1 from a naive
point of view, and in Section 2 on the basis of the precise notion of register ma-
chine. These topics form part of the theory of computability, formerly known as
recursion theory. The remaining sections of this chapter then contain applications
to first-order and second-order logic.

For further information about the theory of computability we refer to [10, 17, 31].

X.1 Decidability and Enumerability

A. Procedures, Decidability

It is well-known how to decide whether an arbitrary natural number n is prime:
If n=0o0rn=1,nisnot prime. If n = 2, then n is prime. If n > 3, one tests the
numbers 2,...,n— 1 to see whether they divide n. If none of these numbers divide n,
then n is prime; otherwise it is not.

This procedure operates with strings of symbols. For example, in the case of dec-
imal representation of natural numbers it operates with strings over the alphabet
{0,...,9}. Our description has not specified it in complete detail (for instance, we
have not described how division is to be carried out), but it should be clear that it
is possible to fill these gaps in order to ensure that all steps are completely deter-
mined. In view of its purpose we call the procedure a decision procedure for the set
of primes.

Other well-known procedures include those for

(a) multiplication of two natural numbers,
(b) computing the square root of a natural number,
(c) listing the primes in increasing order.

Common to all of these procedures is the fact that they proceed step by step, they
operate on symbol strings and they can be carried out by a suitably programmed
computer. A procedure can operate on one or more inputs (as in (a) or (b)) or it can
be started without any particular input (as in (c)). It can stop after finitely many steps
and yield an output (as in (a) for any input and in (b) for inputs that are squares),
or it can run without ever stopping, possibly giving an output from time to time (as

in (c)).

Procedures in our sense are also called algorithms, sometimes processes. They op-
erate with concrete objects such as symbol strings. Occasionally. mathematicians



X.1 Decidability and Enumerability 149

use these notions in a wider sense, speaking, for instance, of the Gram—Schmidt
orthogonalization process even when referring to “abstract” vector spaces.

Often, we indicate the existence of a procedure by the term “effective”. For example,
we use formulations like “with each formula one can associate a number effectively
(or: in an effective way)”, to express that there exists a procedure for obtaining from
every formula the associated number.

Concerning the following definition and the subsequent discussion the reader should
bear in mind that the notion of procedure has so far been introduced only in an
intuitive way and by examples.

1.1 Definition. Let A be an alphabet, W a set of words over A, i.e., W C A*, and 3
a procedure.

(a) P is adecision procedure for W if, for every input { € A*, i3 eventually stops,
having previously given exactly one output 1 € A*, where

n=0iffeWw and n#£0if{¢W.
(b) W is decidable if there is a decision procedure for W.

Thus, when a decision procedure for W is applied to an arbitrary word { over A,
it yields an answer to the question “{ € W?” in finitely many steps. The answer is
“yes” if the output is the empty word; it is “no” if the output is a nonempty word.

To formulate the above decision procedure for the set of primes according to Defi-
nition 1.1 we set A := {0,...,9} and W := set of primes (in decimal representation).
The empty word shall be the output for primes and, say, the word 1 the output for
nonprimes.

Further examples of decidable sets are the set of terms and the set of formulas for a
concretely given symbol set. In the case of S.. (cf. Section I1.2) for instance, terms
and formulas are strings over the alphabet

A = {V(),Vl,...,ﬁ7\/,ﬂ7E,),(}US.x,.
We sketch a decision procedure for the terms.

Let { € A% be given. First, determine the length () of {. If I({) =0, { isnot a
term. If /({) = 1, { is a term if and only if { is a variable or a constant. If [({) > 1,
then ¢ is not a term unless it begins with a function symbol. If { begins with a
function symbol, say § = f7¢’, then check whether there is a decomposition ;{3
of {’, where the {; are terms. { is a term if and only if such a decomposition exists.
To check whether each {; is a term, use the same procedure as for {. Clearly, since
the {; are shorter than {, an answer will be obtained after finitely many steps.

If one analyzes this procedure or tries to write a computer program for it, a difficulty
arises: programs (or descriptions of procedures) are finite and therefore can only
refer to finitely many symbols in A.,, whereas A., contains, among other things, the
infinite list of symbols vg, vy, vs,. ... Therefore we introduce the new finite alphabet
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A0 = {Vagvlw .. 79767T7' . '7§7_'7\/72|757)3 (,R,f,C}

and then represent the symbols in Ao using the symbols of A¢ in the natural way.
For example, we represent v7; by l’ZL c11 by cl;, R?S by R31 8 and the S.-formula
Fv3(RlvsVer = flvi) by 3(RT1v3Vel 1= f10v1).

With this in mind, we only consider finite alphabets in the sequel.

1.2 Exercise. Let A be an alphabet, and let W, W’ be decidable subsets of A*. Show
that WUW’', WNW/', and A*\W are also decidable.

1.3 Exercise. Describe decision procedures for the following subsets of A:

(a) the set of strings x¢ over A such that x € free(¢),
(b) the set of S..-sentences.

B. Enumerability

Consider a computer program which operates as follows: it successively generates
the numbers n =0, 1,2,.. ., tests in each case whether n is a prime, and yields n as
output if the answer is positive. The program runs without ever stopping, thereby
generating a list of all primes, i.e., a list in which every prime eventually appears.

Sets, such as the set of primes, which can be listed by means of a procedure are said
to be enumerable:

1.4 Definition. Let A be an alphabet, W C A*, and i} a procedure.

(a) ‘B is an enumeration procedure for W if 3, once having been started, even-
tually yields as outputs exactly the words in W (in some order, possibly with
repetitions).

(b) W is enumerable if there is an enumeration procedure for W.

We give some further examples for enumerable sets.
1.5. If A is an alphabet, then A* is enumerable.

Proof. Suppose A ={ay, . ..,a,}. We first define the lexicographic order on A* (with
respect to the indexing aq, . . .,a,). In this ordering { precedes {’ if either

1(§) <IU(E") or
I(§)=1(&") and “C precedes ¢’ in a dictionary”, that is, there are a;,a; € A
with i < j, such that for suitable §,1,n' € A*, { = Ea;n and §' = Ea;n’.

For example, if A = {a,b,c,...,x,y,z}, then “papa” comes before “papi”, but after
“zuu”. In general, the ordering begins as follows:

O, ag,...,a,,apa0,a0ay, .. .,a00,,d140, - - . ,Aply, A0AQAQ, - - - -
It is easy to set up a procedure that lists the set A* in lexicographic order. |

1.6. {p € Lg"" | E @} is enumerable.
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Proof. By the Completeness Theorem V.4.1 we may describe a procedure that lists
the S.-sentences ¢ with - ¢@. We use the same idea as in the procedure for list-
ing Thy, at the beginning of this chapter: We systematically generate all possible
derivations for the symbol set S... If the last sequent in such a derivation consists
of a single sentence ¢, we include ¢ in the list. The derivations can be generated
as follows: For n = 1,2,3,... one constructs the first n terms and formulas in the
lexicographic ordering, and one forms the finitely many derivations of length < n
that use only these formulas and terms and consist of sequents containing at most n
members. -

C. The Relationship Between Enumerability and Decidability

We have just seen that the set of “logically true” sentences can be listed by means of
an enumeration procedure. Is it possible to go farther than this and decide whether an
arbitrary given sentence is “logically true”? The enumeration procedure given above
does not help to solve this problem. For example, if we want to test a sentence ¢ for
validity we might start the enumeration procedure in 1.6 and wait to see whether ¢
appears; we obtain a positive decision as soon as @ is added to the list. But as long
as ¢ has not appeared, we cannot say anything about ¢, since we do not know
whether ¢ will never appear (because it is not valid) or whether it will appear at a
later time. In fact, we shall show (cf. Theorem 4.1) that the set of valid S..-sentences
is not decidable.

On the other hand, if a set is decidable, we can conclude that it is enumerable:
1.7 Theorem. Every decidable set is enumerable.

Proof. Suppose W C A* is decidable and ‘3 is a decision procedure for W. To list W,
generate the strings of A* in lexicographic order, use 3 to check for each string §
thus obtained whether it belongs to W or not, and, if the answer is positive, add  to
the list. —

As an extension of Theorem 1.7 we have:

1.8 Theorem. A subset W of A* is decidable if and only if W and the complement
A*\ W are enumerable.

Proof. Suppose W is decidable. Then A* \ W is also decidable (one can use a deci-
sion procedure for W, merely interchanging the outputs “yes” and “no”). Thus by
Theroem 1.7, W and A* \ W are enumerable. Conversely, suppose W and A*\ W
are enumerable by means of procedures R and B’. We combine 3 and 3’ into a
decision procedure for W, which operates as follows: Given &, 3 and 3’ run simul-
taneously until § is yielded by either 3 or J3’. This will eventually be the case since
every symbol string in A* is either in W or in A*\ W. If { is listed by 3, it belongs
to W, otherwise to A* \ W. a

1.9 Exercise. Suppose U C A* is decidable and W C U. Show that if W and U \ W
are enumerable, then W is decidable.
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Our definitions of decidability and enumerability were given with respect to a fixed
alphabet. However, this reference is not essential:

1.10 Exercise. Let A| and A, be alphabets such that A; C A;, and suppose that
W C AJ. Show that W is decidable (enumerable) with respect to A if and only if it
is decidable (enumerable) with respect to A,.

1.11 Exercise. Show: (a) The set PIR of polynomials in several unknowns with
integer coefficients that have an intege} root, is enumerable. (Choose, for ex-
ample, the alphabet {x,+,—,0,...,9,0,...,9,0,...,9} and represent the poly-
nomial —3x, +x3x5+2 by —3x1+x23x5+2.)

(b) The set PIR; of polynomials in one unknown which belong to PIR is decid-
able. (See also the remarks before Exercise 6.13 regarding the question of the
decidability of PIR.)

D. Computable Functions

Let A and B be alphabets. A procedure that for each input from A* yields a word
in B* determines a function from A* to B*. A function whose values can be com-
puted in this way by a procedure is said to be computable. An example of a com-
putable function is the length function I, which assigns to every { € A* the length
of § (in decimal notation as a word over {0,...,9}).

Whereas our discussion of procedures deals mainly with the notions of enumerabil-
ity and decidability, many presentations of the theory of computability start with the
computability of functions as the key concept. Both approaches are equivalent in the
sense that the above notions are definable from each other. The following exercise
shows that the notion of computable function can be reduced to both the notion of
enumerability and the notion of decidability.

1.12 Exercise. Let A and B be alphabets, # ¢ AUB and f: A* — B*. Show that
the following are equivalent:

(i) fis computable. () {C#f(&) | € A*} is enumerable.
(iii) {E#F(L) | ¢ € A*} is decidable.

The set {{#1(8) | £ € A*} can be considered as the graph of f, and hence the equiv-
alences in 1.12 can be formulated as follows: A function f: A* — B* is computable
if and only if its graph is enumerable (decidable).

X.2 Register Machines

In the foregoing discussion we have used an intuitive notion of procedure which we
illustrated by use of examples. The conception we have thus acquired is perhaps
sufficient for recognizing in a given case whether a proposed procedure can be ac-
cepted as such. But in general, our informal concept does not enable us to prove
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that a particular set is not decidable. Namely, in this case one must show that every
possible procedure is not a decision procedure for the set in question. However, such
a proof is usually not possible without a precise notion of procedure.

We now introduce such a precise concept, starting from the idea that a procedure
should be programmable on a computer. For this purpose we set up a programming
language and define procedures in the formal sense to be exactly those procedures
that can be programmed in this language. A. M. Turing' was the first to introduce a
similar and equivalent concept (cf. [42]).

For the following discussion we fix an alphabet A = {qy,...,a,}.

The programs are executed by computers with a memory consisting of finitely many
units Ro,...,R,,, called registers. (In the literature such machines are frequently
called register machines.) At each stage in a computation every register contains
exactly one word from A*. We assume that we have machines with arbitrarily many
registers at their disposal, and that the individual registers can store words of arbi-
trary length. This idealization agrees with our objective of encompassing all pro-
cedures which can be carried out “in principle” by a computer, i.e., disregarding
problems of capacity.

A program (over A = {ao,...,a,}) consists of instructions, where each instruc-
tion begins with a natural number L, its label. Only instructions of the form (1)
through (5) below are permitted.

(1) LLETR;=R;+q;

for L,i, j € N with j < r (Add-instruction: “Add the letter a; at the end of the word
in register R;”);

(2) LLETR;=R;—q;

for L,i, j € N with j < r (Subtract-instruction: “If the word in register R; ends with
the letter a;, delete this a;; otherwise leave the word unchanged”);

(3) LIFR;,=0OTHENL ELSELy;OR...ORL,

for L,i,L',Ly,...,L, € N (Jump-instruction: “If register R; contains the empty word

go to instruction labeled L'; if the word in register R; ends with ag (resp. ai, ... ,a,)
go to instruction labeled Ly (resp. L1, ...,L;)");
(4) LPRINT

for L € N (Print-instruction: “Print as output the word stored in register Ry”);
(5) LHALT
for L € N (Halt-instruction: “Halt”).

2.1 Definition. A register program (or simply a program) is a finite sequence
o, - .., 0y of instructions of the form (1) through (5) with the following properties:

! Alan M. Turing (1912-1954).
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(1) o haslabeli (i=0,...,k).
(i) Every jump-instruction refers to labels < k.
(iii) Only the last instruction ¢ is a halt-instruction.

Each program P gives rise to a procedure: Imagine we have a computer which con-
tains all registers occurring in P and which has been programmed with P. At the be-
ginning of a computation all registers with the possible exception of Rq are empty,
i.e., they contain the empty word, whereas Rq contains a possible input. The com-
putation proceeds stepwise, each step corresponding to the execution of one instruc-
tion of the program. Beginning with the first instruction one proceeds line-by-line
through the program, jumping only as required by a jump-instruction. Whenever a
print-instruction is encountered, the respective content of R is given as an output
(“printed out”). The machine stops when the halt-instruction is reached.

Examples of Programs

2.2. Let A = {|}. We identify the strings (J, |, ||,...,|",... over A with the natural
numbers 0,1,2,...,n,.... The following program Py decides whether an input in
the register Ry is an even number or not: Py successively deletes strokes | from the
string n given as an input in Rq until the empty string [J is obtained. It ascertains
whether 7 is even or odd and prints out (J or | accordingly and then stops.

0 IFRo=0THEN6ELSE 1

1 LETRo=Ro—|

2 IFRo = O THEN 5 ELSE 3
3 LETRyg=Rg—|

4 TFRy = THEN 6 ELSE 1
5 LETRo=Rg+|

6 PRINT

7 HALT

We say that the program P is started with a word € A*, if P begins the computation
with § in Rg and (I in the remaining registers. If P, started with {, eventually reaches
the halt-instruction, we write

P: { — halt;
otherwise we write
P: { — oo
For {,n € A*,
P:{—n

means that P started with { eventually stops, having — in the course of the computa-
tion — given exactly one output, namely 1. In the above example,

Po: n— 0O ifniseven,
Po: n—| ifnisodd.
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2.3. Let A = {ay,...,a,}. For the program P:

0 PRINT

1 LET Ry =Ro+ag

2 IFRy =0 THENOELSEOOR...OR O
3 HALT

we have P: { — oo for all {. If P is started with a word £, P prints out successively
the words &, {ag, {apao, - - ..

Instruction 2 of P has the form

LIFRy=UTHEN L ELSEL'OR...OR L.

In every case such an instruction results in a jump to instruction L'. For the sake of
simplicity we shall in the sequel abbreviate it by

L GOTO L.

2.4. We present a program P for the alphabet A = {ag,a; } such that P: { — £ for
¢ € A*. Started with { in Ry, instructions 0-8 serve to build up { in reverse order
in Ry and Ry, thereby erasing ¢ in Rg. Then {{ is built up in Ry, with the first copy
from R; (instructions 9—15) and the second copy from R (instructions 16-22).

0 IFRy =L THEN9 ELSE 1 OR 5
1 LETR()ZR()—G()

2 LETR; =R;+ag

3 LETRy, =Ry +ap

4 GOTO O

5 LETRy =Rg—ag

6 LETR; =Ry +a

7 LET Ry =Ry +ay

8 GOTO 0

Nel

IFR; =0 THEN 16 ELSE 10 OR 13

10 LETR] :Rl—ao
11 LET Ry = Ry +aq
12 GOTO 9

13 LETR1 =R1—a1

_.
~

LET Ry =Ro+ay

15 GOTO 9

16 IF R, = O THEN 23 ELSE 17 OR 20
17 LET R2 = R2 —da

18 LET Ry = Ro+ap

19 GOTO 16

20 LET R2 = Rz —daj

21 LETRg=Rp+ay

22 GOTO 16

23 PRINT

&)
N

HALT
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As an exercise the reader should write a program P over the alphabet A = {ag,a;,a}
that accomplishes the following:

P: { —halt if { = apapas,

P: { — oo if § £ apapas.
By analogy with the naive definitions in Section 1, we can introduce the exact no-
tions of register-decidability and register-enumerability.
2.5 Definition. Let W C A*.
(a) A program P decides W if for all { € A*,

P: {0 iflew,
P:{—n withn#£0O if{¢w.

(b) W is said to be register-decidable (abbreviated: R-decidable) if there is a pro-
gram that decides W.

Example 2.2 shows that the set of even natural numbers is R-decidable.
2.6 Definition. Let W C A*.

(a) A program P enumerates W, if P, started with [J, prints out exactly the words
in W (in some order, possibly with repetitions).

(b) W is said to be register-enumerable (abbreviated: R-enumerable), if there is a
program that enumerates W.

If P enumerates an infinite set, then P: [J — oo. By Example 2.3, the set W =
{O,ap,apap, ...} is R-enumerable. The program 0 HALT enumerates the empty
set, as does the program

OLETR; =R +ag
1 GOTO 0
2 HALT

For the sake of completeness, we add the following definition of register-computable
functions.

2.7 Definition. Let A and B be alphabets and F: A* — B*.
(a) A program P over A UB computes F if for all { € A*,

P: {— F(0).

(b) F is said to be register-computable (abbreviated: R-computable) if there is a
program over A UB that computes F.

In this terminology, program P from Example 2.4 computes the function

F: {007(11}* — {(lo,al}* with F(C) = CC
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Definitions 2.5 through 2.7 can easily be extended to n-ary relations and functions.
For example, in order to use a program to compute a binary function, one enters the
two arguments in the first two registers.

Since any program describes a procedure it is clear that every R-decidable set is
decidable, every R-enumerable set is enumerable, and every R-computable function
is computable. Does the converse also hold? In other words, can every procedure
in the intuitive sense be simulated by means of a program? A mathematical treat-
ment of this problem is not possible because the concept of procedure is an intuitive
one, without an exact definition. Nevertheless, in spite of the simple form of the
instructions allowed in register programs, it is widely accepted today that all proce-
dures can indeed be simulated by register programs, and, consequently, that the intu-
itive concepts of decidability, enumerability, and computability coincide with their
mathematically precise R-analogues. This view was first expressed by A. Church?
in 1935 (referring to a different but equivalent precise notion of decidability and
enumerability). Therefore, the claim that every procedure can be simulated by a
program and, hence, that the concepts of enumerability and decidability coincide
with their precise counterparts, is called Church’s Thesis (sometimes also Church—
Turing Thesis, as Turing independently stated a similar claim in [42]). We mention
two arguments which support this thesis.

Argument 1: Experience. Hitherto it has always been possible to simulate any given
procedure by a register program. In particular, programs in programming languages
such as FORTRAN, C, JAVA, etc. can be rewritten as register programs.

Argument 2: Since 1930 numerous mathematical concepts have been proposed as
precise counterparts to the notion of procedure. Although developed from different
starting points, all these definitions have turned out to be equivalent.

In the literature R-decidable sets and R-computable functions are often called re-
cursive, and R-enumerable sets are called recursively enumerable.

Proofs of R-enumerability or R-decidability often require a considerable amount
of programming work. To avoid getting lost in details, rather than actually writing
down register programs, we shall usually content ourselves with describing proce-
dures intuitively. The following example should help to illustrate this.

2.8. The set of valid Sw.-sentences is R-enumerable.
We accept the procedure described in 1.6 as a proof. —

In the following exercises the critical reader is invited to practice writing programs
for given procedures. The more trusting reader may instead draw upon the experi-
ence of others and rely on Church’s Thesis.

2.9 Exercise. Suppose W,W’ C A*. Show that if W and W' are R-decidable, then
soare A*\W, WNW', and WUW'.

2 Alonzo Church (1903-1995).
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2.10 Exercise. Show: (a) A* is R-enumerable.

(b) If W C A*, then W is R-decidable if and only if W and A*\ W are R-
enumerable.

2.11 Exercise. Suppose W C A*. Show that (i) and (ii) are equivalent.

(i) W is R-enumerable.
(ii) There is a program P such thatP: { - Oif { e W,andP: { — oo if { ¢ W.

2.12 Exercise. A set W C A* is called lexicographically R-enumerable if there is a
program that enumerates W in lexicographic order. Show that W is R-decidable if
and only if W is lexicographically R-enumerable.

2.13 Exercise. Restrict the jump-instruction for register programs to the form
(3) LIFR; = O THEN L' ELSE L”

(If R; contains the empty word go to instruction labeled L’; otherwise go to instruc-
tion labeled L”). Show that there is no register program P over {ag,a; } of this new
kind such that P: { — {{ forall { € {ag,a;}*.

X.3 The Halting Problem for Register Machines

Again we fix an alphabet A = {ay,...,a,}. Our aim is to present a subset of A* that
is not R-decidable. The set will consist of register programs (over A) suitably coded
as words over A.

For this purpose we associate with every program P (over A) a word &p € A*. First
we extend A by new symbols to an alphabet B,

(+) B:=AU{A,B,C,...,X,Y,Z}U{0,1,...,8,9}U{=,+,—,00,8},
and we order B* lexicographically according to the order of letters given in (+). We
represent a program P as a word over B, e.g., the program

0 LETR] = R] —da
1 PRINT
2 HALT

is represented by the word
OLETRI1=R1—-ap§1PRINT§2HALT

If this word is the nth word in the lexicographic ordering on B*, let &p := qg ... ao.
——

n times

Set IT := {&p | P is a program over A}.

The transition from P to &p (i.e., the “numbering” of programs over A with words
in {ap}*) is an example of a Gddel numbering (Godel was the first to apply this
method); and &p is called the Gédel number of P.



X.3 The Halting Problem for Register Machines 159

Clearly, for each P we can effectively (i.e., by means of an algorithm) determine the
corresponding Ep € A*; conversely, given § € A*, we can decide whether it belongs
to IT or not, and if it does we can effectively determine the program P with &p = £.
The corresponding procedures can be programmed for register machines (cf. the
discussion at the end of Section 2). In particular, we have

3.1 Lemma. II is R-decidable. —
The following theorem presents first examples of R-undecidable sets.
3.2 Theorem (Undecidability of the Halting Problem).

(a) The set
IT,, : ={& | Pis aprogram over A and P: &p — halt}

is not R-decidable.
(b) The set
IThay : ={&p | P is a program over A and P: [0 — halt}

is not R-decidable.

Part (b) says that there is no register program that decides the set Iy, Hence, by
Church’s Thesis there is no procedure whatsoever that decides I'ly,. From this we
obtain the following formulation of (b):

There is no procedure that decides for any given program P whether P: [ — halt.

For, if such a procedure 13 did exist, one could use it to decide I, as follows. First,
for a given {, check whether § € IT (cf. Lemma 3.1). If § ¢ IT then § ¢ Iy If
¢ € II, construct the program P for which & = { and then apply ‘B to P.

Proof of Theorem 3.2. (a) Towards a contradiction, suppose that there is a program
Py deciding IT} ;.. Then for all P:

Py : ép—) L, ifP: &p — hallt,

M Po:& — nforsomen #0, ifP:&p — oo,

From this we easily obtain a program P; (see below) such that

P]Zép—)oo, ifPZép—)halt,
Py: ép—)halt, if P: 5p—>°°.

Then the following holds for all programs P:
3) Py: ép — oo iff P: gp — halt.

2)

In particular, if we set P = Py, we have
4) Py: (Sp] — oo iff Py: éPI — hallt,

a contradiction.
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To complete the proof we show how to construct P; from Py: We change Py in such
a way that if Py prints the empty word, the new program P; will not reach the halt
instruction. This is achieved by replacing the last instruction k HALT in Py by

k IFRy =0 THENKELSEk+1OR...OR k+1
k+1 HALT

and all instructions of the form L PRINT by L GOTO k.
(b) To each program P we assign in an effective way a program P such that

P: &p — halt iff Pt:[O— halt,

¥) . :
Q) ie,&p eIl o iff Cpv € Ty

Using a program P™ such that () holds we can prove (b) indirectly as follows:
Suppose that I'ly,y is R-decidable, say by means of the program Py. Then, in contra-
diction to (a), we obtain the following decision procedure for I/, : For an arbitrarily
given { € A* first check whether § € IT (cf. Lemma 3.1). If { ¢ IT, then { ¢ IT, ..
If { € IT, take the program P with Godel number &, i.e., with &p = £, and construct
P™". Using Py, decide whether &p:+ € Iy, On account of (x) one thus obtains an

answer to the question of whether &p € IT] . i.e., whether { € IT}

alt? alt*

It remains to define a program P* satisfying (x). If & = ag...ao, let P* be the
——

. . . n times
program that begins with the lines

0 LET Ry =Ro+ap

n—1 LETRg =Rg+ap

followed by the lines of P with all labels increased by n. When P is started with (]
as input, it first builds up the word &Ep in Rg and then operates in the same way as the
program P applied to &p. Hence () holds. Since we can build the word &p from P in
an effective way, we can also build P* from P in an effective way. a

The reader should note that the only properties of the map P — &p used in the proof
were its injectivity and properties of effectiveness as mentioned before Lemma 3.1.
Therefore the undecidability of the halting problem does not depend on our partic-
ular choice of the Gédel numbering.

Of course, for some programs P it may be easy to determine whether P: [J — halt
or not. But Theorem 3.2 tells us that there cannot exist a procedure which decides
this question “uniformly” for each P. Strictly speaking, Theorem 3.2 only refers to
procedures which can be simulated by register programs. However, we obtain our
preceding formulation if we accept Church’s Thesis. Henceforth we shall tacitly do
this in explanatory remarks.

The following lemma together with Theorem 3.2 shows that ITy,) is an example of
an enumerable set which is not decidable.
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3.3 Lemma. Il is R-enumerable.

Proof. We sketch an enumeration procedure: For n = 1,2,3,... generate the finitely
many programs whose Godel numbers are of length < n. Start each such program
with [J as input, and let each one perform # steps of its computation. To compile the
desired list, note each program that stops. -

Applying Theorem 1.8 (cf. Exercise 2.10(b)), we obtain
3.4 Corollary. A*\ I, is not R-enumerable. B

Before discussing questions about decidability in first-order and second-order logic
in the next sections, we briefly consider the aspect of costs of computations, which
we will not get into otherwise.

Propositional formulas are built up from propositional variables py, p1, ... using =
and V (in the same way as quantifier-free first-order formulas are built up from
atomic formulas). A propositional formula is said to be satisfiable if one can assign
the truth values T (true) and F (false)) to the occurring propositional variables in
such a way that the truth value T is assigned to the whole formula if we interpret —
and V in the usual way. (We will give a precise definition of propositional logic in
Section X1.4.)

The set SAT of satisfiable propositional formulas « is decidable: Suppose the pro-
positional variables occurring in ¢ are among py, ..., p,. Then check systematically
for all by,...,b, € {T,F} whether ¢ is assigned the truth value 7 if we assign
b; to p; (for i < n). If a contains, say, 1000 propositional variables then, in the
worst case, we have to check this for 2190 tuples. Not even with the fastest existent
computers is this possible within a human life time. Therefore, even for “relatively
short” inputs it may be impossible to carry out a decision procedure. Thus it is
conceivable that a set is “theoretically”, but not “practically” decidable, since all
decision procedures are too costly, e.g., they need too many computation steps or too
much memory (in the registers). Questions of this kind are the subject of complexity
theory (cf. [12, 22, 32]). We give a first impression by considering the number of
computation steps, the so-called time complexity. Let t: N — N. Then a register
program P over A is said to be t-bounded in time if for all n € N the following
holds: If { € A* is a word of length n, then, started with {, the program P stops after
at most #(n) many steps. We say that a program is polynomially bounded in time if
it is 7-bounded in time for a suitable polynomial 7 (with coefficients in the natural
numbers). Let P be the class of R-decidable sets that can be decided by a program
polynomially bounded in time.

Experience shows that, as far as problems in practical applications are concerned
(or problems that arise naturally in mathematics), the existence of a procedure
executable in practice corresponds to the existence of a procedure polynomially
bounded in time. Therefore, one often identifies the “practically decidable” sets
with the sets in P. This “Church’s Thesis of practical computability” (also called
Thesis of Cobham and Edmonds) can only be justified to a certain extent: note, for
example, that no restriction is imposed on the degree of the polynomials.
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The set IT of register programs lies in P; on the other hand it is not known whether
the set SAT lies in P. It is conjectured that SAT ¢ P.

The set SAT lies in NP, the class of sets accepted by so-called non-deterministic
register programs polynomially bounded in time. In non-deterministic programs in-
structions of the form

L GOTO 3

are allowed in addition to the usual instructions. Here 3 is a nonempty finite set of la-
bels. To follow instructions of this kind the machine chooses “non-deterministically”
a label from 3 and jumps to the corresponding instruction. So, by successively
choosing appropriate labels, non-deterministic machines are able to “guess” words,
e.g., a satisfying assignment for a propositional formula. In this way one shows that
SAT € NP. From the exact definitions it follows immediately that P C NP. Fur-
thermore, it can be shown that SAT ¢ P if and only if P # NP. If one could show
that SAT ¢ P, then P # NP would be proved, and the so-called “P = NP”-problem,
the probably most well-known unsolved problem in theoretical computer science,
would be settled in the expected way.

The proof of Theorem 3.2(a) is based on a so-called “diagonal argument”. The fol-
lowing exercise contains an abstract version of this method of proof.

3.5 Exercise. (a) Suppose M is a nonempty set and R C M x M is a binary relation
over M. Fora € M let M, := {b € M | Rab}. Show that the set D := {b € M |
not Rbb} (the complement of the diagonal) is different from each M,.

(b) Let M = A* for some alphabet A = {ay,...,a,} and define R C M x M by

REn :iff & is the Godel number of a program enumerating a set
in which 7 occurs.

Show that D := {n | not RN} is not R-enumerable. Thus the set of programs
that do not print their own Godel number is not enumerable.

(c) Again, let M = A* for A = {ay,...,a,} and R C M x M be defined by

REN :iff & is not the Godel number of a program P with
P: n — halt.

Show that all R-decidable subsets of A* (= M) occur among the sets Mg and
that D = IT,,. (Here My and D are defined as in (a).)

3.6 Exercise. Show for a given alphabet A that the set
{&p | P is a program over A and P: { — halt for some { € A*}

is not R-decidable.
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X.4 The Undecidability of First-Order Logic

The set of valid first-order S..-sentences is enumerable (cf. 1.6). On the other hand
we now show:

4.1 Theorem on the Undecidability of First-Order Logic. The set of valid S.-
sentences, i.e., the set {@ € Lg"" | = @}, is not R-decidable.

Thus there is no procedure that decides, for an arbitrary S..-sentence, whether it is
valid or not.

Proof. We adopt the notation of Section 3 with A = {|}. Again we identify words
over A with natural numbers. By Theorem 3.2 we know that the set

Iy = {&p | P is a program over A and P: [J — halt}

is not R-decidable. We shall assign to every program P, in an effective way, an Se.-
sentence ¢@p such that

(%) Eoep iff P:0— halt.

Then we are done: If the set {¢ € Lg"" | E ¢} were decidable, we would have the
following decision procedure for ITy, (a contradiction): Given § € A*, first check
whether ( is of the form &p. If so, take P, construct @p, and decide whether @p is
valid. By () we obtain an answer to the question of whether P: 00 — halt, i.e.,
whether gp € Il

The following considerations are preparatory to the definition of the sentences @p.
Let P be a program with instructions Q,..., 0. Denote by n the smallest num-
ber such that the registers occurring in P are among Ry, ...,R,. An (n+ 2)-tuple
(L,my,...,my,) of natural numbers with L < k is called a configuration of P. We say
that (L, mo,...,my,) is the configuration of P after s steps if P, started with [J, runs
for at least s steps, and if after s steps instruction L is to be executed next, while the
numbers my, . ..,m, are in Ry, ..., R,, respectively. In particular, (0,0,...,0) is the
configuration of P after O steps (the initial configuration of P). Since only oy is a
halt-instruction we have
M P: O — halt iff for suitabl'e $,mp, ..., my, (k,mo,...,my,) is the
configuration of P after s steps.

If P: O — halt, we let sp be the number of steps carried out by P until it arrives at
the halt-instruction.

Finally we choose symbols R ((n+ 3)-ary), < (binary), f (unary), and ¢ € S. (e.g.,
RS*S,R(Z),fO1 and ¢p), and set S := {R, <, f,c}. With the program P we associate an
S-structure Ap within which we shall describe how P operates. We distinguish two
cases:

Case I: P: [ — . We set Ap := N and interpret < by the usual ordering on N,
the constant ¢ by 0, the function symbol f by the successor function, and R by
{(s,L,mp,...,my) | (Lymg,...,m,) is the configuration of P after s steps}.
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Case 2: P: [0 — halt. We set e := max{k,sp} and Ap := {0,...,e} and interpret
< by the usual ordering on Ap and ¢ by 0; furthermore we define the function f4p
by f4(m) =m+ 1 for m < e and f4?(e) = e, and set R'? := {(s,L,my,...,m,) |
(L,m,...,m,) is the configuration of P after s steps}. Note that R*" is indeed
a relation on Ap, since at each step P increases the contents of each register by
at most 1, and hence we have my,...,m, < sp < e as well as L < k < e for all
(s,L,my,...,m,) € RA?.

Now we provide an S-sentence Yp that, in a suitable way, describes the operations
of P on [J. We abbreviate ¢, fc, ffc,... by 0,1,2..., respectively. In reading wp one
should check that the following holds:

(2) () Ap = yp.
(b) If 2 is an S-structure with 2L = yp and (L,mo, . ..,m,) is the configuration

2L —A _
of P after s steps, then the elements 0,1 ,...,5%

2 = RsLimy, . . . , 7y >

are pairwise distinct and

We set

Vp = Yo ARD...OA Y A AV, .

Here the sentence yy says that < is an ordering whose first element is c, that x < fx
holds for every x and that fx is the immediate successor of x in case x is not the last
element:

Yp = “< is an ordering” AVx(c < xVe =x) AVx(x < fxVx = fx)
AVx(Fyx <y — (x < fxAVz(x <z —= (fx <zV fx=2)))).

For a = ap,...,04_1, the sentence Y, describes the operation corresponding to
instruction ¢. The formula vy, is defined as follows:

If o is an add-instruction, say L LET R; = R;+ |, then let

Vo = VaVyo...Vyu(RxLyg ...y, —
(x < fXARFXLA-1y0 .. yio1 fyiVis1---Yn))-
If & is the instruction L LET R; = R;— |, then let
Vo = VY0 .. . Vyu(RxLyo . ..yn — (x < fxA((yi =OARFXL+ 1yg...yn)
V (=yi = 0A3u(fu=yi ARFXL+1y0. .. yi1uyis1---yn)))))-
If « is the instruction L IF R; = O THEN L’ ELSE L, then let

Wy = VaVyg ... Vy, (RxLyo . ..y, —
(x < fxAN((yi =0ARSxL'yo...y2)V (=yi =0ARFxLoyo ... yn))))-

=2 ~ - . .
3 We shall need the fact that 0, ..., 5% are distinct only in the next section.
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Finally for oc = L PRINT let
Vo = VaVyg ... Vyu(RxLyg ... vy — (x < fx ARfXL+1yg...4)).

Now we set
3) @p == Wp — xIyg... Iy, Rxkyo ... V.
Then @p is an S-sentence that satisfies (%), i.e.,

Eep iff P:0O— halt

Indeed, suppose first that @p is valid. Then in particular 2p = @p. Since by (2)(a)
2Ap = wp, we have Ap = IxTyp... Iy, Rxkyg ...y, (cf. (3)). Therefore for suitable
s,mg, . ..,my, the tuple (k,mo,...,m,) is the configuration of P after s steps. Now,
the equivalence (1) yields P: [J — halt.

Conversely, if P: O — halt, then for suitable s,my, ..., m,, the tuple (k, mo,...,m,)
is the configuration of P after s steps. Hence @p is valid, because if 21 is an S-structure
such that 2( = yp, then 2 |= Rskmyg . . .7, by (2)(b) and hence 2 = @p. B

The undecidability of first-order logic was proved in 1936 by Church (in [9]) and
Turing (in [42]). Thus the so-called Entscheidungsproblem, the question on the de-
cidability of valid first-order sentences, was solved negatively. In traditional logic
the problem of finding a decision procedure for “logically true propositions” had
already been considered centuries before (Llull, Leibniz). Theorem 4.1 shows that
such a search was bound to fail.

4.2 Exercise. Prove (2)(b) by induction on s.
4.3 Exercise. Show that the set of satisfiable S..-sentences is not R-enumerable.
4.4 Exercise. Show that the set

{(v,x) |y, x € L(S)"" do not contain the equality symbol, =y — ¥, ¥ is a uni-

versal Horn sentence, and ¥ is of the form dxj ... dx,xo with atomic g}

is not R-decidable. Hint: In the proof of Theorem 4.1 leave out the ordering < and
formalize in such a way that the yp become universal Horn sentences.

X.5 Trakhtenbrot’s Theorem and the Incompleteness of
Second-Order Logic

The object of this section is to prove that the set of valid second-order S..-sentences
is not enumerable, and to briefly discuss the methodological consequences. A useful
tool in this context will be Trakhtenbrot’s Theorem, which says that the set of first-
order sentences valid in all finite structures is not enumerable.



166 X Computability and Its Limitations

5.1 Definition. (a) An S-sentence ¢ is said to be fin-satisfiable if there is a finite
S-structure that satisfies ¢.
(b) An S-sentence @ is said to be fin-valid if every finite S-structure satisfies ¢.

For § = S.. we set
P = {p e Lg"" | @ is fin-satisfiable} and Py, :={@ € Lg‘” | @ is fin-valid}.

As an example, we note that over a finite domain any injective function is also
surjective; therefore the sentence ¢ := VaxVy(fx= fy > x=y — VxJyx = fy) is fin-
valid; however, ¢ is not valid. The sentence —¢ is satisfiable but not fin-satisfiable.

5.2 Lemma. P is R-enumerable.

Proof. First we describe a procedure that decides, for every S..-sentence ¢ and ev-
ery n, whether or not ¢ is satisfiable over a domain with n + 1 elements. Suppose ¢
and n are given. Since for every structure with n 4 1 elements there is an isomor-
phic structure with domain {0,...,n}, we only need to check (by the Isomorphism
Lemma) whether ¢ is satisfiable over {0,...,n}. Let S be the (finite!) set of symbols

occurring in ¢ and 2y, . .., 2l the finitely many S-structures with domain {0,...,n}
(cf. Exercise II1.1.5). We can describe the 2; explicitly by means of finite tables for
the relations, functions, and constants. The sentence ¢ is satisfiable over {0,...,n}

if and only if 2(; |= ¢ for some i < k. Thus we only need to test whether 2/; = ¢ for
i=0,...,k. These tests can be reduced to questions that can be answered from the
respective tables as follows: If ¢ = -y, then the problem “Q; = ¢?” can be reduced
to the question of whether 2(; = w. If ¢ = (yV x), then similarly the problem can
be reduced to the questions of whether ; = y and whether 2(; = x. If ¢ = Iy,

we reduce to the questions “Q; = y[0]?”,..., “2; = w[n]?”. Continuing in this way
we eventually arrive at questions of the form “Q; |= y[no,...,n,—1]?” for atomic
formulas ¥(vo,...,v,—1) and ng,...,n,—1 < n. Clearly these can be answered ef-

fectively by inspecting the tables for 2.

Now @ can be enumerated as follows: For m = 0,1,2,... generate the (finitely
many) words over A that are S.-sentences of length < m, and use the procedure
just described to decide, for n = 0, ..., m, whether they are satisfiable over a domain
with n+ 1 elements. List the sentences where this is the case. —

5.3 Theorem. Py is not R-decidable.

Proof. For a program P over A = {|}, let 2p and yp be defined as in the proof of
Theorem 4.1. We show

(%) P: 00— halt iff wp € Py.

This proves the theorem; for otherwise, using (), one could obtain from a decision
procedure for P a procedure to decide whether P: [J— halt (cf. the corresponding
argument in the proof of Theorem 4.1).
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Proof of (x): If P: O — halt, then 2p is finite and is a model of yp. Hence yp € Px;.

Conversely, if P: [J — oo, then by (2)(b) in the proof of 4.1, the elements 62‘ , TQ[, .
are pairwise distinct in every model 2 of yp. Thus every model of yp is infinite,
and hence yp ¢ Dy. -

From Lemma 5.2 and Lemma 5.3 we now obtain

5.4 Trakhtenbrot’s Theorem. The set Py, of first-order Se-sentences valid in all
finite structures is not R-enumerable.

Proof. Clearly, for ¢ € L3,
(%) P EL\ Dy iff - € Dy

For a contradiction assume that @y, is R-enumerable. Then, using (), one can enu-
merate ng \ @: one simply starts an enumeration procedure for @y, and whenever
it lists a sentence —¢, one writes down ¢. This would lead to a decision procedure
for @y (in contradiction to Theorem 5.3) as follows: For a string { over Ay, de-
cide first whether { is an S..-sentence. If so, start enumeration procedures for Py
(cf. Lemma 5.2) and for Lg” \ Dfs, and let both procedures continue until one of
them yields { as output. Thus one obtains a decision whether § € &x. B

5.5 Theorem (Incompleteness of Second-Order Logic). The set of valid second-
order Sw-sentences is not R-enumerable.

Proof. Let @g, be a second-order S..-sentence with the property that for all 2,
A= @, iff  Ais finite

(cf. Remark IX.1.3(6)). Then for all first-order (!) S..-sentences ¢,

(%) Qe Py iff = @i — 0.

Now, if the set of valid second-order S..-sentences is R-enumerable, then one can
start an enumeration procedure for this set, and each time it yields a sentence of the
form @g, — @, where ¢ € Lg‘”, one adds ¢ to the list. In this way, by (x), we obtain
an enumeration of @y, in contradiction to Trakhtenbrot’s Theorem. —

Theorem 5.5 is due to Godel. It is a stronger version of a result obtained in Sec-
tion IX.1. There we concluded from the failure of the Compactness Theorem for
second-order logic .7y that there cannot be any correct and complete proof calculus
for 4. In other words, there is no calculus whose derivability relation I satisfies

For all Z-sentences ¢ and all sets @ of Zj-sentences,

@ e iff oro.

However, (+) leaves open the question of whether there is a calculus that satisfies (+)
for @ = 0, that is, whether there is a correct calculus in which all valid second-
order sentences are derivable. Now Theorem 5.5 shows that in this sense second-
order logic is also incomplete: If such a calculus existed, one could apply its rules
systematically to generate all possible derivations and hence all valid second-order
sentences (cf. the proof of 1.6).
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At this point we see how useful it has been to introduce the notion of enumerability:
By employing this notion, we were relieved of the task of giving precise defini-
tions for the notions of derivation rule and calculus, but were nevertheless able to
conclude that there is no adequate proof calculus for the second-order sentences.

The above argument for Theorem 5.5 is based on the fact that the finite sets are
characterizable in second-order logic. Thus, it can also be applied to weak second-
order logic (cf. Exercise IX.1.7).

For the sake of simplicity, in the last two sections we have referred to the symbol
set Se although we have actually needed only a few symbols from S.. It should
be clear that the results are also valid for other symbol sets S that are effectively
given, as is Sw, and contain symbols which allow for the description of the exe-
cution of programs. One can even show that it is sufficient for S to contain only
one binary relation symbol. Moreover, the incompleteness of second-order logic al-
ready holds for S = @ (cf. Exercise 5.6). On the other hand, the set of valid first-order
S-sentences is decidable provided S contains only unary relation symbols (cf. Exer-
cise XI1.3.18(b)).

5.6 Exercise. Show: The set of valid second-order 0-sentences is not R-enumer-
able.

X.6 Theories and Decidability

In this section we investigate several theories, especially with regard to enumerabil-
ity and decidability. Among the results obtained is the undecidability of arithmetic.
We shall always assume that the symbol sets considered are effectively given.

A. First-Order Theories

6.1 Definition. A set 7' of S-sentences is said to be a theory if it is satisfiable and
closed under consequence (i.e., every S-sentence that follows from 7' already be-
longs to 7).

For an S-structure 2A the set Th(2A) = {@ € Lj | A |= ¢} is a theory, the theory of A
(cf. Definition VI.4.1). The set Th(1) is called (elementary) arithmetic where 1 is
the Sye-structure N = (N, +,-,0,1).

For @ € L3 let = := {@ € Lj | @ |= ¢}. If T is a theory, then T = T, and if @ is
a satisfiable set of S-sentences, then ®F is a theory. We give a few examples.

(1) 0= ={p e Lj| F¢}.

(2) For § = Sg: (elementary) group theory — Thy 1= @g .

(3) For S ={g}: ZFC set theory Thgzpc := ZFCF.

(4) For S =S, (first-order) Peano arithmetic  Thpa 1= @5.
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The axiom system Ppa consists of the Peano axioms given in Exercise I11.7.5, where
the usual induction axiom (a second-order sentence) is replaced by the first-order
“induction axioms” (x) below. The axioms of Ppy are:

Vx—x+1=0 VxVy(x+1=y+1—x=y)
Vxx+0=x VaVyx+(y+1) = (x+y)+1
Yxx-0=0 VxVyx-(y+1)=x-y+x

for all xy,...,%,,y and all ¢ € L5 such that free(¢) C {x1,...,%,,y}
(%) the sentence

1
Vxi ... Vx, (((p% AYy(p — <py%)) — Vy(p).

The structure 91 is a model of Ppp and therefore @5 C Th(N). The induction
schema (%) is a natural substitute for the induction axiom, because it expresses the
induction axiom for properties that are definable in first-order logic. Many theorems
of elementary arithmetic (i.e., sentences in Th(91)) can be derived from ®ps. Nev-
ertheless, it turns out that not all sentences of Th() are derivable from ®pa: in

Corollary 6.10 we shall show that cbpi C Th(M).

6.2 Definition. (a) A theory T is said to be R-axiomatizable if there is an R-
decidable set @ of sentences such that 7 = @F.

(b) A theory T is said to be finitely axiomatizable if there is a finite set @ of sen-
tences such that T = ®F.

Every finitely axiomatizable theory can be axiomatized by means of a single sen-
tence. (Take the conjunction of the axioms.) Every finitely axiomatizable theory is
also R-axiomatizable. The theories Thpsy and Thyzgc are R-axiomatizable, but not
finitely axiomatizable (which we will not show here).

6.3 Theorem. An R-axiomatizable theory is R-enumerable.

Proof. Let T be a theory and let @ be an R-decidable set of S-sentences such that
T = ®F. The sentences of T may be listed as follows: Systematically generate all
derivable sequents and (with a decision procedure for @) check in each case whether
the members of the antecedent belong to @. If so, list the succedent provided it is a
sentence. -

An R-axiomatizable theory T need not necessarily be R-decidable. Examples are
T =0F (for § = S; cf. Theorem 4.1) and T = T (cf. [39]). The situation is differ-
ent, however, if T is complete in the following sense.

6.4 Definition. A theory T C Lg is complete if for every S-sentence ¢ we have
ocTor-pcT.

Th(2() is complete for every structure 2.

6.5 Theorem. (a) Every R-axiomatizable and complete theory is R-decidable.
(b) Every R-enumerable and complete theory is R-decidable.
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Proof. By Theorem 6.3 it is sufficient to prove (b). Let T be an R-enumerable and
complete theory. In order to decide whether a given sentence ¢ belongs to 7', we
use a procedure to enumerate 7', continuing until either ¢ or —¢ has been listed.
Since T is complete, this will eventually be the case. If ¢ is listed, ¢ belongs to T';
if ~¢@ is listed, ¢ does not belong to 7. b

From Theorem 6.5 we obtain the decidability of an axiomatizable theory once we
have proved its completeness. A method for proving completeness will be intro-
duced in Chapter XII. In certain cases one can use the assertion in Exercise 6.7 for
this purpose.

6.6 Exercise. Let T = ®F be a theory, where @ is R-enumerable. Show that T is
R-axiomatizable. Hint: Starting with an enumeration ¢y, ¢y, ... of @, consider the

set {®o, o A @y, ...}

6.7 Exercise. (a) For an at most countable S, let 7 C Lg be a theory having only
infinite models. Further, suppose there is an infinite cardinal k such that any
two models of T of cardinality x are isomorphic. Show that 7' is complete.

(b) Set up a decidable system of axioms for the theory of algebraically closed
fields of a fixed characteristic and use (a) to show its completeness (and hence,
by Theorem 6.5, its decidability).

B. The Undecidability of Arithmetic

In this section we prove the undecidability of arithmetic, i.e., we show that there is
no procedure which decides for every Sy -sentence whether it holds in 1. We shall
use the same method of proof as in showing the undecidability of first-order logic:
we effectively assign to every register program P over A = {|} an S,-sentence @p
such that

NE=ep iff P: 0 — halt

The undecidability of Th(91) then follows immediately from the undecidability of
I,y (cf. Theorem 3.2).

In defining @p we shall make use of a formula yp that, in 91, describes how the
program P operates. The following lemma provides such a formula.

Assume the register program P consists of the instructions ¢y, ..., 0, and let n be
the smallest number such that all registers mentioned in P are among Ry, ...,R,.
Recall (cf. Section 4) that a configuration of P is an (n+ 2)-tuple (L,my,...,my,)
of natural numbers such that L < k. The tuple (L,my,...,m,) stands for a situation
where ¢ is the next instruction to be executed and the contents of the registers
Ro,...,R, are my,...,m,, respectively.

6.8 Lemma. With any given program P one can effectively associate an Sy-formula
xp(Vo, ..., Vant2) such that for all ly, ... ,1,,L,my,...,m, € N the following holds:
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m’:XP[I()v-“aln,L7mOa"'7mn} iff
the program P, beginning with the configuration (0,ly,...,1,), after finitely
many steps reaches the configuration (L,my, ... ,my,).

The proof will be given below. Using yp, we can write down the desired formula @p:
We set
Op = Fvurn .. oo xp(0,. .., 0,6, vir2, . vang2)

Then we have (note that ¢ is the halt-instruction of P):

NE=g@p iff P, beginning with the configuration (0,...,0), after finitely
many steps reaches the configuration (k,my,...,m,) for

some my, ..., My
iff P: 0 — halt.

Thus we have:

6.9 Theorem on the Undecidability of Arithmetic. Arithmetic, that is, the theory
Th(N), is not R-decidable. !

Since Th(91) is complete, using Theorem 6.5, we obtain

6.10 Corollary. Arithmetic, that is, the theory Th(N), is neither R-axiomatizable
nor R-enumerable. In particular, (PI’; C Th(M). =

According to Theorem 6.9 and Corollary 6.10, arithmetic is not amenable to a purely
“mechanical” treatment in the following sense: There is no procedure for deciding
whether any given arithmetical sentence is true, nor is there even a procedure that
lists all true arithmetical sentences. In other words, every procedure that lists only
true arithmetical sentences must necessarily omit some true arithmetical sentences.
Thus, mathematicians will never possess a method for systematically proving all
true arithmetical sentences. In particular, one cannot effectively give a system of
axioms @ C Th() from which all sentences in Th(91) are derivable.

Proof of Lemma 6.8. Let P be given as above. We must find an Sy-formula
Xp(X0, - --1Xn,2,Y0,- .., yn) that says (in 91) that P, beginning with the configuration
(0,xo,---,Xu), proceeds through a series of configurations, ending finally with the
configuration (z,yo,...,ys). That is, xp(xo,...,Xs,2,Y0,---,Vs) should be a formal-
ization of the following statement (1):

(1) “There is an s € N and a sequence Cy, ..., Cs of configurations such that

Co = (0,x0,..-,x1), Cs=1(2,50,---,¥n), and foralli<s: C,'?C,-H.”

Here, “C; ? Cit+1” means that P passes from configuration C; to C;;.; when executing

the instruction addressed in C;.

4Incase @ € Lg‘“, for example, we write ¢ (n, v ) for (p% and ¢(n,m) for ¢ ‘Z) ‘r}r: . Here, as before,

0,1,2,... stand for the S, -terms 0,1,1+1,....
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We form a single sequence from Cy, ...,C; and thus obtain the following formula-
tion (2) of (1):

(2) “There is an s € N and a sequence

((1(), s Ot 1 n2s - A 2) 4 (n4-1) 5+ -9 s (n42) 5+ - - aas-(n+2)+(n+1))’
———

Co C Cs
such that
ap=0, a; =x0,..., Ap+1 = Xpy. - -,
As.(n+2) = %5 s (n42)+1 = Y0y -+ -5 A (n42)+(n+1) = Yn>

and for all i < s:

(@i-(nt2) @i (i) +n01) 3 (A1) (n2) -5 1) (r2) (1))

The principal difficulty in formalizing (2) as a first-order L5 -sentence arises with
the quantifier “there exists a sequence.” We overcome this problem by using natural
numbers as codes for finite sequences. Often one codes a sequence (ao,...,a,) by
the number pgoH -+ p@ 1 where p; denotes the ith prime. However, when using
this code, we would be forced to give an L5 -definition of exponentiation . Since
such a definition is rather involved, we provide another coding where a sequence

(ap,...,a,) is coded by two suitably chosen numbers ¢ and p.
6.11 B-Function Lemma.’> There is a function B: N> — N such that:

(a) For every sequence (ay,...,a,) over N there exist t,p € N such that for all

i<r: B(t,p,i)=a.
(b) The function B is definable in L5, i.e., there is an Sy-formula @ (vo,v1,v2,v3)
such that for all t,p,i,a € N,

N=gplt,p,isal i B, p;i) =a.

Proof. Given (ao,...,a,), we choose a prime p that is larger than ao, ..., a,,r+1
and set

() t:=1-p"+aop' +2p* +aip*+...+(i+1)p* +a;p* ' +...
+(r+1)p* +a,p*

By choice of p the right-hand side is the p-adic representation of ¢.

First, we show that for all i with 0 < i <r,
a=a; iff there are by,b,b; such that
() t =bo+bi((i+1)+ap+byp?),
() (i) a<p,
(iii) bg < by,
(iv) by = p*™ for a suitable m.

5 This nomenclature stems from Godel’s use of B for a function with the properties (a) and (b) of
the lemma.
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The implication from left to right follows immediately from (x) with

bo:=1-p"+ ... +ai_p* ", by :=p*, and

by = (i+2)+aip+...+ap 07"

Conversely, suppose (i)—(iv) hold for by, b, by and let by = pz’”. From (i) we obtain
t =bo+ (i+1)p*" +ap®™+! 4 byp>+2.

Since by < p*", a < p, and i+ 1 < p, and since the p-adic representation of ¢ is
unique, a comparison with (x) yields m =i and a = a;.

Obviously, (iv) from (xx) is equivalent to
(iv)’ by is a square and for all d # 1 with d|b; we have p|d.

We define B(z,p,i) to be the uniquely determined (and hence the smallest) a for
which the right-hand side of (**) (with (iv)’ instead of (iv)) holds. We extend this
definition to arbitrary triples of natural numbers by specifying:

Let (u,q, j) be the smallest a such that there are bg,b;, b, with
(i) u=bo+bi1((j+1)+ag+brg®),
(i) a<gq,
(i) bg < by,
(iv)’ by is a square, and for all d # 1 with d|b; we have g|d.
If no such a exists, let B (u,q,j) = 0.

Then  has the properties required in (a). The definition of  just given leads im-
mediately to an S,-formula @g(vo,v1, v2, v3) defining . So (b) holds as well.

We now return to the proof of Lemma 6.8, that is, to the problem of giving an Sy,-
formula yp, which says that the program P passes in finitely many steps from the
configuration (0, xo, .. .,x,) to the configuration (z,yo,...,y,). As we have seen, this
statement about P is equivalent to statement (2) at the beginning of the proof. We
can formalize (2) with the aid of the formula ¢g from the B-Function Lemma 6.11
in the following way (where we now use s,t, ... to denote variables):

XP (X0 -+« X0, 2,05+ - -5 V) i=
3s3p3t(@p(t, p,0,0) A@g(t,p,1,x0) A . A@g(t, p,n+1,x,)

Nog(t,p,s-(m+2),2) N@g(t,p,s-((R+2)+1),y0) A...

A@g(t,p,s-(n+2)+(n+1),y)

AYi(i < s — YuVug .. Nu,Vu'Vug .. N,
[(@p(t,pi-(R+2),u)\...AN@g(t,p,i-(A+2)+(n+1),u,)
AN@g(t,p,(i+1)-(A+2),u')A...
ANeg(t,p,(i+1)-(n+2)+(n+1),u,))

—“(u, 1, - - -y Uy) ? (' ugy,..up)7])).
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Here “(u,ug, ..., uy,) s (u',uy, ..., u,)” stands for a formula which describes the

2 %n
direct transition from configuration (u,uy,...,u,) to configuration («',u, ..., u,);
such a formula can be obtained as a conjunction Yo A ... A W_1, where y; describes

transitions induced by instruction ¢; of P. For example, if «; is of the form

JLETR; =R, +

s

then we take
Vi=u=j— W =utlhug=ug ANy =ur+1Auy =ur Ao AUy = uy).

Thus a formula yp with the desired properties has been obtained, and the proof of
Lemma 6.8 is completed. -

Finally, we note another consequence of the fact that computations of register ma-
chines can be described in 1.

6.12 Theorem. Letr > 1.

(a) Given an r-ary R-decidable relation Q over N, there is an Sy-formula
©(vo,...,vr—1) such that for all ly,...,l,_1 €N,
Qlo...lr_l lﬁ( m)Z(P(lo,...,l,_l).
(b) Given an R-computable function f: N" — N, there is an Sy-formula
O(vo,...,vr—1,v,) such that for all ly,...,l,_1,l, €N,
f(107"'7lr—1):lr lﬁc m':(P(IOu"'7[r—1u[r)’

and in particular,
NE=Ivolo,.... L 1,v,).

Proof. (a) Suppose r > 1 and let Q be an r-ary R-decidable relation over N.
Let P be a register program that decides Q and let R, be the largest register men-
tioned in P. Without loss of generality, let n > r — 1. Suppose oy, ..., 0, are the
print-instructions in P. Then, choosing )p as in Lemma 6.8, we have for arbitrary
loy.... L1 €N:

Qly,...,l,—1 iff  beginning with the configuration (0,ly,...,l—1,0,...,0),
~——
ntl—r
the program P after finitely many steps reaches a configu—
ration of the form (L;,0,my,...,m,) with 0 <i<m (i.e.,
a print-instruction with the empty word in Rg)
iff  ME vz, ool

xp(lo, -3 lr—1,0,...,0,Lo,0,v,13,...,v2542)
Voo Vxp(Toy. . Ir-1,0,...,0,L,,0,v, 43, ..., V2p12)).

Thus, for ¢(vy,...,v,—1) one can take the formula
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m
3Vﬂ+3 .. -3V2n+2 \/ XP(VO7 s 7V}”*la0a" . aOaLiaOavn+3a s 7V2n+2)-

i=0
(b) We proceed as in (a), noting that
flo,...,I,_1) =1, iff beginning with configuration (0,ly,...,l_1,0,...,0)

the program P after finitely many steps reaches a con-

figuration of the form (L;,l,,my,...,m,) with 0 <i <m.

Hence, the required formula @(vo,...,v,_1,v,) can be chosen as
m
E|Vn+3 oo E|V2n+2 \/ XP(VO, ce ,Vrfl,(), ce ,0,Li,vr,vn+3, S 7Vzn+2). =
i=0

Relations and functions over N that can be described by an Sy-formula as in Theo-
rem 6.12, are said to be arithmetical. Thus 6.12 says that all R-decidable relations
and all R-computable functions over N are arithmetical.

The Theorem on the Undecidability of Arithmetic has been strengthened in the con-
text of Hilbert’s 10th Problem (from a list of problems Hilbert proposed in 1900),
which asked for a procedure that decides the set PIR of polynomials in integer coef-
ficients with integer roots (cf. Exercise 1.11). In 1970 Matiyasevich proved (cf. [30])
that PIR is not R-decidable. Since to every polynomial p with integer coefficients
one can assign effectively an existential S,.-sentence ¢, such that

pePIR iff ¢, €Th(M),®

we obtain that already the set {¢ € Th(N) | ¢ is existential} is undecidable. The
considerations by Matiyasevich show that every R-enumerable subset of N can be
written in the form

{n € N| there are integers zi,. ..,z with p(zi,...,z,) = n},

where p is a polynomial with integer coefficients. Hence, the R-enumerable subsets
of N coincide with the “N-parts” of the ranges of such polynomials.

6.13 Exercise. Let 3 = (Z,+,-,0, 1) be the ring of integers (as Sy-structure). Show
that Th(3) is not R-decidable. Hint: Use the fact that an integer is a natural number
if and only if it is the sum of four squares of integers.

6 For example, to the polynomial p = x +2y?> — 5 one assigns the existential sentence 0, =
Ty (x+2(y-y) =5 V 2(y-y) =x+5) (¢, also takes negative roots into account).
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X.7 Self-Referential Statements and Godel’s Incompleteness
Theorems

In the preceding section we have shown that arithmetic is not R-axiomatizable. Orig-
inally Godel [14] used another method to prove this result. He showed that within
sufficiently strong axiom systems there are self-referential formulas, i.e., formu-
las which make statements about themselves. Such self-referential formulas are the
main theme of this section. We close this section by taking up our original objective
of this chapter and obtain some important results concerning the limitations of the
formal method. With this aim in mind, we shall often conduct the arguments on the
syntactic level.

In the following, we take @ to be a set of S,.-sentences.

7.1 Definition. (a) A relation Q C N is representable in @ if there is an Sy~
formula @ (vy,...,v,—1) such that for all ng,...,n,—; € N:

If Qngy...n,—1, then @+ @(ng,...,n—1);
if not Qng...n,_, then @+ ﬁ(p(no,...,n,_l).

In this case we say that @ (vo,...,v,_1) represents Q in .
(b) A function F': N” — N is representable in @ if there is an S,-formula
¢(vo,...,vr—1,v,) such that for all n,...,n,_1,n, € N:

If F(no,...,n.—1) = n,, then @+ @(ny,...,n_1,n,);
if F(no,...,n—1) #ny, then @ - -@(no,...,n_1,n,);
@37, 0(ng,...,n1,v,).

In this case we say that @ (vo,...,v,_1,v,) represents F in P.

7.2 Lemma. (a) If @ isinconsistent, then every relation over N and every function
over N is representable in P.

(b) If®C P’ C Lg“', then the relations and functions representable in @ are also
representable in P’

(c) Let @ be consistent. If © is R-decidable, then every relation representable in
@ is R-decidable and every function representable in ® is R-computable.

Proof. The assertions (a) and (b) follow immediately from Definition 7.1. We
show (c) for a function F: N — N. Let F be represented in @ by ¢(vg,v1). In
the following way we obtain a procedure to compute F: Let n € N be given. Then
®+ ¢(n,F(n)) and @+ —¢(n,m) for m # F(n); hence by the consistency of @,
we have not @ + @(n,m) for m # F(n). To determine F(n), i.e., to find k with
@ - ¢(n,k), we start an enumeration procedure for {y € Lg‘” | @ F y} and at
the same time produce the sentences ¢(n,0),¢(n,1),¢(n,2),.... As soon as the
enumeration procedure yields a sentence @(n,k), we have found & to be the value
for F(n). a
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We say that @ allows representations if all R-decidable relations and all R-comput-
able functions over N are representable in P.

In a certain sense, & allowing representations says that @ is rich enough to describe
how procedures operate. In the preceding section we have described the execution
of register programs in @ = Th(91). Indeed, we have

7.3 Theorem. Th(N) allows representations.

The proof is immediate from Theorem 6.12 if one notes that for every S,.-sentence ¢
we have M =@ iff Th(MN)F @) and (not N |= ¢ iff Th(N) - —e). =

A closer analysis (not pursued here) of the considerations leading to the proof of
Theorem 6.12 shows that one can describe the execution of register programs al-
ready on the basis of Peano arithmetic, i.e., in ®ps.Thus, one can obtain

7.4 Theorem. Ppp allows representations. =

As an important technical means we assume in the following that an effective coding
of the S,-formulas by natural numbers (a “Godel numbering”) is given, and more-
over, that the Godel numbering is surjective, i.e., that every number is the Godel
number of some formula. We write n? for the Gédel number of ¢.

In this way it is possible to translate statements about formulas into arithmetical
statements. For example, a statement about the derivability of a formula ¢ becomes
an arithmetical statement about the Gédel number of ¢, and this in turn can be
formalized as an Sy-sentence. This idea gives us the key to construct self-referential
formulas.

The way we shall proceed originates from the liar paradox. This paradox amounts
to the fact that the statement

(%) “I am not telling the truth now”

can neither be true nor false; for if it were true, it would have to be false, and if it
were false, it would have to be true.

Note that () makes a statement about itself, and hence is an example of a self-
referential statement. In a first step we consider statements of this kind in general.
We show that within a sufficiently rich system (i.e., in a system which allows repre-
sentations), every property expressible in the system gives rise to a self-referential
sentence; more precisely:

7.5 Fixed Point Theorem. Suppose that ® allows representations. Then, for every
/aS Lf“, there is an Sy -sentence ¢ such that

D @< y(n?).
Intuitively, ¢ says: “I have the property y.”
Proof. Let F: N x N — N be given by
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Flnm) = {n’f(’")7 if n = n for some y € L}

0, otherwise.
Clearly, F is computable, and for y € L* we have
F(n%,m) = nXm),

Since @ allows representations, F' can be represented in @ by a suitable S,,-formula
o (vo,vi,v2). We write x,y, z for vo, vy, va. For given y € Lf“ we set

B :=Vz(a(x,x,2) = y(2)),
@ = Vz(o(nP .nP 2) — w(2)).

Since 8 € L‘f“’ and ¢ = ﬁﬁ, we have F(nP nP) = n® and hence,
(1) @+ a(nf nP n?).
Now we show the claim for ¢ and vy, i.e.,
D+ @+ y(n?).
For the direction from left to right, we have by definition of ¢ that
dU{o}+ amP.nf n®) — y(n?),
by (1) therefore, that @ - ¢ — y(n?).
On the other hand, o represents the function F in @, in particular
@+ 3 za(nf nP 2);
thus by (1),
@ +Vz(a(nf,nf z) » z=n?)
and therefore
@ F y(n?) = Vz(a(nf nf 2) = y(2),

that is,

D y(n?) — 0. -
The following theorem shows that in a system which is rich enough one cannot
speak about the truth of all its statements. Formally, we consider a consistent system
of axioms @ that allows representations. The “true” statements correspond to the
sentences in @~ = {@ € Lg*“ | @ F ¢}, the “false” ones to the sentences ¢ with

- € ®". To say that one can speak of “truth” or “falsity” in @ is to say that "
(more precisely: {n? | ¢ € ®"}) is representable in .

7.6 Lemma. Let @ be consistent and suppose ® allows representations. Then &
is not representable in P.
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Proof. Suppose the assumptions of the lemma hold and let x (vo) represent @ in @.
By the consistency of & we get for an arbitrary o € ng“:

(1) Dt —x(n%) iff not @+ a.

For v := —) we choose, by Theorem 7.5, a “fixed point” ¢ € Lga' such that
(2) D¢« —x(n?).

(Intuitively ¢ says “I am not true.”) But then

Do iff OF-x(@n®) (by(Q2)
iff notd@F¢  (by (1)),

a contradiction. =

Lemma 7.6 has interesting consequences, both on the syntactical level and on the
semantical level. In semantical formulations one usually refers to ®F instead of P
From Lemma 7.6 we obtain Tarski’s Theorem [38] and Godel’s First Incompleteness
Theorem [14].

7.7 Tarski’s Theorem. (a) Suppose P is consistent and allows representations.
Then ®F is not representable in P.
(b) Th(MN) is not representable in Th(N).

Proof. Since @~ = ®F, (a) follows immediately from Lemma 7.6. As Th(D1) is
consistent and allows representations (cf. Theorem 7.3), (b) is a special case of (a).
_|

Tarski’s Theorem is of great significance in the study of semantics. Part (b) can
be formulated succinctly as “there is no truth definition for arithmetic within arith-
metic.”

7.8 Godel’s First Incompleteness Theorem. Let @ be consistent and R-decidable
and suppose @ allows representations. Then there is an Sy-sentence ¢ such that
neither @ = @ nor ® - —¢.

Proof. Suppose that for every S,-sentence ¢, either @ - ¢ or & - —¢. Then @' is
complete and hence R-decidable (cf. Theorem 6.5(a)). Thus, since @ allows repre-
sentations, ®" is representable in &P, a contradiction to Lemma 7.6. =

A refinement of the above argumentation leads to results concerning the consistency
of mathematics. In particular, Gédel’s Second Incompleteness Theorem, which we
shall now derive, shows that the consistency of a sufficiently rich system cannot be
proved using only the means available within the system.

In the following let @ C L(S)"lr be decidable and allow representations.

We choose an effective enumeration of all derivations in the sequent calculus asso-
ciated with S, and define a relation H by

Hnm  iff the mth derivation ends with a sequent of the form
Yo... Vi1 O, where Vo,..., V-1 € @ and n =n".
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Since @ is decidable, so is H, and clearly,
dF ¢ iff thereism € N such that Hn®m.

Since @ allows representations, H can be represented in & by a suitable formula
o (vo,v1) € Lgm. Again we write x,y for vy, v; and set

Derg (x) := Jyn (x,y).

For ¥ = —Derg(x) we choose with Theorem 7.5 a fixed point @ € L3, i.e., an
Sar-sentence @ with

(%) @+ @ + —Derg(n?).
Intuitively ¢ says “I am not provable from @.”
7.9 Lemma. If Con @ (i.e., if § is consistent), then not @ - ¢.

Proof. Suppose @ = ¢ holds. Choose m such that Hn?m. Then @ F ¢y (n?,m), and
so @ - Derg (r?). From (%) we have @ F —¢ and hence, that @ is inconsistent.

Since @ - 0 =0, we have
Con @ iff not®@kH—-0=0.
The S,-sentence
Consisg := —Derg(n =)
thus expresses the consistency of @. Lemma 7.9 may then be formalized as
(%) Consisg — —Derg(n?).

An argument which is in principle simple, though technically rather tedious, could
now be used to show that for (xx) the proof of Lemma 7.9 can be carried out on the
basis of @, i.e., one can show that

(x%%) @ - Consisp — —Derg (n?)

in case @ O Ppyp (and if a sufficiently simple formula @y (x,y) to be used in Derg
has been chosen; cf. Exercise 7.12). Thus we obtain:

7.10 Godel’s Second Incompleteness Theorem. Let @ be consistent and R-decid-
able with @ O Ppp. Then

not @+ Consisg.

Proof. If @ + Consisg then by (x*x) @ = —Derg(n?). Since @ - @ <> —Derg (n?)
(cf. (%)), it would follow that @ I ¢, in contradiction to Lemma 7.9. B

For @ = ®pyp, Godel’s Second Incompleteness Theorem says intuitively that the
consistency of @py cannot be proved on the basis of ®py. This result shows that
Hilbert’s program cannot be carried out in its original form. In particular, this pro-
gram aimed at a consistency proof for dpy with elementary, so-called finitistic
means. The concept “finitistic”, though not defined precisely (cf. [20], I, p. 32), was
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taken in a very narrow sense; in particular it was meant that finitistic proof methods
be carried out on the basis of @py.

The above argument can be transferred to other systems where there is a substitute
for the natural numbers and where R-decidable relations and R-computable func-
tions are representable. In particular, it applies to systems of axioms for set theory
such as ZFC, where one uses the natural numbers as defined in Section VII.3. Then
one can give an {€& }-sentence Consiszgrc, which expresses the consistency of ZFC,
to obtain:

7.11 Theorem. [f Con ZFC, then not ZFC - Consiszgc. —

Since contemporary mathematics can be based on the ZFC axioms, and since “not
ZFC F Consiszrc” says that the consistency of ZFC cannot be proved using only
means available within ZFC, we can formulate Theorem 7.11 as follows: If mathe-
matics is consistent, we cannot prove its consistency by mathematical means.

In a similar way Tarski’s Theorem and Godel’s First Incompleteness Theorem can
also be transferred to axiom systems for set theory. For example, Theorem 7.8 would
then assert that for every decidable and consistent system @ of axioms for set theory
that contains ZFC, there is an {€ }-sentence ¢ such that neither @ - ¢ nor @ - —¢.
Intuitively this means that there is no decidable consistent system of axioms for
mathematics which, for every mathematical statement, allows us to either prove or
disprove it. In this fact an inherent limitation of the axiomatic method is manifested.

With the results of Matiyasevich mentioned at the end of Section 6 we can formu-
late 7.11 in the following form, which is easy to remember: One can write down a
polynomial p in finitely many indeterminates with integer coefficients for which the
following holds: Mathematics is consistent if and only if p has no (integer) root. By
Theorem 7.11 we have therefore: If p has no root, then mathematics cannot prove it.

7.12 Exercise. For the (effectively given) symbol set S, fix a Godel numbering of
the S-formulas; let n? be the Godel number of @. Furthermore, for n € N, let n be a
variable free S-term.

For @ C Lg let the S-formula der(vg) (“vy is derivable from @) satisfy the so-called
Lob axioms, i.e., for arbitrary ¢,y € L5,
(L1) If @+ ¢, then P I der(n?);
(L2) @+ (der(n?) Ader(n ‘P_””)) — der(n¥));
(L3) @ F (der(n?) — der(nder@®)),
Show: If @ is consistent and if there is an S-sentence @ such that
@ = (@ > ~der(n?)),

then not @ - —~der(n"%=2).
Hint: Show that, if (L1), (L2), (L3) hold for all ¢, y € LS, then also
 ((der(n?) Ader(n?)) — der(n'®"¥))) and @ F (der(n®) — der(n"%)).
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X.8 Decidability of Presburger Arithmetic

Theorem 6.9 on the undecidability of (first-order) arithmetic motivates the ques-
tion of whether we obtain a decidable fragment of arithmetic when we remove
addition or multiplication. In this section we show that when multiplication is re-
moved we get a decidable theory, i.e., that Th(N,+,0,1), the first-order theory of
the structure (N, +,0, 1), is decidable. The result goes back to Presburger’ (1929);
so Th(N,+,0,1) is called Presburger arithmetic. When addition is removed from
first-order arithmetic one obtains Th(N, -, 1), the first-order theory of multiplication.
Skolem (1930) showed that this theory is also decidable; so Th(N,-, 1) is called
Skolem arithmetic.

In (N,+,0,1) one can, for example, express the (true) sentence “for every number
x we have that x or x+ 1 is even” in first-order logic by

Vx(Iyx=y+yVIyx+1=y+y).

In the theory of addition, general multiplication is not available but multiplication
by a fixed natural number is: One can write 2-x as x+x, 3-x as x +x+x, etc. In
general we indicate the n-fold sum of x by nx. A natural number m is representable
by the m-fold sum of the term 1, denoted by m; then 0 is the term 0 and 1 the term 1.
A {+,0,1}-term ¢(x1,...,x,) can be written (by collecting the summands x; and the
summands 1, discarding the terms 0) in the form

mo+mix) +...+myx,.

For every k > 1 one can write the k-fold sum of ¢ — denoted henceforth by kr —

as kmg + kmx) + ... + kmyx,. Whenever we say that a term 7(xj,...,x,) “can be
written as”, “is presentable as” or “can be transformed into” the term ¢/ (x,...,x,),
we mean that for all my,...,m,,

(0D ] = OO ).

We use similar wording with the corresponding meaning for formulas.

For formalizations we also have the <-relation and the <-relation at our disposal,
because x < y can be defined by Iz(x+ 1 +z=y) andx < yby x < yVx=y. Also
for fixed k > 1 the divisibility of x by k is expressible, namely as Jy x = ky. More
generally, for k > 1 the relation =; with

X1 = xp iff  x; and x have the same remainder when divided by &k

can be defined by a disjunction over the remainders r =0,... ,k— 1:

7 Mojzesz Presburger (1904—1943).
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= = 8
\/re[O,k—l] (E|y1 X1 =ky1 +rAIyax =kyr +I‘) .

For a later purpose we note the following fact on the congruences =:
8.1 Remark. For eachm > 1 we have ny = ny iff mny =, mny.

We now extend the symbol set {+,0,1} of Presburger arithmetic by adding <
and =, for all £ > 2, obtaining

St ={+,0,1,<}U{=(| k>2}.
Correspondingly, let 91, be the S, -structure’
m+ = (N7+707 1, <,=2,=3,.. )

Rather than showing the decidability of Presburger arithmetic directly, we pro-
ceed via the decidability of Th(91,). The reason is that Th()1;) admits effective
quantifier elimination in the sense that for every Sy-formula ¢@(xi,...,x,) one can
construct a quantifier-free S;-formula ¢@’(x1,...,x,) that over 91, is equivalent to
©(x1,...,x,); in particular, for every S -sentence ¢ there is an equivalent quantifier-
free S -sentence ¢’. As we shall see, there is an algorithm that for each such sen-
tence ¢’ decides whether it belongs to Th(91,.). Altogether one obtains a decision

procedure for Th(91) and thus also a decision procedure for Presburger arithmetic
Th(N,+,0,1).

8.2 Theorem on Quantifier Elimination in Th(91..). For every S-formula
Q(x1,...,%,) one can construct a quantifier-free S -formula @'(xy,...,x,) such that

Th(N,) = Vg ...Vxn((p(xl,...,xn) YRS (p'(xl,...,xn)).

Presburger arithmetic itself does not admit quantifier elimination. Following Exer-
cise 8.8, the {+,0, 1 }-formula Jyx = y+y is an example for which a quantifier-free
{+,0, 1}-formula does not exist that is equivalent in (N,+,0,1); in 9, the S, -
formula x =; 0 serves this purpose.

Before showing Theorem 8.2 we infer the consequence we stated: To an S -sentence
@ we can now associate an equivalent quantifier-free S, -sentence ¢/, i.e., a Boolean
combination of variable-free atomic formulas. These are of the form s =¢, s <1,
s =i t, where each s and ¢ is a sum of the constants 0 and 1, hence presentable in
the form m. For each formula of this form (for example, 17 =5, 5 <17, 2 =3 5)
and hence for ¢’ the satisfaction in 1., i.e., whether it belongs to Th(91,), can be
checked effectively. Thus, invoking Theorem 8.2, we obtain the desired decidability
result:

8 In this section, for natural numbers m and [ let [m, 1] := {m,m+1,...,1}.
9 For better legibility we do not distinguish between the symbols +,0, 1, <,=,=3,... and their
interpretations over N.
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8.3 Presburger’s Theorem. The theory Th(9.) is R-decidable, and hence so is
Presburger arithmetic Th(N,+,0,1).

The procedure of quantifier elimination used for the proof of Theorem 8.2 essen-
tially relies on three simple facts which we shortly present in the statements (a)—(c)
of Remark 8.4 below, illustrating each with an example. Then we shall give general
formulations of these facts in Lemma 8.5, Lemma 8.6, and Lemma 8.7.

8.4 Remark. (a) Negations of atomic formulas can be expressed as disjunctions
of atomic formulas. For instance, the formula — x =3 0 can be rewritten as
x=31Vx=32.

(b) An existential quantifier in front of inequalities can be eliminated; for example,
we can write 3z(x < z Az <) as the quantifier-free formula x+ 1 < y (since it
suffices that y is greater at least by two than x).

(c) Finally, existential quantifiers in front of conditions with congruences can be
eliminated. As an example consider the formula

Q:=Tz(x<zAz=31rAz<Yy).

The existence of a number > m with remainder r modulo 3 is equivalent to the
existence of such a number already in the interval [m+1,...,m+3]. So @ is
equivalent over N4 to the quantifier-free formula

x4+ 1=3rAx+1<y)VE+2=3rAx+2<y)V(x+3=3rAx+3<y).

We use these remarks to reach a decision whether the S -sentence
(%) Vx(x=,0Vx+1=,0)

is true in 14 or not. In the subsequent transformations of this sentence we always
proceed to equivalent sentences.

First we replace the universal quantifier by an existential quantifier and two nega-
tions, obtaining
—Elxﬂ(x = 0Vx+1= 0).

Since = (¢ V y) <> (=@ A —y) we can proceed to
—Ax(—x=0A~w+1=,0).

With x =; 1 in place of -x =, 0 and x+ 1 =, 1 in place of —x+ 1 =, 0 (cf. (a)) we
obtain
—Elx(x = IAx+1=, 1).

Now we eliminate, as described in (c) above, the existential quantifier in front of the
two congruences and obtain

(0= 1A04+1= 1)V(1=1A1+1=,1)).
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In each of the two conjunctions one member is false, so the disjunction is false and
its negation true. Thus () is true in 9.

The following lemmas contain the stated more general formulations of (a), (b), and
(c). They form the core of the proof of Theorem 8.2 that we shall give afterwards.

8.5 Lemma. The negation of an atomic S-formula over M. can be written as a
disjunction of atomic S -formulas.

Proof. The negation of an atomic S -formula is of one of the forms -~ s=¢, ~ s <t,
or = s = ¢, in each case with S, -terms s and 7. As equivalent formulas without
negation we can take

—s<tVt<sfor-s=t,
—s=tVt<sfor-s<t,
- s=pt+1Vs=t+2V.. . Vs=ct+ (k—1) for ~s = 1. -

In the sequel, we denote by A;x; conjunctions of the form A;c; x; where [ is a finite
nonempty set.

In the following lemma the existential quantifier in a formula Jzy is eliminated if y
is a conjunction of inequalities of a certain form.

8.6 Lemma. There is an algorithm that assigns to every S -formula of the form

(0) Fo(Aisi <si+z ANt +2<1))
with z-free S-terms 'O s;, shtj, t} a quantifier-free Sy -formula with no new variables
which is equivalent to it in N. Analogously this holds for formulas of the form
Fz(Aisi < si+z2) and 3z(\jt; +z < t)).

Proof. We show that () is equivalent in 91 to the formula
(0) Nt <ti N Nijsi+ti+1<tj+s].

(0) holding in 9% amounts to the following claim: There is z € N that is greater
than all s; — s/ and smaller than all 7; — t;.; note that the numbers s; — s} and #; — t}
may be negative. This means, as is easily seen, that for all j we have t; — t} >0 and
that for all i, j we have s; —s; < #; — ¢ — 1. This in turn says that (o) holds in 9.

For a formula Hz(/\is,- <sh+ z) the equation 0 = 0 serves the purpose, for the for-
mula 3z(A;#}+z < t;) one can take At} <1;. .

In the concluding lemma we look at the elimination of an existential quantifier where
also congruences for possibly different moduli may occur.

8.7 Lemma. There is an algorithm that assigns to every S -formula of the form

(+) F(Nisi < sj+z AN +2 <t NN +2 =g, up)

10 A term ¢, respectively a formula @, is called z-free if the variable z does not occur in it.
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with z-free S.-terms s;,s;,tj,t;,ur,u; a quantifier-free S -formula equivalent to it
in Ny in which no new variables occur. Analogously this holds when there are no
inequalities of the first or the second type or when inequalities do not occur at all.

Proof. We start with a remark concerning the formula A, u) 4z =, u; in (4). Let K
be the smallest common multiple of the k;. Then any ) 4+ z =, u; is equivalent
to u) + (z+K) =, w;, and we have the following: For all m: 3z/\;u) +z =y, u; is
equivalent to (\ju; + (m+0) =, u;) V ...V (A\ju;+ (m+(K—1)) =, uy).

Now we prove the lemma: The formula in (+) holds iff

- N\;(t; <t)) is true,
— a natural number z exists such that, informally speaking, the maximum of the
numbers s; — sf is smaller than z, and z in turn is smaller than the minimum of

the numbers ¢; — tﬁ, and

— the conguences A\; u; +z =y, u; are satisfied.

We proceed by distinguishing the two cases /\;s; < s} and \/;s; > s!. In the first case
the maximum of the s; — s§ is < 0, in the second case it is > 0. We present the desired
formula in the form A (¢} <1;) A (A;si < si— Bi) A(Visi > s; — B). In the first
case we use the above remark for m = 0 and put

pr:= \/re[O,K—l](/\jt} <t A\ =g w);
in the second case we choose as m the maximum of the s; — sf and let
Bri=V gy N\ lsi—Sitr 1<ty A N g +si—si+r =y ),
more precisely:

Bo= Vg g NG 1 <ty 4547 =5 )
ij /

The additional claim of the lemma for the special cases of (+) is proved similarly.

_|
Proof of Theorem 8.2 Let ¢(x1,...,x,) be an S;-formula. We show how to trans-
form @(xy,...,x,) into a quantifier-free S -formula ¢’ (xy,...,x,) equivalent to it in

.. In the following we write X for x1,...,x,.

For quantifier-free ¢(x) nothing is to be done. So assume that quantifiers occur
in @(x). We replace the universal quantifications Vy by —3y— and ensure by renam-
ing bound variables that the quantified variables y are distinct from x, ..., x;,.

Now let 3zy/(X,z) be the first subformula of ¢(X) which starts with 3 and such that
y(x,z) is quantifier-free. It suffices to construct a quantifier-free S -formula y/(X)
equivalent to 3zy/(%,z) in N, By iterating this process we then reach the desired
quantifier-free formula ¢’ (x).
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By repeatedly applying the equivalence of —(x; A x2) and (—x; V —x2), and of
=(x1V x2) and (—x1 A —x2), we ensure that in y(X,z) the negation symbol only
occurs in front of atomic formulas. Using Lemma 8.5, negated atomic formulas are
replaced by disjunctions of atomic formulas. Thus in y(X,z) the negation symbol
does not occur anymore. Using Exercise 8.10, we transform y/(%,z) into a disjunc-
tion of conjunctions of atomic formulas. Since existential quantifier and disjunction
are interchangeable, we can put 3zy/(X, z) into the form (3zy; (¥,2) V...V 3z (X, 2))
where the x;(¥,z) are conjunctions of atomic S -formulas. Now it suffices to look
at the individual formulas 3zy(X,z). So consider such a formula

Fz(e1 (X, 2) A ... Ag(X,2))

with atomic formulas &;(,z) which are of the form s =7 or s < f or s = ¢. The terms
that are not z-free can be written as

z-free term +mz;

if such a term is already of the form mz, we write it as 0+ mz.

If a formula & (¥,z) is now of the form
s+mz=t+m'z, resp. s+mz<t-+m'z, resp. s+mz= t+m'z
and, for example, m < m’, we replace &(x,z) by
s=t+(m —m)z, resp. s<t+(m' —m)z, resp. t+(m —m)z=s

(so that in view of Lemma 8.7 we put the z in congruences to the left-hand side). If
m = m’ we replace &(X,z) by

s=t, resp. s<t, resp. S =if.

We place the z-free formulas &;(X,z) as members of a conjunction in front of the ex-
istential quantifier 3z, thereby preserving the equivalence in 91... If these are already
all the formulas €;(X,z), we have reached a quantifier-free S -formula equivalent to
Jz(e1(X,2) A... A g(X,z)) in DNy. Otherwise we have arranged that in each of the
remaining &;(¥,z) the variable z occurs on precisely one side, which is of the form
t + m;z with z-free t.

We now arrange for a single multiple of z to appear instead of the m;z’s. For this
purpose let M be the smallest common multiple of the m;. We rewrite &(X,z), for
example of the form

s+miz=t, resp. s <t-+m;z, resp. s+m;z =it

with z-free s,¢, equivalently in 91, as

M M M M M M
—s+Mz=—1, resp. —s< —t+Mz, resp. —s+Mz=m, —t.
m; m; i m; m; mi = Mj
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(For the equivalence regarding the congruences see Remark 8.1.) Thus, in each
€(x,z) the additive multiples of z have the form Mz.

If an equation occurs among the &;(X, z), we pick the smallest i such that &(x, z) is of
the form s+ Mz =t. We eliminate Mz everywhere by replacing, informally speaking,
Mz by t — s, so for example an inequality s’ + Mz < ¢ is replaced by s’ +7 <t +s5.
The equation &;(X,z), i.e., s+ Mz =t, is replaced by s =y t A (s =1V s < t). Thus
we reach a quantifier-free formula equivalent to 3z(& (¥,2) A ... A &(X,z)) over M.

We still need to consider the case that among the &;(X,z) no equation occurs, which
means that we have to find for an S -formula y/(X) of the form

(t) Fo (Nisi <si+Mz AN Njti+Mz<t; AN )+ Mz =, u)
a quantifier-free formula y’(X) equivalent to (1) in 9.
If M = 1 we can apply Lemma 8.6 or Lemma 8.7. If M > 2 we replace Mz by 7’ and
require 7/ =y 0, so with

W (Nisi<si+Z AN+ <t; AN w7 = A 0+2 =y 0)
we get a formula equivalent to (1) in 9% by invoking Lemma 8.7. -
8.8 Exercise. Show that the {+,0,1}-formula Jyx = y+y is not equivalent in

(N,+,0,1) to a quantifier-free {-+,0, 1}-formula. Hint: The property of a set to be
finite or co-finite (a complement of a finite set) is useful.

8.9 Exercise. A set M C N is called ultimately periodic if some pg exists such
that n € M iff n+ pg € M for all sufficiently large n. Show that M is definable
in (N,+,0,1) by a {+,0,1}-formula ¢(x) iff M is ultimately periodic.

8.10 Exercise. Show that every quantifier-free formula ¢ in which only the con-
nectives A and V occur is logically equivalent to a disjunction of conjunctions of its
atomic subformulas.

8.11 Exercise. In (N,+,0,1) the <-relation is definable by x <y := Jz(-z=0A
x+z=1y). Show that there is no definition by a quantifier-free {+,0, 1}-formula

P(x,y).

X.9 Decidability of Weak Monadic Successor Arithmetic

In this section we look at results on the decidability of second-order theories of
arithmetic. We make use of concepts and results from the theory of finite automata
which we develop as far as required.

We start with a theorem which shows how severely we are constrained when aiming
at decidability results in second-order logic. For this purpose we consider the struc-
ture Mg = (N, 0,0) of the natural numbers with the successor function ¢ : n+—n+1
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that was introduced in Section III.7 in connection with Dedekind’s Theorem. This
structure is a kind of minimal framework for arithmetic.

9.1 Theorem. The second-order theory Thy(Is) ={¢@ Li{lo’o}—sentence | M E o}
of N is not R-decidable.

Proof. We use Theorem 6.9 on the undecidability of the first-order theory of the
structure 91 = (N,+,-,0,1). To each first-order Sy-sentence ¢ we associate a
second-order {@,0}-sentence ¢’ such that

N iff Nol=9¢.

If the second-order theory of 91, were R-decidable, then so were the first-order
theory of 1.

The inductive definition of the translation ¢ — ¢’ for formulas is clear once this is
done for the atomic formulas 1 =x, x+y =z, and x-y = z (cf. Section VIIL.1). We
set (1 =x):= 00 = x, and we take (x+y = z)’ to be the {0,0}-formula

0+ (x,,2) == VX ((XOx AVuVv(Xuv — Xouov)) — Xyz).
In order to prove
NEx+y=zk,lm] iff N = @[k, 1,m],

we first show the direction from right to left. Suppose Mg = @[k, [, m]. If we set
Ry :={(i,k+1i) | i € N}, the premise

X0x AVuvv(Xuv — X ouov)
holds with Ry for X and k for x. Hence we have M = Xyz|[Ro,,m] and thus Rolm,
e, k+1=m.

Conversely, suppose k+ [ = m and let R be a binary relation over N. Assume the
premise with R for X and & for x. Then (0,k) € R, (1,k+1) €R, (2,k+2) €ER, ...,
hence Ry C R and thus (I,m) € R.

For the formula (x-y = z)’ we proceed analogously and take the formula
VX ((X00 AVuvv(Xuv — Iw(@r(v,x,w) AXouw))) — Xyz)
for ¢.(x,y,2), using @ (x,y,2). B

Theorem 9.1 shows that even for the structure 915 second-order logic yields an
undecidable theory. Is there a fragment of second-order logic that extends first-order
logic such that the corresponding theory of s is decidable? In this section we
present such a fragment.

For this purpose we restrict second-order logic in two respects. First we include only
second-order formulas in which all second-order variables are unary (monadic).
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This restriction is called monadic second-order logic, MSO-logic for short. Already
in Section III.7 we used MSO-logic in connection with the structure s: The in-
duction principle presented there,

VX((XOAVx(Xx — Xox)) — VyXy),

is a sentence of MSO-logic which is true in 1.

Let us turn to the second restriction. First we note that in 915 the MSO-formula
Onit(Y) :=Iy-YyAVz(Yoz = Y2)

says that Y is a finite initial segment of N, hence of the form {; | j < i} for some
i € N. Since a subset of N is finite if and only if it is a subset of a finite initial
segment, the MSO-formula

@in(X) := Y (@it (Y) AVz(Xz = Yz))

expresses in s that X is finite.

Thus in MSO-logic, interpreted in 915, we can quantify over finite subsets of N: For
an MSO-formula ¢ := @(x1,...,x,,Y1,...,Yy,X), the formulas

¢)) VX (@in(X) — @) and  3IX(@n(X) A @)

say, respectively, that for all finite subsets of N the formula ¢ holds, and that ¢ holds
for at least one finite subset of N.

Informally speaking, in the second restriction we want quantified set variables to
range only over finite subsets. To accomplish this we can limit ourselves to the frag-
ment of MSO-logic that consists of those formulas in which all occurring quantifiers
over unary relation variables are of one of the forms in (1). To make things easier,
we preserve the syntax of MSO-logic but change the semantics: We read VX ... as
“for all finite subsets X of the domain we have ...”, and 3X ... as “there is a finite
subset X of the domain with ...”.

With this convention for the interpretation of set variables, monadic second-order
logic is called weak monadic second-order logic, WMSO-logic for short.!! Corre-
spondingly one calls the set of all sentences of WMSO-logic that are true in the
structure 2 the WMSO-theory of 2; we also use the notation WMSO-Th(2).

We start with some examples to get an impression of the expressive power of
WMSO-logic over M.

The relation < is definable by
2 x<y iff VX((@uni(X)AXy) — Xx).

I Here we do not deal with the proof of basic semantic properties, e.g., that the Coincidence
Lemma II1.6.4 holds with the obvious changes regarding second-order quantifiers.
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Using this, the statement “Each finite nonempty set has a maximum”, which is true
in 9, can be formalized by

VX (IXx — Iy(XyAVz(Xz—2<Yy))).

Also properties of divisibility can be expressed, for example the condition “x is
even” by
Qeven(¥) == VX ((XxAVz(X0067 — X7)) — XO0).

Furthermore, the statement “For each number x we have that x or x+ 1 is even” is
expressible by

Vx( Peven (X) V Qeven (Gx) ) .

The aim of this section is the following result which goes back to Biichi and Elgot
(1958) and Trakhtenbrot (1958):

9.2 Theorem. WMSO-Th(N) is R-decidable.

This theorem on the so-called weak monadic successor arithmetic is the first of a
series of decidability results in which two aspects come together: They are shown
using concepts of the theory of finite automata, and apart from their significance for
the study of arithmetic theories they are also of interest for applications in computer
science. The latter aspect will be discussed at the end of the section.

The connection between formulas of weak monadic second-order logic and finite
automata is based on a simple idea: In 915 one can represent the assignments of
the free variables of a formula by words over an appropriate alphabet. We shall see
that the sets of words that correspond to the assignments satisfying a formula can
be “defined” by finite automata. For the satisfaction of sentences of WMSO-logic
in 95 we thus effectively obtain an equivalent condition on finite automata which
can be checked by an algorithm. From this we conclude the decidability of WMSO-
Th(Ms).

We proceed in four steps: First we make precise the above mentioned connection
between assignments and words. Then we introduce finite automata. Next we prove
some simple facts about finite automata. Finally we show as the technical main re-
sult that to each formula ¢ we can associate a finite automaton 7, which defines
the set of words that represent assignments satisfying ¢. From this we obtain The-
orem 9.2.

A. Representation of Assignments by Words

By ¢(x1,...,Xm,X1,...,X,) we indicate a WMSO-formula in which at most the

variables xi,...,x,,X1,...,X, occur free. An assignment of these variables in D14
is a tuple (k,K) = (ki1,-..,km,K1,...,K,) with ky,...,k,, € N and (finite) subsets
Ki,...,K, of N. We now establish a connection between assignments and words

over the alphabet {0, 1},
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For this purpose we identify, for r > 1, the letters of the alphabet {0, 1}" with 0-1-

—o

columns. For r = 5 the column | 1 | corresponds to the letter in {0, 1}° that has a 1

(=)

1
exactly at the second, third, and fifth position and a 0O at the other positions. Then a
word ag ...as € ({0,1}")* of length s+ 1 over the alphabet {0, 1}” has the form

aol arl As1

aor air Asr
We identify this word with the O—1-scheme

apy dip - dst

aor Aty - Agr -

The empty word in ({0,1}")* corresponds to the “empty" scheme. Thus the 0-1-
schemes with r rows correspond to the words over the alphabet {0, 1}". The columns
of such a scheme are the letters of the associated word; the ith row contains the ith
components of these letters. The number of columns is the length of the associated
word.

Now we turn to the connection between assignments for a WMSO-formula ¢ =
O(x1,- s Xm, X1, ..., X,) withm+n > 1 and words over the alphabet {0,1}"". We
illustrate the idea by an example (where m = 1, n = 2). The 0—1-scheme

000100
101010
000000

gives the assigment (k1,K,K>) := (3,{0,2,4},0). Why? To explain this, we number
the columns of the scheme, the first column with the smallest natural number, i.e.,
with 0, the second column with 1, and so on, labeling the last one with 5.

012345

000100
101010
000000.

Rather than speaking of the third column we also speak of the column number 2.
The first row of the scheme tells us that the variable x; is to be interpreted by the
number 3, because the column number 3 is the only one carrying a 1 in the first row.
The second row yields the interpretation of X by the set {0,2,4}, because precisely
the columns number 0, 2, and 4 have a 1 in the second row. Similarly the third row
yields the interpretation of X by the empty set. The 0—1-schemes
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01234567 01234

00010000 and 00010
10101000 10101
00000000 00000

lead to the same assignment (k1,K;,Kz) = (3,{0,2,4},0).

If the word ag...a; € ({0,1}'*2)* represents an assignment (ki,K;,K>), the num-
ber [ has to be equal or greater than each number that occurs in {k;} UK UK.
For any such / there is then exactly one word ay . ..a; which represents (k;,K,K3).

If § and ¢’ represent the assignments (ki,K;,K>), we have § = ¢’ ((8)) (§) or

5
=¢(5)-(8):
For the 0-1-schemes (withm = 1,n =2)

01234 01234

10010 and 00000
10101 10101
00000 00000

we do not know how to interpret the variable xj. According to the following defini-
tion they are not 1-admissible.

A word over {0, 1}m+", i.e., a O—1-scheme with m -+ n rows, is m-admissible, if in
each of the first m rows exactly one 1 occurs.

The m-admissible word § =aq ...a; € ({0, 1}"*")* (thus, in the terminology of 0-1-
schemes, q; is the column number i) represents the assignment (k,K) = (ki,. .., ky,
Ki,...,K,) (or induces it), if

— k; is the unique number j for which the ith component of a;, i.e., of the column
number j, has value 1,

— K; is the set of those numbers j for which the (m + i)-th component of a; has
value 1.

In particular, the empty word in ({0, 1}"")* is m-admissible only for m = 0. Then
only set variables occur, and the empty word induces the interpretation of all these
set variables by the empty set.

If ag...a; € ({0,1}™"™)* represents the assignment (ki,...,kn,Ki,...,K,), the
number [ is equal to or greater than each number occurring in {k,... k,} UK U
-+-UK,. If the words ¢ and £’ in ({0, 1}"")* both represent (ki ..., kn, K1, ..., Ky),

0 0 0 0
thenwehave,asabove,thatC:C’<5> () orC’:§<§> ()
0 0 0 0



194 X Computability and Its Limitations

The assignments that satisfy a formula @ (xj,...,x,,X],...,X,) in 9 yield the fol-
lowing set of words:
W(@) :={C € ({0,1}"*")* | { is m-admissible
and induces a tuple(k, K) with N = @[k, K]}.

Let us consider an example: For the formula
() P(x,X) = Vy(y <x = Xy)

(“X contains all numbers y < x”), the set W(¢) consists of those words over
{0,1}'*1 that have a letter with first component 1 at exactly one position and a
letter with second component 1 at all preceding positions.

We now turn to the definition of finite automata which recognize such sets of words.

B. Finite Automata

Finite automata are abstract machines — as are register machines — that either “ac-
cept” or “reject” words over a given alphabet. We use here the “non-deterministic”
version of finite automata.

Let A be an alphabet. A non-deterministic finite automaton, NFA for short, over A
is a structure of the form

of = (Q, (Ta)HGAaq(]) Q+) .

Here Q is a finite set, the set of states of 7. For each letter a in A, T, is a binary
relation 7, C Q x Q. The pairs (p,q) € T, are called a-transitions of <. Further-
more g is a state of Q, the initial state of <7 . Finally, Q is a subset of Q, the set of
accepting states of < .

In a graphical representation states are indicated by circles and transitions in 7, by
a-labeled arrows. The state g is specified by an ingoing arrow marked “start”, the
states in Q4 by double circles. The automaton <% over the alphabet A = {0, 1}
shown in Fig.X.1 has the set {qo,q1,92} of states, the transition relations Ty =

{(90,90),(q1,92)} and Ty = {(40,490), (90,91),(q1,92)}, and the set Q. of accept-
ing states consisting only of g2, i.e., O+ = {g2}.

0,1

0,1
start —( 9o ! @ - @

Fig. X.1
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For an NFA &7 over A we say that from state p the state ¢ is reachable via the word
¢ =aj...a, (or: reachable by scanning the word { = a;...a,) if in & there is a
path from p to g labeled with the sequence aj ...a, of letters, i.e., if a sequence
(po,. .., pn) of states exists with

pPo=Dp, (piflapi) € Tai fori= lv"'”v Pn=4(.

Such a sequence of states is also called a run from p to g via the word {.

The NFA &/ accepts the word { if from g some state in Q is reachable via {.
Hence <7 does not accept the word § if each run from go via the word { ends
in a state of Q\ O+ or if there is no complete run from ¢y via { due to the lack
of appropriate transitions. The set W (.<7) recognized by </ consists of the words
accepted by <. A set W of words over the alphabet A is NFA-recognizable if W =
W () for some NFA .2 over A.

The NFA ) presented above accepts precisely the words over {0, 1} that have at
least two letters and where the penultimate letter is 1. If W denotes the set of these
words, then we have W (e#) = W in particular, the set W is NFA-recognizable.

As a second example we consider the set W(¢) of words defined by the formula
o (x,X) :=Vy(y < x — Xy) mentioned above in (x). As we saw there, W (¢) consists
of the words over {0, 1}'*! where in the first component (the x-component) exactly
one | appears and at all preceding positions a 1 occurs in the second component
(the X-component). The set W (@) is NFA-recognizable as shown by the NFA <7
presented in Fig.X.2. The transition from g to g; takes place if and only if in the
first component a 1 appears and before that always value 1 appeared in the second
component. The transition to ¢ is taken from g if and only if before the first 1 in
the first component somewhere a 0 in the second component appears. From ¢q; a
transition to g is taken if and only if in the first component after the first 1 that led
to g1 another 1 appears later. From ¢, there is no transition to another state.

start —( 40

Fig. X.2
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In contrast to ) there is in ./ for each state p and each letter a of the alphabet
exactly one subsequent state ¢, i.e., exactly one state ¢ with (p,q) € T,. We speak of
a deterministic finite automaton, DFA for short. In a DFA the transition relations T,
can be represented as transition functions 7, : Q — Q. A DFA over A is then also
presented in the form <7 = (Q, (T4)aca,q0, O+ )-

We call finite automata (NFA or DFA) .7 and ./’ over the alphabet A equivalent if
they recognize the same word set W over A, i.e., if W(&) = W (</").

9.3 Remark. For each NFA one can construct an equivalent DFA.

Proof. For the NFA « = (Q, (T,)aca,q0, 0+ ) we take the power set Pow(Q) of O
as the set of states of the desired DFA &7/ equivalent to 7. The set {go} is used as
the initial state of <7’. For a € A we define the transition function 7, : Pow(Q) —
Pow(Q) as follows: For Z € Pow(Q), i.e., for a set Z of states of <7, let 7,(Z) be the
set of states which in &7 are reachable from a state in Z by an a-transition:

w(Z):={qeQ|3peZ:(p,q) €T,}.

Finally we take as the set of accepting states of <7’ the set 2, := {R € Pow(Q) | RN
Q. # 0}. For the deterministic finite automaton .7’ = (Pow(Q), {qo}, (Ta)aca,2+)
it is easily shown by induction over the length of words { € A* that for each Z with
ZCQ:

Z is the set of states which in & are reachable from gq via {
iff in .’ from {qo} the state Z is reachable via (.

From this we get immediately that .7 and <7’ are equivalent. B

In the subsequent proofs we shall proceed, as in the preceding proof, by only pre-
senting the respective desired automaton and describing the way it works. By an
obvious induction on the length of the input words it can then be shown that the
automaton has indeed the claimed property.

We end this part by presenting an automaton which checks whether a word is m-
admissible.

9.4 Remark. Let m+n > 1. There is an NFA o7, , which recognizes the set of m-
admissible words in ({0,1}"7)*,

Proof. The automaton 7, , contains a state g_ and for each subset I of {1,...,m}
a state g;. The state g_ is reached by .7, , when from the hitherto scanned initial
segment of the input word { it is already clear that { is not m-admissible. The state
q; indicates that in the jth component exactly one 1 was read so far if j € I, or that
no 1 was read if j ¢ 1. The initial state is g, and g .

For a letter a € {0, 1} let M, be the set of those i € {1,...,m} for which the ith
component of a has the value 1. We set
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T, I:{(ql,qjuMa) | 1C {1,...,m}, MaﬁI:Q)}
U{(q[aqf) |Ig {1,...,7”1}, Maﬂ[#m}

The NFA @ = ({qr [ 1 € {1,...,m}} U{q-},(Ta)ucio.ymen, 90, {q(1....my }) ac-
cepts precisely the m-admissible words in ({0, 1}77)*, 4

C. Elementary Facts about Finite Automata

We present some results needed in part D in order to establish the connection be-
tween automata and WMSO-logic.

9.5 Theorem. Let A be an alphabet. There is an algorithm which decides for any
given NFA < over A whether W (<) # 0.

Proof. Let o = (Q,(T,)aen,q0,0+) be an NFA. For any set Z of states of o7 let
T(Z) be the set of states that are reachable from a state in Z in one step. More
formally: T : Pow(Q) — Pow(Q) is the map with

T(Z)={q| thereisa p € Zand an a € A with (p,q) € T,}
for Z C Q. We define the set Z; of states inductively over s € N as follows:
Zy:= {6]0} and Zsr =2 U T(Zs)

By induction on s it is easily verified that Z; is the set of states that are reachable
from g via a word of length < s. Hence,

{@}=20C2, CZ, CZ3C--- CQ.

Moreover from T (Z) = Z; we get T (Z,+;) = Z, for all i > 1. Hence Zjp|1 is the set
of states that are reachable from ¢ via a word over A. In particular, we have

W()#0 iff Q+QZ‘Q‘,17£@.

Since the sequence (Z;),en is computable, one can easily present the desired algo-
rithm. o

We have just shown that for every alphabet A there is an algorithm deciding for each
NFA over A whether it accepts at least one word. In contrast, there is no alphabet A
for which an algorithm exists that decides for any register machine over A whether
it accepts at least one word (cf. Exercise 3.6). This indicates that NFA’s are weaker
than register machines. Indeed, this is the case: Every set of words recognizable by
an NFA is R-decidable, since a DFA equivalent to the NFA constitutes a decision
procedure. However, there are R-decidable sets that are not recognizable by any
NFA (cf. Exercise 9.13).

In the next lemma we show that for every NFA .o/ there is an automaton which
accepts, for an m-admissible word accepted by <7, all m-admissible words of at
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most the same length that induce the same assignment, more precisely (denoting
by I() the length of the word §):

9.6 Lemma. Let 0 be the letter in {0,1}"*" that has 0 in each component. For ev-

ery automaton </ over {0, 1} one can construct an automaton </ over {0,1}"+"
such that for all § € ({0,1}"")* we have:

CeW(d) iff thereisa {' € W(e?) with 1({") > 1({) and §' = £0...0.

In particular, we have W (o/) C W (7).

Proof. Let & = (Q,(T)qefo,13m+n,90,Q+)- The desired NFA 7 has to accept a

word { iff ¢ can be extended, by adding letters O at the end, to a word that is
accepted by «7. Therefore a state g should be accepting if the set Q(g) of states that
are reachable from ¢ via a word of {0}* contains a state of Q. Hence we define

g = (Q7 (Ta)ae{o,l}m+'1790, {q € Q | Q(q) ﬂQ+ 7é @})

We still have to show that for ¢ € Q the set Q(¢g) can be computed effectively. We
have ¢’ € Q(q) iff ¢ can be reached by <7 from g via a word of {0}, i.e., if the NFA
Ay ¢ = (0,Ty,q,{q'}) over the alphabet {0} (with initial state ¢, accepting state ¢/,
and the transition relation T} of .27) accepts such a word. We obtain

q € 0(q) iff W(ey) #0,

hence by Theorem 9.5 the set Q(g) is determined effectively. B

Now we show that the sets recognized by finite automata over a given alphabet A
are closed under complement and intersection (and thus also under union).

9.7 Remark. Let A be an alphabet.

() For an NFA o = (Q,(T,)aen,q0,0Q+) one can construct an NFA /' with
W)= A \W ().

(b) For NEA's /' = (Q',(T))acn, 45, Q) and /* = (Q°, (T7)acn, 45, Q%)
one can construct an NFA o with W (/) = W (/) "W (7).

Proof. (a) A DFA o7 = (Q, (T4)aea,q0, 0+ ) has, for each input word {, exactly one

state ¢ that is reachable from gg via the word . If this state ¢ is in QO the word { is

accepted, else { is not accepted. Thus the set A*\ W (&) is recognized by the DFA

(0, (Ta)aca,q0,0\ O+ ). The claim for NFAs now follows with Remark 9.3.

(b) We set
o = (0" x 0%, (T)uea. (40.45), Q) x O%)
with
T.:={((p".p").(¢".4") | (p'.q") € T, and (p*,4*) € T}}}.



X.9 Decidability of Weak Monadic Successor Arithmetic 199

By induction on the length of words { € A* it is easy to show that in <7 from state
(p',p?) a state (¢',4?) is reachable via ¢ iff for i = 1,2 in &7/ from state p’ the
state ¢' is reachable via {. This immediately yields the claim. —

D. From Formulas to Finite Automata, Proof of Theorem 9.2

The bridge from weak monadic logic to finite automata is provided by the following
theorem:

9.8 Theorem. For each formula ¢(xy,...,%u,X1,...,Xy) of WMSO-logic over N
one can construct an NFA @y over the alphabet {0, 1} with

W(dp) =W(9),
ie., forall § € ({0,1}mm)*
Ay accepts § <= § is m-admissible, and for the assignment (k,K)
induced by § we have N = @[k, K].

For the proof of this theorem it is convenient to work with a relational symbol set
rather than with the symbol set {6',0}. Instead of 6 we use Rg = {(k,k+1) |k € N},
the graph of the function o, and we use the unary relation Ry = {0} instead of 0. In
Section VIIL1 it was shown how to transform a {6,0}-formula into an equivalent
{Rs,Ro}-formula.

With this preparation we can prove the theorem by induction on {Rs, R }-formulas
O(x1,. ., Xm, X1,...,Xy). For this it suffices (and we use this tacitly in the atomic
case and in the steps for negation and first-order quantification) to present an au-
tomaton ,qu? which works correctly for m-admissible words, i.e., such that for each
m-admissible word { € ({0,1}"")* and the assignment (k,K) induced by { we
have:

szfq? accepts ¢ iff N = @[k, K.

The desired automaton 7, is then obtained as the “intersection automaton” of mﬂg
and 4, , according to Remark 9.7(b). Here .27, , is the automaton presented in
Remark 9.4 that accepts precisely the m-admissible words over {0, 1},

In the atomic case @(xi,...,Xm, X1, ...,X,) is of one of the forms
Xi = Xj, Rgxixj, R())C,'7 X,'Xj.

Then the induction steps for the propositional connectives (we consider — and A)
and for the quantifiers Jx; and 3X; remain to be carried out.

We use x1 = x; as a typical case of atomic formulas x; = x;. In Fig. X.3 we present an
automaton which checks for each m-admissible word { = aq...q; in ({0,1}"™+")*
whether there is an a; for which the first two components have value 1. The other
components of @; can be arbitrary.



200 X Computability and Its Limitations

1
(1)
start —( 490 - @

Fig. X.3

Here the non-labeled arrows stand for the transitions with letters of {0,1}"" and
. 1 .. . .
the arrow with ( 1 ) for the 2("~2)*" many transitions with letters in {0, 1}"**" where
*

the first two components have value 1.

Following this pattern it is now easy to deal with the atomic formulas Rsx;x;, Rox;,
and X;x;. We encourage the reader to find NFA’s for these cases.

In the induction step for the propositional connectives — and A the claim is obtained
immediately with Remark 9.7.

We finish the proof of Theorem 9.8 with the induction steps for the quantifiers Jx;
and 3X;. For this we show the following lemma:

9.9 Lemma. (a) Suppose the NFA </ over the alphabet {0,1}Y" )+ recognizes
the set W (@) for the WMSO-formula @(x,...,Xm+1,X1,-..,Xy). From < one can
construct an NFA &' over the alphabet {0,1}""" such that

W) =W(x)

Sfor the WMSO-formula ) (x1,...,%m, X1, -, Xu) = i1 0.

(b) Suppose the NFA of over the alphabet {0,1}"*"*1) recognizes the set W (o)
Sfor the WMSO-formula @(x1,...,Xm,X1,...,Xy41). From </ one can construct an
NFA <" over the alphabet {0,1}™ " such that

W(") =W(x)
Sfor the WMSO-formula (x1,...,%u, X1, Xy) := 3X110.

Proof. First we show claim (b). It suffices to present an NFA &7/ with W(«7?) C
W () which accepts for each § € W () a word of the form £0...0. By Lemma 9.6
we then obtain the claim W (/") = W () for the NFA 7’ = &/0.

Suppose the NFA
of = (Q, (Ta)a€A7q07 Q+)

over the alphabet {0, 1}"+("+1) accepts the word set

W((P()C],. . '7xi’l’le17' "aXn+1))'

The NFA &7° will check for a word { = ag...a; over {0,1}"*" whether { can be
expanded, by adding a (m+ (n+ 1))-th component in its letters, to a word {’ that
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is accepted by the automaton 7. The component to be added to § will yield the
assignment for X, ;.

The set of states, the initial state and the set of accepting states of the NFA o7 0
coincide with those of 7. To specify the transition relation we write the letters of
{0, 1Y+ 1) in the form (§) and (¢), with a € {0,1}"*". Instead of a (§ )-transition
and a (¢)-transition (p,q) of &/ we use the respective a-transition (p,q) in /°.

More formally: For a € {0,1}"*" we define the corresponding transition relation in
/0 by

T :={(p,q) € 0 x Q| thereis i € {0,1} with (p,q) € T(?)}.

Arunof 7% onaword ¢ € ({0, 1}"+)* is accepting iff the sequence of states of this
run is also the sequence of states of a run of &7 accepting a word in ({0, 1}7+(*+1))*
that is generated by adding a last component to each letter in . By the assumption
W (/) = W(¢) we obtain that W (7%) C W (y).

We still have to show that for any { € W(y), 7° accepts a word of the form £0...0.
Let ¢ € ({0,1}™)* be a word from W () of length [ that represents the assignment
(kl7 .. ,km,Kl, e ,Kn). Thus

ma ':%[k17"'7km7K17“'aKn]‘

Since ¥ = 3X,11 9, there is K, with Ng = @lki,... . km,Ki1,. .., Ky, Kyt1]. Now
let ' € ({0,1}"F("+1))* be a word of length > [ that represents the assignment
(kiy...km,K1,...,Ky,Kyt1). For the word §y € ({0,1}"")* resulting from ¢’ by
deleting the last component in each letter, we have {y € W (.27?), and {j has the form
20...0.

Regarding (a): The proof works analogously to the proof of (b). We only present
here the corresponding automaton .o7°. It has the same set of states, the same initial
state, and the same set of accepting states as .. To specify the transition relations of
a
1

/% we write the letters of {0, 1}"+1)+7 in the form (§> and (b), witha € {0,1}"
and b € {0,1}". The automaton .<7° contains the ({)-transition (p,q) if o7 has the
(g)) -transition (p, ¢) or the (Z) -transition (p, ¢). More formally: If we again denote
the transition relations in .«7® with upper index 0, we define for a € {0,1}" and
be{0,1}"

T&) ={(p,q) €QxQ|thereisic {0,1} with (p,q) € T<q> b =
b

With Theorem 9.8 we now prove Theorem 9.2 on the decidability of the theory
WMSO-Th(91s).

Proof of Theorem 9.2. Let x| be a fixed variable. For a sentence ¢ of WMSO-logic
over the symbol set {0,0} we have ¢ = ¢(x;). By the analogue of the Coincidence
Lemma II1.4.6 for WMSO-logic (see footnote on p. 190) we obtain:
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Ns =@ iff thereisan i€ N with 95 = @i
ift - W(e(x1)) #0.

So for the automaton .27, over the alphabet {0,1} constructed according to Theo-
rem 9.8 we have:
No = @ iff W(ep) #0.

This yields the desired decision procedure for WMSO-Th(91s): From ¢ we con-
struct the automaton ;zf(p and decide, using the algorithm of Theorem 9.5, whether
W (p) # 0. !

E. From Finite Automata to Formulas

Theorem 9.8 shows that for each WMSO-formula ¢ there is an automaton which
accepts precisely those words that represent an assignment satisfying ¢ in 9. In
short, finite automata are at least as expressive as WMSO-logic for 5. The next
result shows that automata are not more expressive than WMSO-logic, more pre-
cisely:

9.10 Theorem. For each NFA </ over the alphabet {0,1}"*" there is a WMSO-
formula @(xy,...,Xm,X1,...,X,) such that for each assignment (k,K) we have:

No = @lk,K] iff there is an m-admissible word § € W (<)
inducing the assignment (k,K).

Proof. Let & = (Q, (Ta) acfo,1ym+n,q0, O+ ). We can assume that Q = {0,...,N} for
some N € N and gp = 0. We set

O(x1, .oy X, X1y, Xy) := 32y .. 3Zy 3y (‘Ifuniq A Winit A Wirans A Wace )-

Here Wunig> Winit> Wirans> and Wy are WMSO-formulas that we are about to define.
The set variable Z; (for i = 0,...,N) serves to specify those positions where <7 is
in state i. The individual variable y indicates the number of steps carried out by
<. (Regarding definability of the <-relation and thus of the <-relation cf. item (2)
before Theorem 9.2.)

— The formula Wy, says that the number y of steps is at least as great as the
numbers in {x,...,x,} UX; U...X, and that exactly for the numbers < y the
automaton is in a state which moreover is unique:

Yuniq = /\ xi <yA /\ Vx(X,-x—>x§y)/\

1<i<m 1<i<n
Vx(x <y < \/ Zix) A\Vx(x <y — /\ (ZjxV ~Zjx)).
0<j<N 0<j<j'<N

— The formula yjy,; says that the run starts in state go (= 0):
YVinit -= Z,0.
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— The formula Wy says that the steps from one state to the next are carried out
according to the transitions of .7} it is defined as

VX(X<_)7—) \/ \/ (ZJ.X/\ /\ xXi=x A /\ X=X
“ 0<j,j'<N 1<i<m 1<i<m
a= ( : ) e (el a;=1 a;=0
am‘+n
A /\ X,-,mx/\ /\ —Xi—mX A Z], GX).

m+1<i<m+n m+1<i<m+n
ai=1 a;=0

— The formula Y, says that the run is accepting:

Yace = \/ Zz Y-
JEO+
From this we obtain the equivalence claimed in the statement of the theorem. —

The connection between finite automata and WMSO-logic also holds when one con-
siders finite domains instead of the domain of the natural numbers; in that case one
represents finite words by finite structures. For this approach see, e.g., [37, 40].

F. Further Results

We mention two results that are substantial strengthenings of Theorem 9.2 on the
decidability of WMSO-Th(15) and have interesting applications in computer sci-
ence. The first result, proved by Biichi (1962), is the analogue of Theorem 9.2 for
full monadic second-order logic in which set quantifiers refer to arbitrary sets of
natural numbers. The resulting theory of DM is denoted by MSO-Th(15).

9.11 Theorem. MSO-Th(N) is R-decidable.

Again the proof uses the method of transforming formulas into automata, now into
finite automata that work over infinite words agaja; ... where the a; are letters of
a finite alphabet. An appropriate model of automaton is that of a Biichi automaton,
an NFA which accepts an infinite word if there is a run on this word that infinitely
often assumes an accepting state.

In computer science, non-terminating systems (such as control systems or commu-
nication protocols) can sometimes be modeled by Biichi automata, in the sense that
the infinite runs of a system S correspond to the runs of a Biichi automaton <7 (S). If
the desired properties of S can be formalized by an MSO-formula ¢, then the cor-
rectness of the system can be phrased as an inclusion problem: The set of runs of the
automaton <7 (S) is contained in the set of runs described by ¢. The theory of Biichi
automata yields an algorithmic solution of this problem. This is the methodological
core of so-called model-checking as an approach to verification (cf. [2]).

Another generalization is obtained when using a structure with two successor func-
tions instead of the successor structure 91s. A natural example of such a structure is
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the infinite binary tree, formally the structure T5 := ({0, 1}*, 6p, 01) with the func-
tions oy : § — 0 and o} : { — {1. Rabin (1969) showed the following result:

9.12 Theorem. MSO-Th(%,) is R-decidable.

This as well can be proved by transforming MSO-formulas into finite automata, in
this context in the form of so-called tree automata (cf., e.g., [40]). Rabin’s Theo-
rem provides algorithmic solutions both for deciding mathematical theories and for
numerous problems in computer science (program verification, program synthesis).

9.13 Exercise. Let A = {1}. We identify a word 1” over A with the natural number
n and a set W C A* with the corresponding set My of natural numbers. Show that a
word set W C A* is NFA-recognizable if and only if My is ultimately periodic (for
this notion see Exercise 8.9). Hence the set {1” | n is a square }, for example, is not
NFA-recognizable.

9.14 Exercise. From the closure of the class of NFA-recognizable word sets under
complement and under intersection (cf. Remark 9.7) one also obtains the closure
under union. Show this closure property by a direct construction.

9.15 Exercise. Weak second-order logic (with quantifications over finite relations,
also of arity greater than 1) was introduced already in Exercise IX.1.7. Show the
following sharpening of Theorem 9.1: The weak second-order theory of 915 is not
R-decidable.

9.16 Exercise. In this exercise you are asked to deduce the decidability of Pres-
burger arithmetic (Theorem 8.3) from the decidability of the WMSO-theory of s
(Theorem 9.2). In order to do so, proceed from quantifiers over natural numbers to
quantifiers over finite sets of natural numbers: Associate with each natural number
k the reverse binary representation B(k) of k; for example associate with the number
26 the word 01011, and read this word as the representation of a finite set, i.e., the set
{1,3,4}. In general, consider for the reverse binary representation B(k) = by ...by,
of k the set M (k) = {i € N | b; = 1}. The number 0 is represented by the empty word
which corresponds to the empty set (M (0) = 0).

(a) Show that a relation definable in Presburger arithmetic is also definable in the
WMSO-theory of Ny in the sense that for each {+,0, 1 }-formula @ (x1,...,x,)
one can find a formula @(X, ..., X,) of WMSO-logic over s such that for all
ki,....,k, e N

(N7+7071) ):(P[klw"akn] iff No ':a[M(kl)aaM(kn)]

Hint: To show this, use the relational symbol set S” instead of the symbol set
S={+,0,1} where S” contains the ternary relation symbol R for the addition
relation over N and the unary relation symbols Ry, R; for the singleton sets {0},
{1}, respectively (see Section 8.1), and then use induction on the construction
of §"-formulas.

(b) Conclude that Presburger arithmetic, i.e., Th(N,+,0, 1), is R-decidable.
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Chapter XI
Free Models and Logic Programming

In general, the following statement is false:
(%) If @+ dxe, then there is a term ¢ with & - (p%.
We get a counterexample for S = {R} with unary R, & = {3xRx}, and ¢ = Rx.

The main subject of this chapter are results showing that (x) — or variants of (%) —
hold under certain conditions on @ and ¢. The corresponding proofs start from the
term structures introduced in Section V.1. These structures turn out to be free and
therefore have algebraically important properties.

Statement () says that an existential proposition dx¢ which holds (under the as-
sumptions of @) has a “concrete” solution 7. Are there efficient algorithms for find-
ing such solutions? This question leads to the fundamentals of logic programming,
a subject which plays an important role in certain areas of computer science (data
structures, knowledge-based systems). So this chapter establishes a bridge between
central problems in logic and questions oriented to applications.

The techniques are mainly based on an analysis of quantifier-free formulas. This
motivates the study of so-called propositional logic, the logic of connectives to be
treated in Section 4 below.

To emphasize the aspect of effectiveness we formulate many results and proofs us-
ing the derivation relation I, but we recommend following the arguments on the
semantic level, i.e., using the equivalent consequence relation .

X1.1 Herbrand’s Theorem

We use Herbrand’s Theorem to prove statement (x) from the above in case @ con-
sists of universal sentences and ¢ is an existential sentence.
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In Section V.1 we have assigned to each set @ of formulas its ferm interpretation
3% = (T®,B®). For this purpose we have introduced an equivalence relation ~ on
the set 75 of S-terms as follows:

r~1 iff dEr=r.
For ¢ € TS we have denoted the equivalence class of # modulo ~ by 7 and set:
P.={f|teT)

forn-aryRE€S: RY'f...5, iff ®FRey...1

for n-ary f € S: fT¢(ﬁ, conn) = fH

forc e S: C‘I‘P =7C;

and finally, B®(x):=x.
ln

Writing @ (X |t) instead of (p we obtained (cf. Lemma V.1.7):

1.1 Reminder. (a) Forallt: Tp (t) =T.
(b) For all atomic formulas @:

PEe iff e
(c) For all formulas ¢ and pairwise distinct variables x1,...,x,:
— 3% =3 ... 3,0 iff thereare S-termsty, ... t, with 3% |= @(x |?)
n . n
- 3P VX ...V  iff forall S-termsty,... t,, I = @(x|1).

In formulas of the form Jx;...3x,¢ and formulas of the form Vx; ... Vx,¢ we as-
sume throughout that x, ..., x, are pairwise distinct.

In analogy to L} (cf. p. 24), for k € N, we define the set
TS :={t € TS | var(t) C {vo,...,vk—1}}.
We consider the subset Y}fb of T,
P={r|teTf},

that consists of the term classes ¢ with ¢ € TkS . To ensure in case k = 0 the existence
of such a term, i.e., that TkS is nonempty, we assume from now on:

If k =0, then S contains at least one constant.

The set T;® is the universe of a substructure TF of T since it is S-closed in T¥. In
fact,if c € S, then ¢ € T and thus ¢ € T,®; and if f € Sisn-ary and ay,...,a, € T2,
— — . P
say aj = 11,...,a, = 1, for suitable terms t1,...,t, € TS, then f* (ay,...,a,) =
L2 Rp—
2,0 ) fti. t, €T2.

Let ﬁk‘p be an assignment in ‘S,? with

) BE(vi) == BP(vi) (=W) fori<k
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and for i > k, say,

oy _ JT0 ifk#0,
B i) {c if k=0,

where c is a constant from § in case k = 0. Finally, let
3P = (TP BY).
By (+) and the Coincidence Lemma II1.4.6 we have the following for ¢ € Tks and
QL
(TP, BE)(t) = (T®,B®)(t) =7 (cf. Reminder 1.1(a)),

(T2.B) E o iff (T2,B%) 0,
respectively. Since ‘I,g’ C T?, we conclude, using Lemma II1.5.7:

1.2 Lemma. (a) JP(t) =7 fort € T}, and therefore 150 = ffort €Ty
(b) For quantifier-free y € LY: 3% =y iff IP =y
(c) Foruniversal y € L}: IfJ% =y, then JF = v,
hence in case k =0: IfT® =y, then T |= . 4

The next lemma is the main step towards Herbrand’s Theorem, the main goal of
this section; it is the first result of the form (x) mentioned at the beginning of this
chapter.

1.3 Lemma. For a set @ C Li of universal formulas in prenex normal form the
following are equivalent:

(a) P is satisfiable.
(b) The set Py is satisfiable where

Py = {(p(r)'cl |rtn) | Vx| ...Vxn@ € @, @ quantifier-free and t, ... t,, € Tks}.

Proof. From (a) we obtain (b) since Vx;...Vx, ¢ = @(x |’?) for t1,....ty € T7.
For the direction from (b) to (a), an easy argument using the Compactness Theo-
rem VI.2.1 shows that it suffices to consider finite S. So let S be finite and let &Py
be satisfiable and therefore consistent. Since @y C L7, free(dy) is finite. Therefore
(cf. Lemma V.2.1 and Lemma V.2.2) there is ® with &y C ® C LS which is nega-
tion complete and contains witnesses. By Henkin’s Theorem V.1.10, 3 is a model
of @, in particular J° |= ®. Since P contains only quantifier-free formulas from
Lf , the interpretation jke is a model of @y (by Lemma 1.2(b)). Hence for all formulas
Vx| ... VX, ¢ € @ with quantifier-free ¢ we have:

forallty,... .t € T3: 39 |= o(x ‘rtn)

Thus, with TJ,‘? (t;) = 1; (cf. Lemma 1.2(a)) and the Substitution Lemma II1.8.3, we
get:
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forallzy,.. .0, € T5: 30 fin o,

Since 7,2 = {7 |t € T}, we obtain IO |= Vx; ... Vx,,@. Thus 39 is a model of .

1.4 Herbrand’s Theorem.' Let k € N, and let the symbol set S contain a constant
in case k = 0. For formulas Vx| ...Vx, @ and 3y ... 3y, from Lf with quantifier-
free @,y and pairwise distinct variables x1, ..., X, and yi,...,yy,, the following are
equivalent:

(@) Vxp...Vau,@Fdy;... 3y,yp.
(b) There are j > 1 and terms ti1,...,p, ... Lj1,. - Ljn € Tks with

n n
Vxp . Y@ Ew(y | 0) V. V()2
(¢) Therearei,j > 1, terms $11,...,Stms---sSily---sS8im AGRA 111, Fpy oo Bl ey
tin € TS with
m ,m m  m n, n n n
Qx[s)AAQx|si) Ew(y[n) V... Vy(y|g).

Proof. Since Vx; ... Vx,@ - (X |'s) and w(y \?) F 3yi ... Jya v, we easily get (b)
from (c) and (a) from (b). Therefore we only have to show that (a) implies (c). So
let Vxj...Vx,@ F 3y ...y, w. Thus the set {Vx;...Vx,@, =3y ...y, ¥} is not
satisfiable, and neither is the set {Vx; ...Vx, @, Vy;...Vy,~y}. With the previous
lemma we obtain that

n
(OG5 5105w € TEYULYG T [ 1400 € TS}
is not satisfiable either. By the Compactness TheoremVI1.2.1 this holds for a finite
subset; hence there are i, j > 1 and terms $11,...,S1m,---,Sily---,Sim and t11, ..., t1,,
ety sty € T so that
m, m m  m n n n n
{(P(x |s1)""’(P(x |Si)}U{ﬁW(y ‘tl)v"wﬁlru(y |tj)}
is not satisfiable. Thus we have
m ., m m,m n, n n n
O IF) A no 15 E v Vv yG ),
and therefore (c) holds. =
As special cases of Lemma 1.3 and Lemma 1.4 we get:
1.5 Corollary. Let Vx;...Vx, € Lf with ¢ quantifier-free.
(a) The following are equivalent:

(1) Sat Vxjp...Vx,0.
(i) Sat {p(X|7) |t1,... .t € TS}

1 Jacques Herbrand (1908-1931).
2 Here, e.g., tri stands for t11,...,1,.
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(b) The following are equivalent:

@ F I I
(ii) There are j > 1 and terms ti1,... ,ti,...,tj1,...,tjn € Tks with

Fo(|n)V...VeX|s). .

In general, the disjunctions in Corollary 1.5(b)(ii) and in Herbrand’s Theorem 1.4
consist of several members (cf. Exercise 1.7). In the next section we present a special
but important case in which we may ensure j = 1. The following exercise shows that
Corollary 1.5(b) does not hold for arbitrary formulas.

1.6 Exercise. Let S = {R,c} with unary R and ¢ = Vx(RyV —Rx). Show:

@ F3yo.
(b) For j > 1 and arbitrary t1,...,t; € TS, not k- @(y [11) V...V @(y |t}).

1.7 Exercise. Show that Theorem 1.4 and Corollary 1.5 cannot be strengthened by
claiming j = 1 at the appropriate places.

XI.2 Free Models and Universal Horn Formulas

Let @ be a set of formulas. In general, the term interpretation J% is not a model
of @. (This is why in Chapter V we have enlarged & to a negation complete set
of formulas containing witnesses.) However, if 3% is a model of @, then I is
a distinguished model of @, a so-called free model. For instance, J% is a model
of @ if @ consists of atomic formulas (cf. Reminder 1.1(b)). The same holds for
other sufficiently “simple” sets of formulas which are important in algebra and of
central interest in logic programming: for sets of universal Horn formulas. They
allow (cf. Theorem 2.7) a positive answer to the question raised at the beginning of
this chapter about the existence of satisfying terms.

Throughout, let S be a fixed symbol set.

For a set @ of S-formulas we have defined the term interpretation 3¢ = (T, %)
in such a way that an atomic formula ¢ holds in 3% if and only if @ I- ¢ (cf. Re-
minder 1.1(b)). So, if R € S is n-ary and if t1,...,t, € TS, we have:

If @Rty ...1, then RTPE. s if not @ - Rty .. .t, then not Rg(bﬁ. .
And similarly:
If &+t =1 thent] =17; if not ® F1) =1, then 1] # 15.

So, if ¢ is atomic and neither ® - ¢ nor ® - =@, then J® is a model of —¢.
Therefore, we see that in the definition of J% we have chosen the “positive atomic
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information” only if it is required by @. In this sense J? is a minimal model.From
an algebraic point of view the minimality is reflected in the fact that J? is free:

2.1 Theorem. Let 3 = &. Then 3% (= (TP, B?P)) is a free model of @, i.e., I
is a model of @, and if I = (A, B) is another model of P, then

n(f):=3(t) forteTS
defines a map from T® to A which is a homomorphism from T® to 2, i.e.,
() forn-aryRe Sanday,...,a, €T®:
FR*"ay...ay, then R*7(ay)...m(a,);

(ii) forn-ary f € Sanday,...,a, € T®:

(£ (ay,...,an)) = f2(n(ay),. .., w(an));
(iii) forceS: n(ciqb) =%

Proof. Assume the hypotheses of the theorem. First we show that 7 is well-defined:
Ift,t/ € TS with7 =1', then @ -t =1, by J |= ® therefore J(¢) = J(¢'). For the
proof that 7 is a homomorphism we only show (i). So letay,...,a, € T®, say a; =1;
with suitable #; € TS for 1 <i < n. Now, if R¥"aj ...ay, i.e, RX 71 ...T,, then & F
Rty ...t,.Since J|= @, we get J =Rty .. .1,,i.e., R*J(t;)...3(t,), and by definition
of 7 finally R*x(ay)... w(ay). 4

If @ is a set of S-sentences with J? Ed,ie., P = @, algebraists call the struc-
ture T a free model of ® over {v, | n € N}. Similarly, one can show that I is free
over {V,; | n < k}. We do not present the details of the definitions here (however, see
Exercise 2.9).

Next, we show that for a set @ of universal Horn formulas the interpretation 3% is
a model of @. This will lead us to concrete applications of Theorem 2.1. We define
universal Horn formulas to be formulas which are both universal and Horn formulas
(cf. Exercise 111.4.16):

2.2 Definition. Formulas which are obtained using the following calculus are called
universal Horn formulas:

1 if n € Nand IR <3 t i
D Covvogve freNande....¢n,¢areatomic
2 if n € Nand ¢y,..., ¢, are atomic
@ Eav.voe) P0,---5 @

oV ()
3) —— 4) ——.
® (pAy) @ g

The decisive restriction which distinguishes universal Horn formulas from universal
formulas is expressed in (1), allowing only a single unnegated atom as member
of the disjunction. Thus (PcV Pd) and (—PxV PyV x = y) are not universal Horn
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formulas and — as we shall see in Exercise 2.8 — not even logically equivalent to
universal Horn formulas.

2.3 Lemma. For k € N the following holds:

(a) Every universal Horn formula in Li is logically equivalent to a conjunction of
formulas in L;E of the form

(H1) Vx...Vx,@
(H2) Vxi...Vxu(@oA...AN@, — @)
(H3) Vxi.. .me(—\goo V...V ﬂ(p,l)
with atomic @ and ;.
(b) Every universal Horn formula in L;E is logically equivalent to a universal Horn
formula from Lg in prenex normal form.
(¢) If ¢ is a universal Horn formula and if x1,...,x, are pairwise distinct, then,

n
forty,....ty € TS, the formula ¢(x |t ) is also universal Horn.

Proof. (a) follows from the fact that for n > 1 the formula (—@; V...V =@,V @)
is logically equivalent to (@; A ... A @, — @) and the formula Vx(@ A y) logically
equivalent to (Vx¢ A Vxy). Part (b) follows similarly and (c) can easily be proved
by induction on universal Horn formulas. —

Now we show:

2.4 Theorem. Let @ be a consistent set of formulas and W a universal Horn for-
mula with @ = y. Then 3% = .

With Theorem 2.1 we get:

2.5 Corollary. Let @ be a consistent set of universal Horn formulas. Then 3% is a
free model of P. B

And with Lemma 1.2(c) we conclude:

2.6 Corollary. Let S contain a constant and let @ be a consistent set of universal
Horn sentences. Then Tg’ is a model of P. b

Proof of Theorem 2.4. If y is atomic, Reminder 1.1(b) gives:

(%) ey iff @Ry

Now we prove the theorem by induction on rk(y) using Definition 2.2.

():Lety = (=@ V...V, V@) and let @ | y. The case n = 0 is covered by ().
Let n > 0. We have to show that J® |= (@1 A ... A @, — @). So assume that I =

(i A...AN@,). Then @+ @y,..., P F ¢, by (). Since PF (@1 A...A@, — @), we
also have @ I ¢ and, again by (x), we get I |= o.

(2): Let w = (—@oV...V—@,) and let @ F y. Then @+ =(@o A ... A @,). Sup-
pose J? is not a model of (¢ V...V =@,). Then J% |= ¢; fori = 0,...,n, hence
DF @ fori=0,....,nby (x),ie, D+ (P A...A@,). Thus @ is not consistent
which contradicts the hypothesis.
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(3): For w = (¢ A ¢2), where ¢; and ¢, are universal Horn formulas, the claim
follows immediately from the induction hypothesis for ¢; and ¢,.

(4): Let y =Vx¢ and @ F Vx¢@. Then & (p% forall € TS. Since (p% is a universal
Horn formula (cf. Lemma 2.3(c)) and since rk(¢ %) =rk(¢@) < rk(y), the induction
hypothesis gives J® |= ¢ )Lc for all € T%, and Reminder 1.1(c) yields J% |= Vx¢.

As an example we consider the axiom system Dy, for the class of all groups as
{o, 71 e}-structures (cf. the remark following Corollary IIL.5.8). It consists of uni-
versal Horn sentences. Hence, by Corollary 2.5, TP is a free model, the free group
over {V, | n € N}. If we set Pyp, 1= Py U{VxVyxoy=yox}, TP is the free abelian
group over {v, | n € N}.

Sentences of the form Vx; ...Vx,t; = t, are also called equations. So equations are
universal Horn sentences. The axioms of @, and P,y are equations. Many classes
of structures studied in algebra can be axiomatized by equations and therefore have
free models (see also Exercise 2.10).

For the axiom system Py, we have Py - Jzzox =y. A “solution” is provided
by yox~! (a term in the free variables of Jzzox = y). An analogous fact holds in
general; it is contained in the following strengthening of Herbrand’s Theorem 1.4:

2.7 Theorem. Let k € N and S contain a constant in case k = 0. Furthermore, let
P C Li be a consistent set of universal Horn formulas. Then the following are
equivalent for every formula in Lf of the form 3x; ... 3x,(Wo A ... AN yp) with atomic

Yo, -5 YI!
G @+ Hxl...ﬂxn(l,t/()/\.../\l,t/]).

(i) JF E I I (wo A A W)

(iii) There arety,... t, € TS with @+ (Yo A ... A v (x |’tl)
Proof. Obviously, (iii) implies (i) and (i) implies (ii). We show how to obtain (iii)
from (ii). Let 3 = 3xy ... 3, (Yo A ... A yy), i.e., for suitable terms 71,...,t, € T,

~P nn . no neo, .

we have J7° = (Yo A... Ayp)(x | 7). Since (Yo A...Ay)(x |1) is a quantifier-
free formula from L, Lemma 1.2(b) yields 3% = (yo A ... A v (x |?) Therefore
I3 = yi(x |?) fori=0,...,1, and as the y; are atomic we get & - y;(x |?) and so
altogether @ (l//o/\.../\l//l)(;\?). 4
If in part (i) we replace the derivation relation - by the consequence relation =, we

see that the validity of @ = 3x;...3x, (Yo A ... A y;) can be checked by a single
interpretation, namely 3,‘35.

In mathematics and its applications one is usually interested not only in the deriva-
tion of an existential formula but also in the presentation of concrete terms satisfying
it. In view of the formal character of the sequent calculus we see that in the cases
covered by Theorem 2.7 it is possible to find concrete solutions in a systematic way.
Thus one can think of a programming language where, for a given problem, a pro-
grammer only has to formalize in first-order language the hypotheses (as universal
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Horn formulas) and the “query” (as an existential formula); then, by systematically
applying the sequent calculus, the computer searches for terms satisfying the exis-
tential formula, i.e., solving the given problem. The area in which this approach is
pursued is called logic programming, the most popular programming language in
this context being PROLOG (Programming in Logic).

The central idea in this subject is often expressed by the following equation:
algorithm = logic + control

“Logic” here refers to the static (the declarative) aspects of the problem, e.g., its
adequate formalization. “Control” stands for the part concerned with the strategies
for applying rules of derivation which therefore characterizes the dynamic (the pro-
cedural) aspect.

We shall deal with the fundamentals of logic programming in Sections 6 and 7.
In Sections 4 and 5 we consider rules of derivation which are more suitable for
logic programming than the rules of the sequent calculus that primarily follow the
proof patterns used by mathematicians. In many concrete applications the equality
symbol does not appear in the formalizations. This will simplify the exposition. The
next section contains some preliminary results for equality-free formulas.

2.8 Exercise. Let S:= {P,c,d} with unary P and @ := {(PcV Pd)}. Show that not
3% |= @ and conclude that (PcV Pd) is not logically equivalent to a universal Horn
sentence. Using Exercise I11.4.16, show that it is not even logically equivalent to a
Horn sentence. Prove this last statement also for (—PcV PdV ¢ =d).

2.9 Exercise. Show: Every at most countable group & (as {o, -1 ,e}-structure) is a
homomorphic image of T®e» (i.e., there is a homomorphism from T®e» onto &).
Similarly, show that for k € N every group & generated by at most k elements is a

homomorphic image of T,ipg“’.

2.10 Exercise. Let @ := {Vx;...Vx,,; =1 | i € N} be a set of equations in the

language L5#» of group theory. Show:

(a) Py U D is satisfiable.

(b) The structure TPerY? is a model of Dy U P, the so-called free group over
{Vx | n € N} with defining relations t; = 1] (i € N).

(c) The set {7 |t € TS and Py, U P It = e} is the universe of a normal sub-
group 4 of TP (the equivalence classes are taken with respect to Dypp). We
have TPer P o= TP /o

XI.3 Herbrand Structures

A formula is called equality-free if the equality symbol does not occur in it. Our
first goal is to show that no non-trivial equations are derivable from equality-free
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formulas. This allows us to present the term interpretations J% in an especially
simple form in case @ consists of equality-free formulas.

3.1 Theorem. If D is a consistent set of equality-free S-formulas, then the following
holds for all terms ty,ty € TS:

(%) If ®Ft1=1t thent)=n.
The crucial part in the proof is the following lemma:

3.2 Lemma. For an S-interpretation 3 = (2, B) let I = (A, B’) be the S-interpre-
tation given by

() A :=T5;

() forn-ary f € Sandty,... ,t, € TS:

Pty ) = fl et
!
() forceS: & =¢;
(4) forn-aryR € Sandt,... t, € TS:
Rt ..ty :iff R™3(n1)...35(tn);
(5) P'(x) := x for all variables x.
Then the following holds:
() forallt € TS: J(t)=t;
(i) for all universal and equality-free formulas v € L5:
IfIE withend = .

Proof of Lemma 3.2. Part (i) follows immediately from the definitions. — (ii): Every
equality-free atomic formula ¢ is of the form Rt ...t,; so by (4) we have

Ve iff JEo.

Now we can show the implication in (ii) by induction on rk(y). For y = Vx¢, for

example, we argue as follows: If J = Vx¢, then for all # € TS we have 3@ E o,

hence J = ¢ %, so by induction hypothesis ¥’ |= (p)% (note that k(¢ %) < 1k(y)).
Since J'(¢) =t we have J'L |= ¢. Therefore 'L |= ¢ holds for all 1 € TS (= A"),
and so J' = Vx@. —|

Proof of Theorem 3.1. Suppose @ satisfies the hypotheses of the theorem. Further-
more, let P F1; =1,.

First, we consider the case where @ consists of universal formulas and choose a
model J of @. Then, by Lemma 3.2(ii), we have 7’ = @. Since @ -t =1, it follows
that 7’ = 11 =1, and therefore t; = 3'(t1) = 3'(12) = 1 (cf. Lemma 3.2(1)).

In the general case, applying the Compactness Theorem VI.2.1, we first replace &
by a finite subset @y with @y 1] = 1,. Let @y be the conjunction of the formulas
from @y. Then ¢y is satisfiable and equality-free, and we have @q - t; = ;. By the
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Theorem on the Skolem Normal Form (cf. VIIL.4.5 and the proof given there) there
is a satisfiable, universal, equality-free Y with y - ¢@g. By @g - 1| = t, we therefore
have y It = ;. So, by the case of universal formulas already considered, #; = t,
holds. B

Now let @ be consistent and equality-free. For the equivalence relation
ti~t iff dFH =0
on T%, given by @, the previous theorem yields
th~tn iff 1 =n.
So 7 = {t}. For simplicity we identify 7 and ¢ and get:

3.3 Remark. Let @ be a consistent set of equality-free S-formulas. Then the fol-
lowing holds for the term interpretation 3% = (32,B%):

(@) T® =T5.
(b) Forn-ary f € Sandty,... t, € TS:
D
Xt t) = fti.. .ty

(c) Forces: ¢ =c.
(d) Forn-aryR € Sandt,... t, € TS:

Rt ..ty iff ®FRh...1
(e) For every variable x: B®(x) = x. 4
We now consider the case where @ is a set of sentences, assuming throughout that S

contains a constant. The substructure ‘Ig) of % from Remark 3.3, consisting of
variable-free terms, is a Herbrand structure in the following sense.

3.4 Definition. An S-structure 2l is called Herbrand structure if
(i) A=T5.

(ii) Forn-ary f€ Sandt,....t, € TS, f2(t1,...,ty) = ft1...tn.

(ili) Force s, c*=c.

We note:

3.5 Remark. For a consistent set @ of equality-free sentences, ‘Ig is a Herbrand
structure. b

3.6 Remark. For a Herbrand structure A and t € TOS we have t¥ =1. =

For a Herbrand structure the interpretation of the function symbols and constants is
fixed. However, Definition 3.4 says nothing about the interpretation of the relation
symbols; it can be chosen “freely.”

3.7 Theorem. Let @ be a satisfiable set of universal and equality-free sentences.
Then @ has a Herbrand model, i.e., a model which is a Herbrand structure.
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Proof. Let 3 = (2, B) be an interpretation with J |= &. For the corresponding inter-
pretation 7' = (2, B’) (see Lemma 3.2) we have that 3’ = @ and therefore 2’ |= P.
By definition of U/, TOS is the universe of a substructure B’ of 2A’. B’ is a Herbrand
structure and also a model of @ as @ consists of universal sentences. —

The minimality of the term structure mentioned in the previous section (before The-
orem 2.1) is reflected in the following characterization of T¢.

3.8 Theorem. Let @ be a consistent set of universal and equality-free Horn sen-
tences. Then the following holds:

(a) The structure Tgs is a Herbrand model of ®.

(b) For every Herbrand model A of ® and every n-ary R € S, R0 C R

Therefore T is called the minimal Herbrand model of ®.

Proof. (a): The structure ng is a Herbrand structure (cf. Remark 3.5) and a model
of @ (cf. Corollary 2.6).

(b): Let 2 be a Herbrand model of @ and let R € S be n-ary. For1y,...,t, € TOS (=A)
we have by definition (cf. Remark 3.3(d)):

R¥0ty...1, iff @Rt ...t
Assume RTan ...t,. Since 2 = @, we have A = Rty ...1,, i.e., R¥ty .. .1,. B

We finish this section by restating Theorem 2.7 in terms of the Herbrand struc-
ture T&:

3.9 Theorem. Let @ be a consistent set of equality-free universal Horn sentences.
Then the following are equivalent for every Horn sentence 3x; ... 3x,(Wo A ... Ayp)
with atomic Yy, ..., Y;:

1) dﬁ}—Elxl...Elx,,(l//o/\.../\l//[).
(i) TP E I I (WA Aw).
(iii) Therearety,... .ty € Ty withcbl—(l//()/\.../\l/ll)()nc|;l). o

XI1.4 Propositional Logic

In propositional logic we consider formulas which are built up from atoms, the
so-called propositional variables, only using connectives. The propositional vari-
ables are interpreted by the truth-values 7 (for “true”) and F' (for “false”) (cf. Sec-
tion II1.2).

4.1 Definition. Let A, be the alphabet {—,V,), (} U{po, p1,p2,...}. We define the
formulas of the language of propositional logic (the propositional formulas) to be
the strings over A, which are obtained by means of the following rules:
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. a a,p
w S e Ty

Again, (A B), (e — B), and (a > ) are abbreviations for =(—~a VvV —f), (—a V),
and (—(aV B)V—(—aV —pB)), respectively. For propositional variables we often
use the letters p,q,r, ..., for propositional formulas the letters o, 3,. ... By PF we
denote the set of propositional formulas. For o € PF let pvar(o) be the set of propo-
sitional variables occurring in ¢,

pvar(a) := {p| p occurs in o }.
Furthermore, for n > 1 we set
PF, :={o € PF | pvar(o) C {po,..-,Pn—1}}-

A (propositional) assignment isamap b: {p; |i € N} — {T, F}. The other semantic
notions are defined as in the first-order case:

The truth-value «[b] of a propositional formula ¢ under the assignment b is defined
inductively by?
pilb] = b(pi)
—afb] = =(afb])
(v B)[b] := V(a[bl,B[b])
(cf. Section IIL.2 for the definition of < and V). If at[b] = T we say that b is a model

of & or satisfies oc. The assignment b is a model of the set of formulas A C PF if b
is a model of each formula in A.

Similar to the Coincidence Lemma II1.4.6 of first-order logic, the truth-value o[b]
depends only on the assignment of the propositional variables occurring in the for-
mula a:

4.2 Coincidence Lemma of Propositional Logic. Let a be a propositional for-

mula and let b and b’ be assignments with b(p) = b'(p) for all p € pvar(ct). Then

alb] = alp].

The easy proof is left to the reader. —

By this lemma, for o € PF, and by, ...,b, € {T,F} it makes sense to write
Ot[b(), . ,bn]

for the truth-value o[b] where b is any assignment for which b(p;) = b; for i <n.If
alby,...,by) =T, we say that “b satisfies ot.”

We define:
— a is a consequence of A (written: A = o) :iff every model of A is a model
of o;
— ais valid (written: = ) :iff « holds under all assignments;

3 Inductive proofs and definitions on propositional formulas can be justified as those for first-order
logic in Section IL.4.
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— A is satisfiable (written: Sat A) :iff there is an assignment which is a model
of A;

— o is satisfiable (written: Sat @) :iff Sat {a};

— o and B are logically equivalent :iff = (a < B).

Some essential aspects of logic programming can better be explained on the level
of propositional logic; we will do so in the next section. The results obtained there
have to be transferred to first-order language. Let us consider a technique for such
a transfer. It is based on the intuitively evident fact that an equality-free formula
such as ((Rxy A Ryfx)V (—Rzz A Rxy)) has the “same models” as the propositional
formula ((po A p1) V (=p2 A po)).-

Let S be an at most countable symbol set containing at least one relation symbol.
Then the set

AS = {Rt;...t,|R € Sn-ary, t1,...,t, € TS}
of equality-free atomic S-formulas is countable. Furthermore let
ﬂoIAS%{pi‘iEN}

be a bijection. We extend 7y to a map 7 which is defined on the set of S-formulas
which are both equality-free and quantifier-free, by setting:

n(Q) = my(e) for p € AS
(=) = ~7n(9)
r(eVy) = (m(@)Vr(y)).
Then the following holds:

4.3. The map ¢ — 7(Q) is a bijection from the set of equality-free and quantifier-
free S-formulas onto PF.

Proof. We define a map p: PF — L5 by

p(p) == m5'(p)
p(-a) == —p(a)
p(aVvp) == (p(a)Vp(P)).

By induction on ¢ and o, respectively, one can easily show:

p(m(p)) = ¢ for equality-free and quantifier-free @,
n(p(a)) = a for o € PF.

Hence 7 is a bijection and p = 7. -

4.4 Lemma. If ®U{@,y} is a set of equality-free and quantifier-free S-formulas,
then the following holds:

(a) Sat @ jff Satn(P).

b) @9 iff n(P)E=7n(e).

() @ and y are logically equivalent iff w(®) and n(y) are logically equivalent.
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Proof. Since (b) follows immediately from (a) and (c) follows immediately from
(b), we only have to show (a). For the implication from left to right let J be an
S-interpretation with J = &. We define a propositional assignment b by

{T it 3 p(pi)

b(p;) =
(Pi) F  otherwise

for i € N. Using induction on propositional formulas one can easily show that for
all @ € PF

alp|=T iff TE=p(a).
Since J |= @ the assignment b is a model of 7(P).

For the other direction, let 7(P) be satisfiable and b be a model of 7(P). It suffices
to find an S-interpretation J with

() JEe iff zw(e)b|=T

for all ¢ € AS. Then a proof by induction shows that J = ®. We define J = (2, B)
by (cf. Lemma 3.2):

A = TS;
A, tn) = fti...t, forn-ary fe€Sandr,... 1, € TS
A = ¢ forc e S;
Blx) = x

P .1, iff n(Pt;...t,)[b] =T forn-ary P€ Sandty,...t, € T".

Then obviously (x) holds. —

Lemma 4.4 depends essentially on the fact that the equality symbol does not occur
in @. If we drop this hypothesis we get a counterexample to Lemma 4.4(a) taking a
unary relation symbol P and setting (Pvg) := po, T(Pvy) := p1, T(vo = vi) := p2
and @ := {Pvy,~Pvi,vo = }.

In addition, we can use the connection built in Lemma 4.4 to transfer properties of

first-order logic to propositional logic. We show this for the Compactness Theorem
(for a purely propositional proof see Exercise 4.11).

4.5 Compactness Theorem for Propositional Logic. A set of propositional for-
mulas is satisfiable if and only if each of its finite subsets is satisfiable.

Proof. We set S := {P} with unary P and define ) on AS = {Pv; | i € N} by
7o (Pv;) := p; for i € N. Then the following holds for arbitrary A C PF:

Sat A iff Sat 77!(A) (by Lemma 4.4(a))

iff for every finite subset @y of 77 !(A), Sat &y
(by the Compactness Theorem VI.2.1 for first-order logic)

iff for every finite subset Ag of A, Sat Ay (by Lemma 4.4(a)). —
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In a similar way, Exercise 4.10 should encourage the reader to transfer the Theo-
rem on the Disjunctive and on the Conjunctive Normal Form to propositional logic.
A propositional formula is in disjunctive normal form (written: in DNF), if it is a
disjunction of conjunctions of propositional variables or negated propositional vari-
ables; it is in conjunctive normal form (written: in CNF), if it is a conjunction of
disjunctions of propositional variables or negated propositional variables. For ex-
ample, the formulas

(pVqV(mrAgA—p)) and ((=pAr)V(gA-rA—q)Vr)
are in disjunctive normal form, and the formula

((pV-r)A(=gVrVa))

is in conjunctive normal form (note that we saved brackets in the iterated conjunc-
tions and iterated disjunctions).

We prove the Theorem on the Disjunctive and on the Conjunctive Normal Form
for propositional logic directly. We do so by discussing the question raised in Sec-
tion III.2 and showing that every extensional connective can be defined by means
of = and V within propositional logic.

The connective “and” is defined by the formula & := —(—po V —p1) (and hence by —
and V) in the sense that

for all by, by € {T,F}: A (by,b1) = at[bo,b1].
The same is true for every extensional connective:

4.6 Theorem. Let n > 0. For every truth-function h: {T,F}"*! — {T ,F} there is
a formula o € PF 1 defining h in the sense that

h(bo,...,by) = t[bo,...,b,] forallby,...,b, € {T,F}.
The formula can be chosen to be in DNF or in CNF — as desired.

Proof. First, we explain the idea of the proof for the example of the binary truth-
function & with the truth-table

We get a formula in DNF defining / as follows: The second and the fourth row of the
table give the truth-value T'; the arguments there are described by the conjunctions
(poA—p1) and (—po A —py), respectively. Their disjunction

(PoA=p1)V (mpo A=p1)
is a formula in DNF defining 5.
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The first and the third row of the table give the truth-value F'; the formulas (—pg V
—p1) and (po V —p1) say that these arguments are excluded. Their conjunction

(=poV=p1) A(poV —p1)
is a formula in CNF defining /.

Now let h: {T,F}"*! — {T,F} be an arbitrary truth-function. We set —T := F and
—F :=T. For a propositional variable p let p” := p and p* := —p. Finally, for
“arguments” by, ...,b, € {T,F} let

oo = pRO A LA pl

(“we are in the row with the arguments by, ...,b,”),
boyeoisbp o b —by,

po: =py ' V...Vp,

(“we are not in the row with the arguments by, ..., b,”).

Then the following holds for all by, ..., b}, € {T,F}:
(1) abor=bulpf .. bl]=T iff by=hjand...and b, =b),
and
(2) Bborbnlpy ... bl =T iff bo+#Dbjor...orb,# Db,
The following formulas ap in DNF and o in CNF define &:
{po/\ﬁpo, if h(by,...,b,) =F forall by,...,b, € {T,F},
Op =

V{abobu|by ... b, €{T,F}, h(b,...,b,)=T}, otherwise;
{PO\/_‘PO, if h(by,...,by) =T forall by,...,b, € {T,F},
oc =

N{Bbo-n | by, ... by €{T,F}, h(bo,...,b,)=F}, otherwise.
We show this for the formula op, i.e., we prove:

forall by,...,by € {T,F}, h(bo,...,by) = ap[bo,...,by).

that b{, = by, ..., b, = b, and so h(by,...,b,) =T. -
As a corollary we easily obtain:

4.7 Theorem on the Disjunctive and on the Conjunctive Normal Form. Every
propositional formula is logically equivalent to a formula in disjunctive normal form
and to a formula in conjunctive normal form.

Proof. Let o be a propositional formula in PF, ;. We choose the truth-function
h: {T,F}"*' — {T,F} with h(by,...,b,) = alby,...,b,] for by,...,b, € {T,F}.
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By Theorem 4.6 there are a formula in DNF and a formula in CNF, each of which
defines / and hence is logically equivalent to «. —

4.8 Corollary. Forn > 0 there are exactly 22"

formulas in PF, .

pairwise logically nonequivalent

Proof. Two formulas o and B in PF,;; are logically equivalent if and only if
albo,...,by] = Blbo,...,by) for all by,...,b, € {T,F}, ie., if they define the
same (n+ 1)-ary truth-function. By Theorem 4.6 the number of pairwise logi-
cally nonequivalent formulas in PF,; is equal to the number of truth-functions

h: {T,F}"*' = {T,F}, hence equal to 22"""). 4

4.9 Exercise. In Theorem 4.6 we have shown that every truth-function can be de-
fined with = and V. Prove the corresponding statement if - and V are replaced by
(a) = and A;

() 1: {T,F} x{T,F} — {T,F} with truth-table

We say that the sets {1, V}, {=, A}, {i} are functionally complete.

4.10 Exercise. Transfer the theorems about DNF and CNF of first-order logic to
propositional logic using Lemma 4.4.

4.11 Exercise. Prove the Compactness Theorem 4.7 of propositional logic directly.
Hint: Let A C PF, and assume that every finite subset of A is satisfiable. Call a
sequence (bo,...,by) of truth-values good if every finite subset of A has a model b
with b(p;) = b; for i < n. Show that there are arbitrarily long good sequences and in-
fer the existence of an assignment b satisfying every finite subset of A, and hence A
itself.

4.12 Exercise. Let the sequent calculus &, of propositional logic consist of the
rules analogous to (Assm), (Ant), (PC), (Ctr), (VA), and (VS). For the resulting
derivation relation i, of propositional logic show the following Adequacy Theorem:
Forall A CPFandalloa € PF: Ab,a iff Ao

XL.5 Propositional Resolution

In this section we study techniques for “quickly” testing the satisfiability of propo-
sitional formulas of a certain type. Partly these techniques are preliminary versions
of methods in logic programming to be considered in the next section.
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If we want to test whether & € PF,1 is satisfiable using the definition of the relation
of satisfaction, in the worst case we have to calculate the truth-value a(b,...,b,]
for 21 tuples (b, ...,b,) € {T,F}**!. For n =5, 10, 20 these are already 64,
2048, 2097 152 tuples, respectively. As we mentioned in Section X.3, the following
question is equivalent to the “P = NP”-problem of theoretical computer science: Is
it possible to test the satisfiability of propositional formulas with a register program
which, for suitable k£ € N, gives the answer for formulas of length < 7 in at most nk
steps?

For subclasses of formulas one can give fast algorithms. For instance, one can easily
test the satisfiability of formulas in DNF: For o = (B V...V B,), & is satisfiable if
and only if for some i with 0 < i < r the formula f; is satisfiable. For a formula f; =
(Ao A...AAg), where the A; are propositional variables or negations of propositional
variables, we have that f3; is satisfiable if and only if for no propositional variable p,
both p and —p occur among Ay, ..., As.

Since a formula o is valid if and only if —o is not satisfiable, every algorithm
for proving satisfiability gives an algorithm for proving validity. Furthermore, for
each o in CNF or in DNF one can immediately give a DNF or CNF, respectively,
for —a. For instance, for the formula in CNF

o= (pV-gVr)A\(—pVsVtVr)Ag,
the negation —« is logically equivalent to

(mpAgA=F)V (pA—sA—tA=r)V—g.

Therefore the fast test for satisfiability of formulas in DNF mentioned above gives
a fast test for validity of formulas in CNF .

We now show that there is a fast test for satisfiability also of special formulas in
CNF, the so-called propositional Horn formulas. For the following definition, see
Exercise II1.4.16 or Definition 2.2.

5.1 Definition. The formulas which can be obtained by means of the following cal-
culus are called (propositional) Horn formulas.

€))] AR AT forn € N,

2) a0V =) forn € N,
a,B

3) —.

O g

Every Horn formula is a formula in conjunctive normal form, where the members of
the conjunction are of the form (1) or (2). If, in (1), we distinguish the cases n = 0
and n > 0, every member of the conjunction has the form (PH1), (PH2), or (PH3):
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(PHI) ¢
(PH2) (qoA-..-Agn—q)
(PH3) (—qoV...V—qy).

Horn formulas of the form (PH1) or (PH2) are called positive, those of the form
(PH3) negative.

Henceforth, let A be a set of positive Horn formulas. This set is satisfiable: The
assignment b with b(g) =T for all propositional variables g is a model of A. In ad-
dition to this maximal assignment satisfying A (maximal in the sense that a maximal
number of propositional variables get the truth-value 7') we want to give a minimal
assignment b4 satisfying A. For this purpose we interpret the formulas of the form
(PH1) and (PH2) as rules:

(PHI) requires: “T is assigned to ¢”,
(PH2) requires: “If T' is assigned to qo, ..., gy, then also to g”.

We use this dynamic interpretation of formulas to “construct” ». So we consider
the calculus with the rules

(T1) — ifgeA
q q
(T2) w if (goA-.. Agn — q) € A,
and for a propositional variable p we set:

pA (p) =T :iff pisderivable in the calculus with the rules (T1) and (T2).

5.2 Lemma. The assignment b® is a minimal modelof A, i.e.,

(a) b2 is a model of A.
(b) For every assignment b which is a model of A and for every propositional

variable q:
Ifb*(q) =T, thenb(q) = T.

Proof. (a): For example, if the formula (go A... A g, — ¢) is in A and we have

(@oA-...Aqn)[b*] =T, then the variables qo, . .. , g, are derivable in the calculus (by
definition of b*). Hence, so is g (cf. (T2)). Therefore b* (q) = T.

(b): Let b be a model of A. By definition of b* it suffices to show that b(q) = T
for every derivable g. This can easily be proved by induction over the calculus: For
instance, if we get g by rule (T1), then g € A and so b(q) =T, since b is a model
of A. n

We drop the hypothesis that A is a set of positive Horn formulas and show:

5.3 Theorem. Let A be a set of Horn formulas of the form (PH1), (PH2), or (PH3),
and let AT and A~ be the set of positive and negative formulas in A, respectively.
Then the following are equivalent:
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(a) A is satisfiable.
(b) Forall x € A=, AT U{a} is satisfiable.
(¢) The assignment bA" is a model of A.

Proof. The directions from (a) to (b) and from (c) to (a) are trivial. We show how
to get (c) from (b). By Lemma 5.2(a), b2 is a model of AT. Let o € A~ say,
o= (—qoV...V—q,). Since we assume (b), there is an assignment b which is a
model of AT U{=qgoV ...V =gy}, and therefore there is some i € {0,...,n} with
b(g;) = F. Since b is a model of A", Lemma 5.2(b) shows that b4" (¢;) = F and
hence, (—qo V...V —g)[PA ] =T. .

Now we are ready to give a fast algorithm for testing satisfiability of Horn formulas,
the underlining algorithm.

Let o be a Horn formula. By the remarks following Definition 5.1, « is a conjunc-
tion of formulas f of the form (PH1), (PH2), or (PH3). Let A be the set of these 3,
i.e., the set of members of the conjunction «.

The rules (U1) and (U2) of the underlining algorithm correspond to the rules (T1)
and (T2) above:

(U1) Underline in o all occurrences of a propositional variable ¢ which is itself a
member of the conjunction .

(U2) If in a member (go A ... A gy, — g) of the conjunction & the propositional
variables qo, . . ., g, are already underlined, then underline all occurrences of ¢
in a.

The algorithm terminates when none of the two rules can be applied anymore. If o
contains, say, r distinct propositional variables, this haEpens after at most r steps.
Then just those variables ¢ are underlined for which 54" (¢) = T. Hence (cf. Theo-
rem 5.3) « is satisfiable if and only if in no member (—¢gg V ...V —g,) of the con-
junction all propositional variables are underlined.

We illustrate the algorithm with two examples. First, let
o= (=pV-g)A(p—=q)AN(pAr—q)Ar.
With (U1) we get:
(=pV-g)A(p—=q)A(pAr—q)Ar.

Now we cannot apply any of the rules (U1), (U2). Therefore, « is satisfiable and the
minimal assignment b for ¢ is given by

b(s) = T fors:.r
F  otherwise.
Now let
o= (-pVgVas)AN-tA(r—p)ArAgN(u—s)Au

with propositional variables p, g, r, s, t, and u. Step by step we get:
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(=pV—gV-as) At A(r— p)ArAgA(u—s)Au  (with(Ul))
(=pV =gV =s) A=t A(r— p) ArAgA(u—s)Au  (with(U2))
(=pV =gV =s) A=t A(r— p) ArAgA(u—s)Au  (with(U1))
(=pV =gV —s) A=t A(r— p) ArAgA(u—s)Au  (with(U1))
(=pV =gV —s)A-t A(r— p) ArAgA(u—s)Au  (with(U2)).

So a is not satisfiable, since all variables in (—p V =gV —s) are underlined. In fact,
not even the formula

oy = (mpV—gV-s)A(r— p)ArAgA(u—s)Au,

which can be obtained from « by keeping only (—pV =gV —s) from the negative
members of the conjunction, is satisfiable.

In the algorithm which we will study later under the name Horn resolution, the
underlining algorithm is run “backwards”: For example, let o be a Horn formula
with only one negative member (—go V...V —g,) in the conjunction; if we want
to prove that & is not satisfiable using the underlining algorithm, we have to show
that all variables in {—qo,...,—¢,} (i.e., qo,...,q,) Will finally be underlined. If
(roA...Arj — gq) (orif g) is a member of the conjunction & and if g = ¢;, by rule
(T2) (or by rule (T1)) it suffices to show that each variable in

{ﬁQOw"a_‘Cli—la_"”an'~»_‘rj»_‘61i+17~~~a_‘Qn}
(Or {_“]0,---7_‘41'717ﬁ11i+17---aﬁ51n})

ends up being underlined.

(%)

Now this argument can be repeated and applied to the set in (x). It will turn out
that o is not satisfiable if in this way one can reach the empty set in finitely many
steps. (Then none of the variables remains to be shown to be underlined.) In the case
of

g = (—pV gV as)A(r— p)ArAgA(u—s)Au
we can reach the empty set as follows:

{_'p7_‘Qa _'S}
{=p,—q,—u} (since (u—s) € A™)
{=p,—q}  (sinceuc A™)

{-p} (sinceqge A™)
{-r} (since (r — p) € A™T)
0 (since r € A™).

The idea underlying this algorithm can be extended to arbitrary formulas in CNF; in
this way one arrives at the resolution method due to J. A. Robinson (1965). There,
formulas in CNF are given in set theoretic notation. For instance, one identifies a
disjunction (o V ...V a,) with the set {0y,...,a,} of its members. In this way
the formulas (—po V p1V —po), (—poV —poV p1), and (p; V —pg) coincide with
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the set {—pog, p1}. Obviously, disjunctions which lead to the same set are logically
equivalent. We introduce the notation in a more precise way.

A literal is a formula of the form p or —p. For literals we write A,A,.... A finite,
possibly empty set of literals is called a clause. We use the letters K,L,M,... for
clauses and R, ... for (not necessarily finite) sets of clauses.

For a formula o in CNF,

a=(AoV...V ) Ao e A (Mo VooV Ay )
let

ﬁ(a) = {{A()o,...,ﬂono},...,{)‘ko,...,l]mk}}
be the set of clauses associated with o.

This transition from a formula to its set of clauses motivates the following defini-
tions:

5.4 Definition. Let b be an assignment, K a clause and K a set of clauses.

(a) b satisfies K (or K holds under b) :iff thereis A € K with A[b] =T.
(b) K is satisfiable :iff there is an assignment which satisfies K.

(¢) b satisfies & :iff b satisfies K for all K € R.

(d) Ris satisfiable :iff there is an assignment which satisfies K.

Thus, an assignment b satisfies a clause {Ag, ..., A, } iff (A V...V A,)[b] =T. The
empty clause is not satisfiable. Therefore, if @ € K, R is not satisfiable. On the other
hand, the empty set of clauses is satisfiable.

Furthermore, we see immediately: If @ ¢ & and & # 0, then b satisfies the set £ if
and only if b is a model of Agcg \Vjcx A. Consequently, a formula o in CNF and
its set of clauses £( ) hold under the same assignments.

With the resolution method one can check whether a set K of clauses (and therefore,
whether a formula in CNF) is satisfiable. This method is based on a single rule and,
therefore, has certain advantages for computer implementation. The rule allows the
formation of so-called resolvents.

)

We extend the notation p := —p to literals by setting (—p)* := p.

5.5 Definition. Let K; and K> be clauses. The clause K is called a resolvent of K;
and K, if there is a literal A with A € K; and AF € K5 such that

(K \{A})U(K2\ {AF}) CK C K UKy

For K; = {-r,p,—q,s,t} and K» = {p,q,—s}, {-r,p,s,t,—s} is a resolvent of K|
and K3, as are {—r,p,—q,t,q} and {—r, p,—q,s,t,q,—s}.

Adding a resolvent to a set of clauses does not change its satisfiability:

4 The results that follow remain valid if in addition we require that K = (K1 \ {A}) U (K2 \ {A7}).
For the purposes of logic programming, however, it is better to give the definitions as done here.
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5.6 Resolution Lemma. Ler R be a set of clauses, K1,K> € R, and K a resolvent
of K1 and K. Then for every assignment b the following holds:

b satisfies RU{K} iff b satisfies R.

Proof. The direction from left to right is trivial. For the other direction let b satisfy
the set . We have to show that b satisfies the clause K. Since K is a resolvent of K
and K, there is a literal A with A € K, Af € Ky, and (K, \ {A})U (K2 \ {AT}) C
K C Kj UK;. There are two cases:

A[b] = F: Since K) holds under b, there is A’ € Kj, A # A/, with A'[b] = T. Since
A € K, K is satisfied by b.

A[b] = T: Then Af[b] = F, and we argue similarly with K, and A% =

We now show that an arbitrary set & of clauses is not satisfiable if and only if,
by forming resolvents and starting from the clauses in K, one can get to the empty
clause in finitely many steps. For this purpose we introduce for i € N the set Res;(R)
of clauses, which can be obtained from £ in at most i steps.

5.7 Definition. For a set £ of clauses let
Res(R) := RU{K | there are K, K> € £ such that K is a resolvent of K| and K.

For i € N define Res; (&) inductively by
Resp(R):=8
Res; 1 (8):=Res(Res;(R)).
Finally, set
Resw(R) := Uien Resi(R).

Hence, Res..(R) consists of those clauses which, starting from the clauses in £, can
be obtained by building finitely many resolvents.

Now the result which was already stated several times can be phrased as follows:

5.8 Resolution Theorem. For a set K of clauses,
Ris satisfiable  iff 0 ¢ Resw(R).

Proof. First, let & be satisfiable. Then, by the Resolution Lemma 5.6, Res(8) is satis-
fiable as well. From this we get immediately by induction that Res;(R) is satisfiable
for all i and therefore 0 ¢ Res;(R). Hence 0 ¢ Res..(R).

Conversely, assume towards a contradiction that @ ¢ Res.(8) and £ is not satisfi-
able. Since R is a nonempty set of clauses, we get that R is not satisfiable if and
only if {\/;cx A | K € 8} is not satisfiable. By the Compactness Theorem 4.5 we
can assume that K is finite. For m € N we set

R = {K € Resw(R) | K C PF, }.
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In particular, Ry = 0 or Ry = {0}; but @ ¢ Res..(R) and therefore Ry = 0. We
choose n € N such that K C PF,, for all K € R, i.e., in the clauses of & only the
propositional variables py, ..., p,—1 and their negations occur. Since this property is
preserved by forming resolvents we easily obtain, by induction on i, that K C PF),
for all K € Res;(R), i.e., for all K € Resw(R). In particular, & C Res.(&) = R, and
therefore 2R, is not satisfiable (as £ was assumed to be unsatisfiable).

We set

[ := min{m | R, is not satisfiable}
and distinguish two cases:
[ = 0: Then R is not satisfiable which contradicts Ry = 0.

[ =k+1: By minimality of /, the set i, is satisfiable. Since in iy only the variables
Do, - - - Di—1 occeur, there are by, ... by € {T,F} with

(1) (bo,...,br_1) satisfies Ry.

Since Ry is not satisfiable, there is a clause K7 for the assignment (b, ..., by_1,T)
such that

) Kr € Ry and (by,...,bx—1,T) does not satisfy K,

and for the assignment (bo, ..., b;_1,F) there is a clause Kr such that

3) Kp € Ryr1 and (by,...,by_1,F) does not satisfy K.

By (2) and (3) we have

“) pr ¢ Kr and —py ¢ Kr.

We show

(®)] -pr € Kr and pj € Kf.

Namely, if —p; ¢ Kr, then (with (4)) Kr C PFy and therefore Ky € 9. But with
(bo,...,bx_1) also (by,...,br_1,T) would satisfy the clause K7 — a contradiction to
(2). Similarly one can show that p; € K.

By (5), K := (Kr \ {—pr})U(Kr \{pr}) is aresolvent of K7 and Ky, which belongs
to Ry by (4). By (1), (b, . ..,br_1) satisfies the clause K, i.e., (bo, ..., by_1) satisfies
a literal from (K7 \ {—px}) U (Kr \ {pr}), which contradicts (2) or (3). B

We illustrate the resolution method by an example, introducing a transparent nota-
tion at the same time. Let

o= (gV-r)A=pA(pVr)A(—=gVpV-r).
Then
ﬁ(a) = {{Q7_'r}7{_'p}ﬂ{pvr}v{_'%pa_‘r}}'

The “resolution tree” in Figure XI.1 shows that R(¢) and therefore o is not sat-
isfiable: The nodes with no upper neighbors are clauses from £(a), the remaining
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{g,~r} (.1} {ﬁ”v} {p.r}
(r.a} tap

\ / {-=r}
N/

Fig. XI.1

nodes are resolvents of their respective upper neighbors.

If every clause in K contains only literals from {po,...,ps—1} U{=po, ..., " Pn—1}s
then in every resolvent at most these literals occur. From this we easily get for
such R (we leave the details to the reader): Res,2. (R) = Resw (8). Therefore, if £ is
(and, hence, all Res;(f) are) finite, we get an answer to the question of whether &
is satisfiable in finitely many steps.

On the other hand, if K is infinite, it is possible that infinitely many resolvents can
be formed by passing from some Res; (&) to Res; | (&) or that

Resp(R) CResj(R) C ...

In these cases, if R is satisfiable, we can form infinitely many resolvents without
getting an answer to the question of whether R is satisfiable or not. For instance, the
satisfiable set of clauses

{{po}t}U{{-pi.pi+1} i€ N}
admits the resolution tree in Figure XI.2.

Even for unsatisfiable infinite & we may obtain the empty clause (and with it the
answer “f is not satisfiable”) in finitely many steps only by an appropriate choice
of resolvents. For example, Figure XI.2 also is a resolution tree for the unsatisfiable
set of clauses

Upok: {=po}ttU{{-pi;pit1} | i€ N}
in which 0 does not occur.

Now we return to the special case of Horn formulas, which was, in fact, the starting
point of our considerations.

We call a clause of the form {g} or {—qo,...,qgn,q} positive, one of the form
{=q1,...,7qn} negative. A negative clause can be empty, a positive clause cannot.



XIL.5 Propositional Resolution 231

{po} {=po,p1}
N/
{p1} {=p1,p2}
N/
{p2} {=p2.p3}
N/
{ps}

Fig. X1.2

Positive clauses correspond to positive Horn formulas and nonempty negative
clauses to negative Horn fomulas. For negative clauses we use the letters N, Ny, .. ..

In the following we only deal with a single negative clause at a time. Because of
Theorem 5.3 this is not an essential restriction.

5.9 Definition. Let B be a set of positive clauses and let N be negative.

(a) A sequence Ny, ..., Ny of negative clauses is a Horn- (short: H-) resolution of
B and N if there are Ky, ...,K;_1 € B so that N = Ny and N is a resolvent
of K; and N; for i < k.

(b) A negative clause N’ is called H-derivable from 3 and N if there is an H-
resolution N, ..., N, of B and N with N’ = N.

We often represent the H-resolution in (a) as in Figure X1.3 on the next page.

As motivated by our treatment of the “backwards” version of the underlining algo-
rithm, we get:

5.10 Theorem on the H-Resolution. For a set P of positive clauses and a negative
clause N the following are equivalent:

(a) PU{N} is satisfiable.
(b) 0 is not H-derivable from 33 and N.

Proof. First, let b be an assignment satisfying 3 U {N}. By the Resolution Lemma
5.6 we have for every H-resolution Ny, ..., N; of B and N:

b satisfies Ny, b satisfies Ny, ..., b satisfies Ny;
therefore in particular Ny, # 0. Hence 0 is not H-derivable from 3 and N.

For the direction from (b) to (a) we note that the clauses in 3 correspond to a set A
of positive Horn formulas. We show:
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N

Ky N1

N/

N

Fig. XI.3

If k€ Nand b*(q;) = ... = b*(gx) = T, then 0 is H-derivable from 93 and
{=a1,....,~a}-

Then we are done: In fact, if 0 is not H-derivable from ¥ and N and if, say, N =
{=q1,...,—qi}, then (x) shows that there is an i with b (¢;) = F. So b* is a model

of PU{N}.

We obtain (%) by proving, using induction on [/, that (x) holds provided each g;
can be obtained in </ steps by means of the calculus with the rules (T1) and
(T2) associated with A (cf. the considerations leading to Lemma 5.2): Suppose
rit ... riji .

—" (i.e., a step accord-
ing to (T1) if j; = 0, and according to (T2) if j; > 0). In particular, the clauses
{=ri1,...,7rij,qi} belong to PB. Furthermore, by definition of b2, b (r;) = T for
i=1,...,kand s = 1,..., j;. By the induction hypothesis, 0 is H-derivable from 13
and N’ := {=ry1,...,=r1j,-.., 71, ..., rgj, }. Let 57 denote such a derivation.

0

(%)

the last step in the derivation of ¢; is of the form

Then Figure XI.4 represents an H-derivation of @ from B and {—gq,...,~g}. -

For an application in Section 7 we rephrase the previous theorem in a form which
is closer to the Resolution Theorem 5.8. For this purpose we modify the operation
Res so that only those resolvents are included which are of the form as permitted in
Theorem 5.10:

For a set £ of clauses let

HRes(R) := K U{N | N is a negative clause and there are a positive K; € K and
anegative N; € £ such that N is a resolvent of K| and N, }.
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{=ru,....orja . {oqr,e gt

N/

{=ra,....,orp, @t {=rn,- s og, - )
\ /
{ﬁrlil,...,ﬁrljl,ﬁrﬂ,...,ﬁrzjz,ﬁq&...,ﬁqk}
{—\rlol,..'.,—\rljl,...,ﬂrkl,...,ﬂrkjk}
0

Fig. X4

Again let HResp(R) := 8, HRes;y(R) := HRes(HRes;(R)), and HRes.(R):=
Uieny HRes; (8). Then Theorem 5.10 can be phrased as follows:

5.11 Theorem. For a set*P of positive clauses and a negative clause N,
SBU{N} is satisfiable  iff 0 ¢ HRese(PU{N}).

Proof. An easy induction on i € N shows that for a negative clause N':

N’ € HRes;(PBU{N}) iff there is an H-derivation of N’
from P and N of length < i.

From this we get the claim immediately with Theorem 5.10. —

5.12 Exercise. For & := {{po,p1,p2}} U{{-pi}|i> 1} show:
(a) Resw(R) =Resy(8);

(b) Resz(R)\Res;(R) and Res; (R) \ R are finite.

(c) Ris satisfiable.

XI.6 First-Order Resolution (without Unification)

To conclude this chapter, we transfer to first-order language the resolution methods
which we have introduced for propositional logic. Thereby, Herbrand’s Theorem
will play an important role. As expected, it will turn out that the corresponding al-
gorithms are more complex, since, in addition to the propositional structure, term
instantiations also have to be considered. In the present section we prove that in
principle this transfer is possible. In the next section, we learn how to carry out
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the term instantiations in a goal-directed and efficient manner. We will be led to an
analogue of the propositional Horn resolution. It forms the core of the algorithm
taken by a computer which runs a program written in PROLOG. We shall not go
into refinements of the method or details of the implementation which should in-
crease efficiency; for such details see [1, 29]. Essential limitations of the method are
indicated in Exercise X.4.4.

At the end of Section 2 we mentioned that a programmer, who wants to write a
program in PROLOG for a certain type of problem, has to formalize the assumptions
as universal Horn formulas and the “queries” as existential formulas. The following
examples illustrate this approach.

First, we give a very simple example. Let the relation symbols M, F, and D be unary
and S := {M,F,D}. Let an S-structure 2 be given. We interpret the elements of A
as inhabitants of a town, M4 and FA as the subsets of male and female inhabitants,
respectively, and finally, let D mean that a has a driver’s license. Then we consider
the question

(1) Are there male inhabitants which have a driver’s license?

For each a € A we choose a constant ¢,. Then the following set & of atomic Horn
sentences contains the “positive” information about 2I:

@ :={Mc,|ace M }U{Fc,|ac FA}U{Dc,|a € D*}.
We show that question (1) is equivalent to
2) @+ Ix(MxADx) ?

Hence, it can be written in a form which, by the introductory remarks, can be trans-
lated into a logic program (which, in case of a positive answer, should be able to list
all male inhabitants with a driver’s license).

To show the equivalence of (1) and (2) it suffices to prove
3) A = x(MxADx) iff &+ 3x(MxADx).

Because of (2, (a),eca) | @ the direction from right to left holds. The definition of
& immediately gives
@ If M'A, F'A D' C A, and (A,M" F'A D'A (a)uecn) = P,

then MA C M'A,FA C F'4, and DA C D'A.

If we identify the term ¢, with a, (4) says that (2, (@)4ca) is the minimal Herbrand
model of @, so, by Theorem 3.8, it is the term structure ‘385 of &. Therefore, from
(A, (a)aea) = Ix(Mx A Dx) we get, by Theorem 3.9, that & + Jx(Mx A Dx).

An example from graph theory: In a directed graph & = (G,RY) we call two vertices
a,b € G connected if there are n € N and ag, . ..,a, € G with

a=ap,b=a, and RYaa; | fori<n.

We set
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CY := {(a,b) | a and b are connected in &}.

If, say, G is the set of towns of a country and R%ab means that a certain airline offers
service from a to b without stopover, then C%ab holds if and only if it is possible to
fly from a to b with this airline (all stopovers lying in the home country). Let agents
of a company live in the towns a@ and b who can use this airline free of charge.
We show how, for instance, the questions “Is it possible for the agent living in a to
fly to b free of charge?” and “Is there a town to which both agents can get free of
charge?” can be written as logic programs. So, we are dealing with the following
two questions:

(G,R%,CY) = Cxyla,b] ?
(G,RY,CY) |= 3z(Cxz ACyz)[a,b] ?

For each a € G we introduce a constant ¢, and let &y be the “positive” atomic
information of the structure (G, R, (a)4ec):

@) := {Rcqcp | a,b € G,Rab}.
Furthermore, we set
P := Py U {VxCxx, VxVyVz(Cxy ARyz — Cxz) }.

Then @ is a set of universal Horn sentences. We show that the questions from above
can be phrased in the form

D+ Ceycp ? and Py F3z(CeuzACepz) ?

i.e., in a form, in which they can (by the introductory remarks) be written as logic
programs. We set &; := (G,R%,CY(a),ec). Then we have to show

(1) 61 ':CCaCb iff (Pl F CCaCb.
2) & | Fz2(CcuzNCepz) iff Py F3z(Ceyz ACepz).

We argue similarly to the previous example: Because of & = &, the left-hand
sides in (1) and (2) follow immediately from the right-hand sides. We now prove the
other directions and note first:

IfR'C,C'° CGxGand (G,RC,C'Y, (a)scc) = D1,

3
then R C R’ and C¢ C C'C.

Indeed, the definition of &, immediately gives R® C R'C. Furthermore, by definition
of CY, we have to show for n € N and aop,...,a, € G with RGaia,-H for i < n that
C'%apay. This is easily obtained from the axioms in ®; by induction on 7.

Now, if for a € G we identify the term ¢, with a, then (3) together with Theorem 3.8
shows that & is the Herbrand structure Tg) ', Therefore, by Theorem 3.9, the right-
hand sides in (1) and (2) follow from the left-hand sides.

Of course, one normally expects not only an answer to the question of whether a
and b are connected in (G,RG), but, in the positive case, also a specification of the
paths from a to b. We indicate how this can be realized.
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We consider the symbol set S := {R,P,f} U{c, | a € G}, where P is ternary and
f 1s binary. For a,b,d,e € G with RCab, RCbd, RSda, and RCae say, the term
ffffcacpcacace represents in an obvious way the path from a, passing through b, d,
and a, to e. In general, let Pxyv say that v represents a path from x to y. We set

D, := Py U {Vx Pxxx, VxVyVuVz(Pxyu A Ryz — Pxzfuz)}.

The reader should verify (as above in the proof of (1) and (2)) that the following
holds for any term 7 € T

@, - Pcyept  iff  t represents a path from a to b in (G,RY).

Now we expect that, given the question “®, = JvPc,cpv 77, a logic program pro-
vides all terms 1 € TOS which represent a path from a to b.

In the examples, as in most applications of logic programming, the equality sym-
bol does not occur. Therefore, in the remainder of this chapter we restrict ourselves
to equality-free formulas without emphasizing this explicitly in each case. (Exer-
cise 6.11 shows how to make use of the results and techniques also for formulas
with equality.)

In order to transfer the propositional resolution methods to the first-order language
we make use of the connection given by Lemma 4.4 between propositional logic and
quantifier-free first-order formulas, and of Herbrand’s Theorem 1.4. First, however,
we need some more terminology.

Throughout let S be an at most countable symbol set containing a constant.

6.1 Definition.
(a) Let ¢ be a formula of the form Vx ...Vx,y with quantifier-free y. Then for
arbitrary (!) pairwise distinct variables yy,...,y; and for terms #q,...,1;, the

1 1
formula 1[/()12 |1) is called an instance of ¢@. If l//()l/ |1) is a sentence we also call
it a ground instance of @.
(b) Let GI(¢) be the set of ground instances of ¢.
(c) Foraset @ of formulas ¢ of the form above let GI(P) := Uyce GI(@).
For a sentence ¢ := Vxj...Vx,, ¥ with quantifier-free ¥ and terms t,...,t, € TOS

the formula y(x \';l ) is a ground instance of ¢.

We choose a bijection my: AS — {p; | i € N} from the set of (equality-free) atomic
formulas onto the set of propositional variables. Let 7 be the extension of 7y to the
set of quantifier-free formulas given before 4.3.

6.2 Definition. A set ¥ of quantifier-free formulas is propositionally satisfiable if
(W) is satisfiable.

By Lemma 4.4 the following obviously holds:

6.3 Lemma. IfV is a set of quantifier-free formulas,then
Y is satisfiable  iff W is propositionally satisfiable. -
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Herbrand’s Theorem in the form of Lemma 1.3 yields the following (for simplicity,
we restrict ourselves to sentences):

6.4 Theorem. For a set P of equality-free sentences of the form Vxy ...Vx,, ¥ with
quantifier-free \y the following are equivalent:

(a) P is satisfiable.

(b) GI(®) is propositionally satisfiable.

Proof. We only have to notice that the ground instances of Vx ... Vx,, ¥ can be writ-
ten in the form y(x |7 ) withr,...,5, € Ty. 4

In the situation of the previous theorem we can apply the resolution method to the
set of formulas given in (b). Note, however, that in general the set GI(Vx; ... Vx, y)
of formulas is infinite. (The limitations of the resolution method for infinite sets
have been discussed at the end of the previous section.)

We give a few examples. For the sake of clarity and legibility, we work here and
in the following with clauses consisting of atomic and negated atomic first-order
formulas, and we do not pass to their images under 7. In fact, Lemma 6.3 says
that we can deal with atomic formulas as we do with propositional variables. We
transfer the notation and terminology in a natural manner. So literals are now atomic
or negated atomic formulas; and for a literal y we have

= -y if y is atomic,

o if y =-o.
For a clause K let
K" = {y" |y ek}

6.5 Example. Let S := {R, g,c} with binary R and unary g. The satisfiability of the
sentence
VzVy(Rey A —Rzgz)

is equivalent to the propositional satisfiability of
{Rcty N\=Rtrgty | 11,10 € T3 },
i.e., to the satisfiability of the set of clauses
{{Ret} |t e TSy U{{-Rigt} |1 € T} }.

Thus, the resolution tree

{Regc} {~Regc}
\./

shows that VzVy(Rcy A —Rzgz) is not satisfiable.
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6.6 Example. Let S := {Q,R,g,c} with unary Q and R, g,c as in the previous ex-
ample. The sentence

VxVy((Rxy V Ox) A =Rxgx A —=Qy)
is not satisfiable, since its set of clauses
{{Rtit2,00} |11, € TP} U{{~Regt} |t e TS} U{{~0t} |1 € TS}

admits the resolution tree in Figure X1.5 leading to 0.

{Rcgc,Qc} {—Rcgc}

{=0Qc} {Oc}

0
Fig. XL5

It is clear that we could also have chosen the ground instances corresponding to
x:= ggcand y := gggc and then, in a similar way, we would have obtained the tree
in Figure XI.6.

{Rggcgggc,0ggc}  {-Rggcggsgc}

N/

{—Q0ggc} {Oggc}
0
Fig. XL6

In complicated cases it is certainly important to use terms as simple as possible. We
consider corresponding methods and heuristics in the next section.

Theorem 6.4 refers to universal formulas in prenex normal form. However, in The-
orem VIII.4.5 we saw how to assign to an arbitrary formula a universal formula
in prenex normal form equivalent to it for satisfiability (Theorem on the Skolem
Normal Form). In this way the resolution method becomes applicable to arbitrary
(equality-free) formulas. We illustrate this by the following example.

6.7 Example. Let S := {R} with binary R. The formula
¢ := (IxVyRxy AVz3u—Rzu)
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is logically equivalent to the formula in prenex normal form
VzIuVy(Rxy A —Rzu).

Choosing a unary function symbol g and a constant ¢ we get the {R, g,c}-sentence
(cf. the proof of Theorem VIII.4.5)

Vz¥y(Rcy A —Rzgz),

which is equivalent to ¢ for satisfiability, and which we found out to be unsatisfiable
using the resolution method (see Example 6.5). So ¢ is not satisfiable.

The Horn resolution for propositional logic given in the previous section can be
transferred to universal Horn formulas.

By Lemma 2.3(a), universal Horn formulas are logically equivalent to a conjunction
of formulas of the form (H1), (H2), or (H3):

(H1) Vxi...Vx,0

H2) Vxi...Vxu(@oA...A@, — @)
H3) Vxp...Vxu(—@o V...V —@,)
with atomic ¢ and ¢;.

Horn formulas of the form (H1) or (H2) are called positive, those of the form (H3)
negative. So the positive and negative propositional Horn formulas correspond, by
virtue of 7, to the quantifier-free positive and negative Horn formulas, respectively.
For a set @ of universal Horn formulas let @+ and &~ stand for the subsets of
positive and negative formulas, respectively. Since instances of positive and negative
Horn formulas are again positive and negative, respectively, we have GI(®") =
(GI(®)) .

6.8 Lemma. Let @ be a satisfiable set of universal Horn sentences of the form
(H1), (H2), or (H3), and let 3x; ... 3x,(Wo A ... A) be a sentence with atomic

Yo, Wi
(a) Forty,...,ty €Ty,

DF (WA AT iff DT (won.. Aw)(X|T).
(b) <I>|—Elx1...Elxm(1//0/\.../\1//,) iff (P+|—HX1...3xm(l[IU/\.../\l[I[).

Proof. (a): Forty,....t, € TOS we get the equivalence of the following statements:

(M) @F (yor...A )R |T).
@) @U{(~woV...v-y)(X|7)} is not satisfiable.

(3) GI(@)U{(~wpV...V-y)(x |r?)} is not propositionally satisfiable
(cf. Theorem 6.4).
4) GI(PT)U{(-wpV...V-y)(x |?)} is not propositionally satisfiable.
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By Theorem 6.4, since @ is satisfiable so is GI(®). Hence, we get the equivalence of
(3) and (4) immediately from (GI(®))" = GI(®™) with Theorem 5.3. If we choose
the set @* for @ and note that (@1)* = @7, then the equivalence of (1) and (4)
shows that statement (4) is equivalent to

m
(S) (Yo .. Ay (X |1).
By Theorem 3.9, (b) follows immediately from (a). -

In the following considerations we restrict ourselves to sets @ of positive universal
Horn sentences; the previous lemma shows that this is not an essential restriction.
For this case, the Horn resolution can easily be transferred to first-order language.

6.9 Theorem. Let @ be a set of positive universal Horn sentences. Furthermore,
let Axy ... I (Wo A ... AYp) be a sentence with atomic Wy, ..., Y.

(a) Forty,... .ty € TOS the following are equivalent:
@) @+ (WA Ap)E|T)

(ii) There is an H-derivation of the empty clause O from GI(®) and the for-
mula (~yo V...V =) (X |';1 ) (more exactly: from the clauses correspond-
ing to GL(®) and the clause {—yp(X \rtn), oy(x |?)})

(b) The following are equivalent:
1) @F .. (oA AY)

(1) There are ty,... t, € TOS such that there exists an H-derivation of 0 from
GI(®) and (~yo V...V —y) (X |1).
Proof. (a): We argue as in the proof of Lemma 6.8 and get the equivalence of the
following statements for #1,...,f, € TOS :

(1) &F (yor...Au)(x|T).
2) @U{(=wV...v-y)(x |’?)} is not satisfiable.

(3) GI(@)U{(-wp V...V (X |';1)} is not propositionally satisfiable.
(4) There is an H-derivation of the empty clause from GI(®) and

(~woV...V—up)(x \r?) (cf. Theorem 5.10: since @ is a set of positive universal
Horn sentences, the clauses corresponding to the sentences from GI(®) are
positive).

Again, (b) follows, by Theorem 3.9, from (a). B

6.10 Example. Let S := {R,T,a,b,c,d,e} with binary relation symbols R, T and
constants a, b, c,d, e, and let

@ := {Rab, Rcb, Rbd, Rde, Vx¥y(Rxy — Txy), VaVy(Txy ATyz — Txz)}.

Then @ - 3x(Rex ARax A Txe), since GI(P) U{—RcbV —~RabV\ —Tbe} is not propo-
sitionally satisfiable, as is shown by the H-resolution tree in Figure XI.7.
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{Rcb} {—=Rcb,—Rab,—Tbe}
{Rab} {—Rab,~Tbe}
{=Tbd,—Tde,The} {—Tbe}

N\ /

{~Rbd,Tbd}  {~Tbd,~Tde}

N\ /

{Rbd} {~Rbd,~Tde}

{—Rde,Tde} {—-Tde}

N

{Rde} {—Rde}
0

Fig. X1.7

6.11 Exercise. This exercise shows how to extend the results of this section to for-
mulas containing the equality symbol: Suppose the binary relation symbol E does
not occur in the symbol set S. We set S := SU{E}. To each S-formula ¢ we assign
the §’-formula @*, which we get from ¢ by replacing all atomic subformulas #; = 1,

by Ett,. Furthermore, let ¥ C Lg/ be the set of the axioms for equality,

W = {VxExx, VaVy(Exy — Eyx),Vx¥yWz(Exy A Eyz — Exz)}
U{Vxr ...V, Yy I (Exiyi Ao  AEXyn ARX ... Xy
— Ry ...yn) | R € S n-ary}
U{Vxy .. Vo, V1 Yy (Exiyr Ao AEX, Yy
— Efxi...xofy1...yn) | [ € S n-ary}.
So ¥ consists of universal Horn sentences. If the SU {E}-structure (2(,E4) is a

model of Wz, define the S-structure /g, the quotient structure of (A, EA) by E4, as
follows:
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A/p :={a|a€A}, wherea denotes the equivalence class of a mod E*;
RVE = {@i,....a) | ai,...,a, €A, R'ay...a,};
FYE@L,. @) = fAar, . an).

Finally, for an assignment 8 in (2, E%) let /g be the assignment in /g with
B/E(x) := B(x).

Show: Forevery ¢ € LS: ((,E*),B) = o* iff (A/g.B/E) E o
Conclude: For @U{p}CL5: @k ¢ iff {y"|ycdIU¥F o*.

XI1.7 Logic Programming

Consider the situation given by the hypotheses of Theorem 6.9:

If ®F 3xp... 3%, (Yo A... A yp), then an algorithm, which systematically produces
all H-derivations from GI(®) and (= V...V =) (X |r?) for all terms 1, ..., €
75, will finally yield an H-derivation of @ from GI(®) and (=g V...V -y;) (% | 1)

m
for certain terms 1.1, € Tyy. Then @ - (Yo A ... A v)(X|1),i.e., we have found
a “solution” t1, ..., t, for the existential formula.

PROLOG programs do not simply work through the terms from TOS in a fixed order,
independently of the problem, but they search for suitable terms in a “goal-directed”
manner, at the same time aiming at efficient substitutions as indicated after Exam-
ple 6.6. The guiding idea here is to choose the terms “as general as possible and as
special as necessary.” We begin by expressing the notion of substitution in a suitable
form.

7.1 Definition. A substitutor is amap o: V — T from the set V of variables to the
set of S-terms such that o (x) = x for almost all x.

For a substitutor ¢ there are n € N and pairwise distinct variables xy, ..., x, with
o(x) = x for all x # xi,...,x,. We write t; := o(x;) fori = 1,...,n. For t € TS and
@ € LS we set

1...1 ...t n,n
to =133 and @0 1= @y (= @(x|1)
(by Lemma II1.8.4, to and ¢ are well-defined). Accordingly, we sometimes write

...t . _
x % for o.In particular, o(x) =xo.

Let 1 be the substitutor with 1(x) = x for all x, the so-called identity substitutor. For
substitutors ¢ and 7 let 67: V — T° denote the substitutor with x(67) := (xo)7.
For a clause K (of atomic or negated atomic formulas) let Ko := {@o | ¢ € K}.
From simple properties of the substitution we immediately obtain:
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7.2. (@) tt=tand 1= @ forallt € TS and ¢ € L.

(b) t(071) = (to)t and ¢(67) = (90)T for all t € TS and quantifier-free ¢ € LS.
(¢) (po)t=p(or) for substitutors p,o,T.

(b) and (c) justify the use of parenthesis free notations such as poT.

We call a substitutor & a renaming if & is a bijective map from V onto V. If £ is a
renaming, so is the inverse map £ ~': V — V, and we have EE! = E71E = 1.

7.3 Definition. Let K| and K be clauses. A renaming & is called a separator of K,
and K, if free(K; &) Nfree(Ky) = 0.

_ V4Vsvov3

For example, & = AN is a separator of {Pvovy, Pvav,} and {Qvy, Pvovs}.

The following example will serve to explain the strategy of carefully handling term
instantiations; it anticipates, in a concrete case, the general considerations, which
form the subject of the remainder of this section. Thereby it also indicates the course
we take and the goal we want to reach.

7.4 Example. Let S := {P,R, f, g,c} with ternary P, binary R and unary f, g and let
@ := {VaxVy(Pxyc — Rygfx),Vx¥yPfxyc}

We look for a proof that @ F Ix3JyRfxgy, as well as for a solution (all solutions) ¢,
and 1, of this existential problem. To apply the method of H-resolutions from The-
orem 6.9 in a more goal-directed manner and to keep the term instantiations as
general as possible, we first represent @ by the “unsubstituted” clauses

Ki := {=Pxyc,Rygfx} and K, :={Pfxyc}
and IxdyRfxgy by the clause

N; = {-Rfxgy}.

Then, we try to prepare K| and N; for resolution by a specialization (as weak as
possible) of the occurring terms.

For this purpose we choose a separator of K| and Ny, say &; := % Then

K| = K& = {—~Puvc,Rvgfu}.
With the substitutor o7 := ];x ];u we get
K{oy = {—Pufxc,Rfxgfu} and N;oy ={-Rfxgfu}.

Now N, := {—Pufxc} is a resolvent of K| o and N 0y.
For the separator &, := x% of K> and N, we have
K} = K>& = {Pfzyc},

and with the substitutor ¢, := fuz_];x we get

Kio» = {Pfzfxc} and N>o» ={—Pfzfxc},

and 0 is a resolvent of Ké 0 and N,0».
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In Figure XI.8 this derivation is represented schematically.

{=Pxyc,Rygfx} {-Rfxgy}

K M
N

e, {Pfxyc} {=Pufxc}

K> bl

52\ / if\‘z fx /
(e} < uy
0

0

Fig. XL.8

Now [Rfxgy|o102 = Rfxgffz. Indeed we have (and the following considerations
will show this in general):

DFRfxgffz
and therefore

D= VaVzRfxgf fz.

So the existential problem dx3dyRfxgy has “xc10, and yo,0,”, i.e., “x and ff7” as
a “family of solutions.” In particular, x = gcand y = ffc (forx=gcand z=c) is a
solution in TOS .

By the substitutor o7, the formulas Rvgfu in K] and =R fxgy in N; were made equal
(except for —) “in the most efficient manner.” In the sense of the following consid-
erations, 0] can be called a general unifier of {Rvg fu,Rfxgy} (cf. Example 7.7(a)).

7.5 Definition. Let K be a clause. K is called unifiable :iff there is a substitu-
tor o for which Ko has a single element. In this case o is called a unifier of K.

So the empty clause is not unifiable.

7.6 Lemma on the Unifier. The following algorithm, the so-called unification al-
gorithm, decides for every clause K whether it is unifiable and, in the positive case,
yields a general unifier of K, i.e., a unifier n of K for which the following holds:

If o is a unifier of K, then there is a substitutor T with ¢ = NT.

We call the general unifier produced as output of the algorithm the general unifier
of K.

Starting with (UA1), the unification algorithm is carried out step by step.

(UA1) If K is empty or K contains atomic as well as negated atomic formulas or
if the formulas in K do not all contain the same relation symbol, then stop
with the answer “K is not unifiable.”

(UA2) Seti:=0and oy :=1.

(UA3) If Ko; contains a single element, stop with the answer “K is unifiable and
O; is a general unifier.”
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(UA4) If Ko; contains more than one element, let W and W, be two distinct literals
in Ko; (say the first two with respect to a fixed order, e.g., the lexicographic
order). Determine the first place where the words Y and Y differ. Let §;
and §, be the letters at this place in i and Y», respectively.

(UAS) If the (different) letters §1 and §» are function symbols or constants, stop
with the answer “K is not unifiable.”

(UA6) One of the letters §1,$2 is a variable x, say §1. Determine the term t which
starts with § in Y (t can be a variable; by Exercise 11.4.9 t exists and is
uniquely determined ).

(UAT7) Ifx occurs in t, stop with the answer “K is not unifiable.”

(UA8) Set 6i11 := ;L and i == i+ 1.

(UA9) Go to (UA3).

Proof. We have to show that the unification algorithm stops for every clause K and
gives the right answer to the question “Is K unifiable?”, and, in the positive case,
yields a general unifier.

If the algorithm stops at (UA1), then obviously K is not unifiable. Therefore we
may assume that K is a nonempty clause whose literals are all atomic or all negated
atomic formulas that, moreover, contain the same relation symbol.

The algorithm will stop for K after finitely many steps: Since applying (UAS8) causes
the variable x to disappear (x does not occur in ¢!), the only possible loop from (UA3)
to (UA9) can be passed through only as often as there are different variables in K.

If the algorithm stops at (UA3), K is unifiable. Therefore, if K is not unifiable, it
can stop only after (UAS) or (UA7). Thus the algorithm yields the right answer in
case K is not unifiable.

Now let K be unifiable. We will show:
) If 7 is a unifier of K, then for every value i reached by the algorithm
there is 7; with 6;7; = 7.

Then we are done: If k is the last value of i, then the clause Koy is unifiable since
Kot = K7; so the algorithm cannot end with (UAS) or (UA7). (If it would end,
e.g., with (UA7), there would be two different literals in Koy of the form ...x ~ and
...t __ where t # x and x occurs in ¢; after any substitutions are carried out, there
would always be terms of different length starting at the places corresponding to x
and ¢ respectively, and hence K would not be unifiable.) Therefore the algorithm
must end with (UA3), i.e., 0y is a unifier and by (x) a general unifier of K.

We prove (x) by induction on i.

For i = 0 we set 7y := 7. Then 6Ty = 179 = 7. In the induction step let 6;7; = 7 and
suppose the value i 4- 1 has been reached. By (UA8) we have 0,1 = 0; )Lc Next, we
observe (K 0;7; has a single element!):

(1) XT; = 17,.

We define 7,4 by
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)y ify#x,
YTl i= .
x ify=ux
Since x does not occur in ¢, we have
() [Ty = 1T

Now %Ti_»,_] = 1;; namely, if y # x, then y(%TH_l) =yT;.1 = yT;, and if y = x, we
have y(L 1y 1) = 1701 = 17, = x7; = y7; (cf. (1) and (2)).
Altogether:

01Tt = (Gik) T = okt = ot =1
and we have finished the induction step. —
7.7 Examples. Let S be as in Example 7.4.
(a) Let K := {Rvgfu,Rfxgy}. The unification algorithm yields successively 6y =1,

%, Oy = ];x_];u and the answer: “K is unifiable and ];x_];u is a general

unifier.”

O] =

(b) Let K == {Pfzyc, Pufxc}. The algorithm yields 0y = 1, 61 = 12, 6y = fofx

and the answer: “K is unifiable and ];z_];x is a general unifier.”

(c) LetK := {Ryfy,Rzz}. We get 6y = 1, 0] = % (orop = %) and the answer: “K is
not unifiable.”

The crux of the resolution in Example 7.4 is expressed in the following notion:

7.8 Definition. Let K, K|, and K be clauses. K is a unification resolvent (written:
U-resolvent) of Ki and K, if there is a separator & of K; and K, and there are
My,Ly C K; and M;, L, C K> with the following properties:

(1) L; and L, are not empty.
(i) L1&ULE is unifiable.
(i) Ky =M ULy, Kr =MyUL,, andK = (Mlé UMg)T[, where 1) is the general
unifier of L;§ ULY.

Schematically, we represent this “U-resolution” by

K K>
N/
K

Since substitutions do not change anything in ground clauses (i.e., in variable free
clauses) and since a unifiable ground clause has only one element (with 1 as general
unifier), we see immediately:
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7.9 Remark. For ground clauses K, K|, and K the following holds: K is a resolvent
of K1 and K> iff K is a U-resolvent of K1 and K;. =

In Example 7.4 we had K; = {—=Pxyc,Rygfx} and N; = {—-Rfxgy}. Let &; be the

separator ;l;uz of K; and N; chosen there; hence K& = {—Puvc,Rvgfu}. Then

for Ly := {Rygfx} and L, := {=Rfxgy} the clause L, & ULL (= {Rvgfu,Rfxgy})

is unifiable, and o7 = ]:) J;

is its general unifier. Thus Ny = {—Pufxc} is a U-
resolvent of K| and Nj.

With the following lemma we establish the connection between resolvents and U-
resolvents. It gives us the key to Theorem 7.14 on the U-resolution.

7.10 Compatibility Lemma. Letr K| and K> be clauses. Then:

(a) Every resolvent of a ground instance of K| and a ground instance of K is a
ground instance of a U-resolvent of K| and K».

(b) Every ground instance of a U-resolvent of K| and K is a resolvent of a ground
instance of Ky and a ground instance of K».

Proof. (a) Let K;o; be a ground instance of K; (i = 1,2) and K a resolvent of K; 0}
and K07, i.e., for suitable M, M, and ¢y,

Kiop =M U{g}, K,oo=MU{@l}, K=MUM,.
We set
M :={pcki|poie M} (i=1,2),
1 ={9cKi|po1 =g}, Lr:={9 K| 902 =] }.
Then we have
K =MUL (i=1,2),
(*) Mio; = M; (i=1,2),
Lioy = LYoy = {po}.
Let & be a separator of K; and K> and o the substitutor with
G {x§161 if x € free(K; &),
X0» otherwise.
As free(K &) Nfree(K,) = 0, we obtain
(+) Qo = @o, for ¢ € K>.
Therefore,
(LiEuLll)o=LiEE'oyullo=LioyULY oy = {®},

hence o is a unifier of L;& UL12E . Let n be the general unifier and ¢ = 1 7. Then
K* := (M{& UM})n is a U-resolvent of K| and K>. Finally, K is a ground instance
of K*; namely Kt = (Mié UMZI)O- ZMiGl UMéO'z =M UM, =K.
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Thus we proved (a). For future purposes we note the following strengthening: Since,
for a given finite set Y of variables, we can choose the separator & of K} and K5 such
that free(K; &) NY = 0, we have shown:

If K; and K are clauses and K07 and K0, ground instances of
K and K5 respectively, and if

Ko K>o»
K

is a resolution, then for every finite set Y of variables there are
K*, &,m, and 7 so that

Ki K,
N/
&

is a U-resolution and K = K*7 as well as ynt = (yo =)yo; for
yey.

(b) Let K be a U-resolvent of K| and K3, say K = (M,E UM,)n, K; = M; UL;

(i=1,2)and (L ULE)N = {@o}, where & is a separator of K| and K>, and 1) the
general unifier of L;§ ULY.

Furthermore, let Ko be a ground instance of K. We set
op:=¢(no and oy :=7no0.

We can assume that K; 0 and K, 0, are ground clauses (otherwise replace ¢ by 67
where 7(x) € TOS for x € free(K; 01 UK»07), and note that Kot = Ko, since Ko is
a ground instance). Hence the claim follows from

Ko is aresolvent of K;07 and K>0».
In fact, we only have to note that
Kioy=M01UL 061 =M,0 U{(poG},

K207 = Myo, ULy 0r = Mhor U{@f 6},

and
M161UM262=(M1§UM2)T[G=KG. =

As for the resolution, we now introduce the sets URes;(R) of clauses which can be
obtained from clauses in & by forming U-resolvents i times.
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7.11 Definition. For a set £ of clauses let

URes(R) := RU{K | there are K, K, € £ such that
K is a U-resolvent of K| and K }.

For i € N let URes;(8) be defined inductively by

UResp(R) := R
URes;+1(8R) := URes(URes;(R)).
Finally,
UResw(R) := Uy URes; (R).

First, we want to establish a relationship between the operations URes and Res. For
this purpose we extend the notion of ground instance: For a clause K = {¢y,..., ¢}
with free(@;) C {x1,...,x,} for 1 <i<[let

GUK) := {{pi (F 7). (¥ [1)} |10t €T}
be the set of ground instances of K, and for a set R of clauses let

GI(8) := Uges GI(K).

Since, by the Compatibility Lemma 7.10, the operations of forming ground in-
stances and forming U-resolvents can be interchanged, we obtain:

7.12 Lemma. For a set R of clauses the following holds:

(a) Forallie€N: Res;(GI(R)) = GI(URes;(R)).
(b) Resw(GI(R)) = GI(URes«(R)).

Proof. (b) follows immediately from (a). We show (a) by induction on i. For i = 0
we have

Reso(GI(R)) = GI(R) = GI(UResp(R)).

In the induction step we conclude as follows:

Res;1(GI(R)) = Res(Res;(GI(R)))
= Res(GI(URes;(R))) (by induction hypothesis)
= GI(URes(URes;(R))) (by Compatibility Lemma 7.10)
= GI(URes;;1(8)). =

Since (0 € GI(UResw(8)) iff @€ UResw(R)), we get from Lemma 7.12:
7.13 Main Lemma on the U-Resolution. For a set R of clauses we have:
0 € Res(GI(R)) iff 0 € UResw(R). -

We translate the result to sets of universal sentences. For a universal sentence ¢ of
the form

V1V ((Qoo VooV @oi ) A A (@0 V...V @y, )
with literals ¢;; let
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‘Q((P) = {{(pO()a'-'a(POlo}v'"a{(ps()v--'7@515}}

be the set of “unsubstituted” clauses belonging to ¢, and for a set @ of such sen-
tences let (@) be the set of clauses Uycq (). Note that

(%) GI(R(®P)) = R(GI(P)).
We show:

7.14 Theorem on the U-Resolution. For a set @ of universal sentences of the form
Vx| ... VX, @ with quantifier-free @ in CNF the following holds:

D is satisfiable  iff 0 ¢ UResw(R(D)).

Proof. @ is satisfiable
iff  GI(®) is propositionally satisfiable  (by Theorem 6.4)

iff  R(GI(P)) is satisfiable (see Definion 5.4)

iff  GI(R(®)) is satisfiable (by (*))

iff 0 ¢ Resw(GI(R(D))) (by Resolution Theorem 5.8)

iff 0 ¢ UResw(R(P)) (by Lemma 7.13). |

To illustrate Theorem 7.14, we once again consider Example 6.6: We show the un-
satisfiability of the formula

@ = VxVy((Rxy V Ox) A —Rxgx A —Qy)
using the U-resolution. Compare also with the resolution tree in Example 6.6.
First we proceed from ¢ to the set of clauses

R(9) = {{Rxy, 0x}, {~Rxgx}, {~Ov} }.
Then the U-resolution tree in Figure X1.9 shows the unsatisfiability of ¢.

{Rxy, Ox} {—Rxgx}
% X gx
¢ zy
{0y} {ox}

‘\ Y /
X

0
Fig. XL.9

We reach the core of logic programming by combining the Horn-resolution with the
unification algorithm. First, we transfer Definition 5.9 of H-derivability:
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7.15 Definition. Let [} be a set of positive (first-order) clauses and let N be a nega-
tive clause.

(a) A sequence Ny,...,N; of negative clauses is a UH-resolution from 3 and N if
there are Ky, ...,K;_1 € B such that Ngo = N and N is a U-resolvent of K;
and N; for i < k.

(b) A negative clause N’ is said to be UH-derivable from B3 and N if there is a
UH-Resolution Ny, . .., N, from B and N with N' = N.

(c¢) For aset R of clauses let

UHRes(R) := & U {N | N is a negative clause, and there is a positive K| € &
and a negative N; € £ such that N is a U-resolvent of K; and N }.

Furthermore, set

UHResp(R) := R,
UHRes,;; | (R) := UHRes(UHRes;(R)) and
UHRes.(8) := U;cy UHRes; (R).

7.16 Main Lemma on the UH-Resolution. For a set B3 of positive clauses and a
negative clause N the following holds:

0 € HReso(GI(PU{N})) iff 0<€ UHRes(PU{N})

Proof. With the Compatibility Lemma 7.10 one shows HRes..(GI(B U {N})) =
GI(UHRes..(PU{N})). From this the claim follows immediately. 4

Similarly to 7.14, we now obtain:

7.17 Theorem on the UH-Resolution. Let P be a set of positive universal Horn
sentences and ¢ a negative universal Horn sentence. Then:

@ U{@}is satisfiable iff 0 is not UH-derivable from K(P) and K(¢).

Proof. Note first that GI(&(P)) consists of positive and GI(K(¢)) of negative
clauses. The following statements are equivalent:

(1) @U{e} is satisfiable.

(2) GI(R(P)UR(9)) = GI(R(D)) UGI(K(¢)) is propositionally satisfiable.
(3) 0 ¢ HResw(GI(R(D)) UGI(K(9))).

(4) 0 ¢ UHRes..(8(P)UR()).

(5) 0 is not UH-derivable from &(®) and R(¢).

To verify these equivalences, we give the following remarks: The equivalence of (1)
and (2) corresponds to the equivalence of the first and fourth statement in the proof
of Theorem 7.14; from (3) to (2) we get with Theorem 5.11 by using Theorem 5.3,
from (2) to (3) with the Resolution Theorem 5.8, since HResw(...) C Reswo(. . .).
The equivalence of (3) and (4) follows with Lemma 7.16, the one of (4) and (5) by
Definition 7.15. B
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For illustration we consider a previous example, namely Example 7.4. Let
@ := {VaVy(Pxyc — Ryg[fx),VxVyPfxyc}.

To show that

(%) @D F IxIyRfxgy,

i.e., that @ U {VxVy—Rfxgy} is unsatisfiable, it suffices to prove that there is a
UH-derivation of @ from {{—Pxyc,Rygfx},{Pfxyc}} and {—Rfxgy} (cf. Theo-
rem 7.17). Indeed, the resolution tree in Figure XI.8 on page 244 represents such
a UH-derivation. In Example 7.4 we also mentioned that this derivation yields a so-
lution for the existential proposition (). Our last aim is to show this in general and,
at the same time, prove that we get all solutions of the existential problem in this
way. Thus we will have reached our goal.

7.18 Theorem on Logic Programming. Let @ be a set of positive universal Horn
sentences of the form

(1) Yyr...Vy9 or (2) Wy1...Yyi(@oA... AQs — @)

with atomic @, @, ..., @, and let 3x;...3x, (Yo A ... AW,) be a sentence with
atomic Y, ..., Y. Finally, set

N = {ﬁl[/07...,ﬁl[/r} and‘ﬁ = ﬁ(@b)

(hence P contains the clause {@} for sentences in ® of the form (1) and the clause
{=@o,...,~@;, @} for sentences of the form (2)). Then the following holds:

(a) Adequacy: @ F Ix;... Iy (Yo A...AY,) iff 0is UH-derivable from$3 and N.
(b) Correctness: If

K Ny =N
N/
K> N
N/
N3

K Ne
ék\ n /
0

Fig. XI.10



XI.7 Logic Programming 253

is a UH-derivation of O from 3 and N then

D (Yo AW e
(c) Completeness: If forty,... ,ty € Ty

- (Yor.. Aw)E|T),

then there is a UH-derivation of O from *3 and N of the form given in (b) and a
substitutor T with
ti=xN .. T fori=1,....m.

If in part (b) exactly the variables zj,...,z; occur in (Yo A... A Y,)N ... M, then
D=V Vo [(Wo Ao AWM. M therefore @ F (Yo A ... Ay, )N ... kT for
every substitutor 7. Thus (b) and (c) show that the variable-free terms ¢y, ..., with

D (YoA... Ay (% \’?), i.e., the solutions of the existential problem, are exactly
the “specializations” of the “families of solutions” x| 1y ... Nk, ..., XuM1 ... Nk given
by the UH-derivations.

Proof. (a): This part follows immediately from Theorem 7.17 as
@ 3x;. A (oA AY,)  Gff not Sat @U{Vx) .. VY, (myp V.V o).

(b): The proof is by induction on the length & of the derivation. For k = 1 we have

Ki Ni=N
&\\m//
0

Therefore, K1 &1 = N1y, so there must be a sentence Yy ...Vy;@ € @ such that
Ki ={o} and &M = yin, fori =0,...,r. Since @ - Vy;...Vy, @ we have ®
©& My and hence @ - yin, fori=0,...,r,ie, @ (Yo A...Ay)N;.

For the induction step let k > 1 and, say, N2 = {—X0,...,7X:} (N2 is not empty!).
The induction hypothesis, applied to the derivation starting with K> and N,, gives

(1) DE (oA AXIM2 -+ Nk

Let i < r. We show

(*) DEyin ... M

thus getting our claim @ (Yo A... A W,)N; ... M. We distinguish two cases:
If ~y;n € N,, we get (x) immediately from (1).

Now suppose ;11 ¢ N,. Then we have to “lose” —y;1; in the resolution step lead-
ing to N2. So in @ there is a sentence Vy; ... Vy (@1 A...A@s — @) (i.e., Vy;...Vy @
in case s = 0) with K| = {—¢y,...,~¢s, ¢} and

(2) P& = yin,
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&) —@i&imeN, forl<j<s.

Therefore by (3) and (1):

4 P oi&Emmn.. . forl <j<s.

Since @ Vy;...Vy (@1 A... A Qs — @) we get

D (=@ V...V=@ V)N .. Nk,
thus by (4)

D QSimny... M
With (2) this leads to ().
(c): For technical reasons we make a slightly weaker assumption on the terms:

Fort1,...,t, € TS set py := ;} :::;’:’n and N| ;=N = {-yp,...,~y, }; suppose that

D+ (Yo A...Ay,)p; and that N| := N;p; is a ground clause.
Then, by Theorem 6.4, R(GI(P)) U{N;p;} is not propositionally satisfiable. So by

Theorem 5.10 there is an H-derivation of @ from R(GI(®)) and Nj as shown in
Figure XI.11.

Ni =Nip

K
K Ny
Ny

Ky N

0

Fig. XL.11

Here the K J’ and the NJ’- are ground clauses and, say, K; = K;o; with suitable clauses
K; € P = R(P). We show: For every finite set X of variables there is a UH-
derivation as in Figure XI.12 of @ from ‘33 and N = N; such that there exists a
substitutor 7 with

xny..pT=xp; forxeX.
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K N
&
m
K )
&
2
N3

K Ny '
ik\ /
Mk
0

Fig. XI.12

Then, for X := {xj,...,x,} we get
xm-..mr=t (1<i<m),
and we are done.

We show the existence of a corresponding UH-derivation by induction on the length
of k.

For k = 1 we have the derivation

K{\@/N

The claim follows immediately from (I) in the proof of Compatibility Lemma 7.10
by setting

| =Nipi

K;:=N;, o:=p;, K:=0, and Y :=X.

In the induction step let k > 2. For the first step of the H-derivation in Figure XI.11
we choose, again with (I) in Compatibility Lemma 7.10, &;,M1, N2, and p, so that

K Ny
51\,,1 /
N>
and

(*) xn1p2 = xp; forx € X
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as well as N} = N,p,. We apply the induction hypothesis to the part of the H-
derivation in Figure XI.11 starting with K} and N, and to

Y :=var({xm | x € X}).

Then we get the UH-derivation in Figure XI.13 and a substitutor 7 for which

K> N>
g2\ T]z /
N3

Ky Ne
&\ 0 /
0
Fig. XL.13

YNo.. T =yprforyey,
hence by (x) and the definition of Y,
XNMNy...MT = xN1p2 = xp; forx € X.
Thus, everything is proved. —
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Chapter XII

An Algebraic Characterization of Elementary
Equivalence

The greater part of our exposition so far has been devoted to the development and
investigation of first-order logic. We can justify the dominant role assumed by first-
order logic in several ways:

(a) First-order logic is in principle sufficient for mathematics.

(b) The intuitive concept of proof and the consequence relation can be adequately
described by a formal notion of proof, which is given by means of a calculus.

(c) A number of semantic results such as the Compactness Theorem and the Lowen-
heim-Skolem Theorem leads to an enrichment of mathematical methods.

However, in contrast to these positive aspects, one also has to take into account that
the limited expressive power of first-order logic often requires clumsy formulations.
In particular, it forces us to make explicit reference to set theory to an extent not
usual in mathematical practice. For this reason we were led to seek other systems
with greater expressive power but still satisfying conditions (b) and (c).

In Chapter IX we introduced a number of extensions of first-order logic (%11, -2},
Zo,0. Zp) and investigated their semantic properties. In each case we found that
not all the properties mentioned in (c) are available.

In Chapter X we obtained negative results of a more syntactic nature. For example,
we saw that for 7 and for £} there is no possibility of adequately describing the
notion of proof by means of a calculus, nor even the possibility of listing the valid
formulas; hence in these cases we also have to make concessions concerning (b).

In the next chapter, the last one of the present book, we will show that these negative
results have a deeper reason: Having made precise the concept of a “logical system”
we shall prove in Chapter XIII that no logical system with more expressive power
than first-order logic can meet the conditions of (b) and (c).

In the present chapter we introduce a useful tool for these investigations. Recall
that two structures are elementarily equivalent if they satisfy the same first-order
sentences. We now present a purely algebraic characterization of elementary equiv-
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alence. This characterization is useful not only for our present purpose, but also in
other contexts. For example, it can serve to verify that two given structures 2( and
‘5 are elementarily equivalent, in a simpler way than by proving directly that 2( and
B satisfy the same first-order sentences. This establishes one of the most important
methods to prove the completeness of theories. At the same time, one obtains a tool
to show that certain properties are not expressible in first-order logic.

XII.1 Finite and Partial Isomorphisms

In this section we provide the concepts we need in order to formulate the algebraic
characterization of elementary equivalence. We refer to a fixed symbol set S. The
domain of amap p is denoted by dom(p); its range, i.e., the set { p(x) | x € dom(p)},

by rg(p).

1.1 Definition. Let 2l and B be S-structures and let p be a map. We call p a partial
isomorphism from 2 to 9B if and only if dom(p) C A,rg(p) C B, and p has the
following properties:

(a) pisinjective.
(b) p is homomorphic in the following sense:

— Forn-ary P € Sand ay,...,a, € dom(p),
P%a;...a, iff P‘Bp(al)...p(an).
— Forn-ary f € Sand ay,...,a,,a € dom(p),
ay,....ap)=a iff fP(p(ar),...,pla,)) = pla).
— For ¢ € S and a € dom(p),
A =a iff ¢®=p(a).
We write Part(2(,8) for the set of partial isomorphisms from 2( to 5.

1.2 Examples and Remarks. (a) The empty map, i.e., the map with empty domain,
is a partial isomorphism from [ to ‘B.

(b) The map p with dom(p) = {2,3} and p(2) =2, p(3) = 6 is a partial isomorphism
from the additive group (R, +,0) of real numbers to the additive group (Z,+,0) of
integers. However, the map ¢ with dom(q) = {2,3} and ¢(2) =1, ¢(3) =2 is not a
partial isomorphism from (R, +,0) to (Z,+,0), because, for example, 2+ 2 5 3 but
q9(2)+4(2) = 4(3).

(c) If S is relational, i.e., if S contains only relation symbols, then for ay,...,a,—1 €A
and by, ...,b,_ € B the following statements are equivalent:

(x) By setting
pla;) :==b;fori<r
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a partial isomorphism from [ to ‘B is determined
(where dom(p) = {ap,...a,1 } and 1g(p) = {bo. ... by_1}).
(+*) For every atomic formula y € LS,
m':W[ag,...,ar,d iff %'Zl[/[bo,...,brfl].
Proof. First we note that for i, j < r
ai=a; iff AE=vi=vjlag,...,ar-1],
bi:bj iff %’:vizvj[bo,...,br,l],
and that for n-ary P € Sand iy,...,i, <r
Pg‘a,-I .ap, iff A= Py v fao, ... ae—1],
PBb; ...b;, iff B Py ...v[bo,....by_1].

6]

@

in
Now, if () holds, then by (1) and the fact that
AE=vi=vjao,...,ar—1] iff B =vi=vjbo,...,b._1],
the mapping p is well-defined and injective. Since
A =Py, ...vi,lao,...,ar—1] iff B =Py ...v;[bo,...,b—1]
and by (2), p is also homomorphic.
Similarly, one can use (1) and (2) to deduce (xx) from (x). B

(d) Note that the equivalence in (c) may no longer be true if S contains function
symbols or constants. For example, for the partial isomorphism p in (b),

not (R,+,0) =vo+ (vo+vo) =v1[2,3],
but on the other hand,
(Z,+,0) Evo+ (vo+vo) =vi[p(2),p(3)].

(e) The following example shows that even for relational S a partial isomorphism
does not in general preserve the validity of formulas with quantifiers.

Let S = {<} and let go be the partial isomorphism from (R, <) to (Z, <) such that
dom(go) = {2,3} and go(2) = 3, go(3) = 4. Then
(R, <) ETva(vo <wvaAva <v1)[2,3],
but
not (Z,<) | Jva(vo <vaAva <vi)[go(2),q0(3)].

If p is a partial isomorphism from (R, <) to (Z, <) such that dom(p) = {a,b} and
a < b, then we always have

(R, <) E Tva(vo <vaAvy <vi)la,b],

since, for example,

(R, <) = (vo <vaAva <vi)la,b, 452,
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In this case the validity of
(+) (Z,<) = Iva(vo <va Avy <vi)[pola), po(b)]

is equivalent to the existence of a partial isomorphism ¢ from (R, <) to (Z, <) which

extends p and has “;’b in its domain. For, if such a g exists, then (+) holds, since

(Z,<) = (vo <v2 Ava <v1)lg(a),q(b),q(*5%)].

Conversely, if (+) is satisfied and, say,

(Z,<) | (vo <v2Ava <wi)[p(a),p(b),d],

then the extension g of p with dom(g) = {a,b, “+b }and g(442 by = d is such a partial
isomorphism.

This argument indicates that the truth of formulas with quantifiers is preserved un-
der partial isomorphisms, provided these admit certain extensions. It embodies the
basic idea behind the algebraic characterization of elementary equivalence: The ele-
mentary equivalence of structures amounts to the existence of extensions of certain
partial isomorphisms.

In the following definitions we introduce the algebraic notions we need. For maps
we use the set-theoretical notation, i.e., we identify a map p with its graph {(a, p(a))|
a € dom(p)}. Then, for example, p C g means that ¢ is an extension of p.

1.3 Definition. 2( and ‘B are said to be finitely isomorphic (written: 2 = ¢ B) if there
is a sequence (I,),en with the following properties:

(a) Every I, is a nonempty set of partial isomorphisms from 2( to *B.

(b) (Forth-property) For every p € I, and a € A there is ¢ € I,, such that ¢ D p
and a € dom(g).

(¢) (Back-property) For every p € 1,1 and b € B there is g € I, such that ¢ O p
and b € rg(q).

Informally we can express (b) and (c) as follows: partial isomorphisms in 7,11 can
be extended (n+ 1) times; the corresponding extensions lie in I,,, I, 1, ..., I1, and Iy,
respectively.

If (I,)nen has the properties (a), (b), and (c), we write (I,),en: A =5 B.

1.4 Definition. 2{ and ‘B are said to be partially isomorphic (written: 2l =, B) if
there is a set / such that

(a) I1is anonempty set of partial isomorphisms from 2 to 5.

(b) (Forth-property) For every p € I and a € A there is g € I such that ¢ O p and
a € dom(q).

(¢) (Back-property) For every p € I and b € B there is g € I such that ¢ O p and

b erg(q).

Thus, the conditions (a), (b), and (c) amount to (I),en: 2 = B for the constant
sequence (I),en-
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If (a), (b), and (c) are satisfied for I, we write : 2 =, B,
The following lemma lists the relations between the various notions of isomorphism.

1.5 Lemma. (a) IfA =B, then A=, 5.

(b) IfA=,B, then A =; ‘5.

(c) IfA=;B and Ais finite, then A =B,

(d) IfA =, B and A and B are at most countable, then A = ‘5.

Proof. (a)If w: A =B, then: A=, B for ] = {r}.
(b)If I: A=, B, then (I),en: A, B.

(c) Suppose (I;)nen: A = B, and suppose A has exactly r elements, say, A =
{ai,...,a,}. We choose p € I,.. If we suitably apply the forth-property r times,
we obtain a ¢ € I} such that ay,...,a, € dom(q), i.e., dom(q) = A. If rg(q) # B
and b € B with b ¢ rg(q), then by the back-property there would be a proper ex-
tension ¢’ of g in Iy such that b € rg(q’). Since dom(g) = A, this is not possible.
Therefore rg(¢) = B and thus ¢ : 2A = 8.

(d) Suppose I : A=, B, A= {ag,a1,...} and B = {bo,b,...}. Starting from an
arbitrary pg € I, by repeated application of the back- and forth-properties, we obtain
extensions pp, p2,... in I such that ay € dom(py), by € rg(p2), a1 € dom(p3), by €
rg(p4), ..., 1.e., a sequence (p,)qen of partial isomorphisms in I such that for all n:

(1) pn € pasis
(2) ifnis odd, say n = 2r+1, then a, € dom(p,);
(3) ifniseven, say n =2r+2, then b, € rg(py).

By (1), p:=U,en P is a partial isomorphism from 2l to B. As dom(p) = A (by (2))
and rg(p) = B (by (3)), we have p: A= B. 4

Part (d) of Lemma 1.5 is an abstract version of the following theorem of Cantor.

1.6 Theorem. Every two countable dense orderings (without endpoints) are iso-
morphic.

Here a dense ordering is a {<}-structure which is a model of @Pgorq, Where Pyorg
contains the ordering axioms (compare I11.6.4) together with the following sen-
tences (“density”):

VaVy(x <y — Jz(x <zAz<y)), Vadyx<y, Vadyy<ux

The structures (R, <) and (Q, <) are dense orderings. By contrast, (Z, <) is not a
dense ordering.

Cantor’s theorem follows from Lemma 1.5(d) and

1.7 Lemma. If2 = (A,<") and B = (B,<®) are dense orderings, then I: A =, B
forI={p|p € Part(A,B),dom(p) is finite}.

Proof. Since p =0 is in I, I # 0. The set I satisfies the forth-property: Let p € I,
dom(p) = {ai,...,a,} and a € A. Because B is dense, there is an element b € B
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which is related to p(ay),...,p(a,) in the ordering B in the same manner as a is
related to a1, . . ., a, in the ordering 2. Then the map ¢ := pU{(a,b)} is an extension
of p which is defined for a and lies in /. The back-property follows analogously,
using the fact that 2 is dense. =

1.8 Example. Suppose S = {0,0} and let @, consist of the “successor axioms”

Vx(-x =04« Jyoy=x), VaVy(ox=o0y—x=y),
and foreverym > 1: Vx—0...0x=x.
——
m times
The structure My (cf. 1I1.7.3(2)) is a model of @;. We show that any two models

of @ are finitely isomorphic. First, we fix the following notation: For a model 2
of &5 and a € A we set al™ := 6" ... 6" (a). For every n € N we define a “distance

m times
function” d,, on A X A by
m  ifa"™ =g and m < 2!
dy(a,a) =< —m ifd"™ =gand m < 2"+

oo otherwise.
Now suppose 2 and B are models of ®5. We show that (/,),en : A = B, where

I, = {p € Part(2A,B) | dom(p) is finite, 0" € dom(p), and
forall a,d’ € dom(p), d,(a,d’) = d,(p(a),p(d))}.

Thus, a partial isomorphism in 7, preserves the “d,-distances”. First, we have I, # 0
since (04,08) € I,. We sketch a proof of the forth-property for (I,),en (the back-
property can be proved analogously). Suppose p € I,4; and a € A. We distinguish
two cases, depending on whether or not the condition

(%) There is an @’ € dom(p) such that |d,(a’,a)| < 2"*+!

holds. If (x) holds and, say, @’ € dom(p) with |d,(d’,a)| < 2"*!, then we choose
the b € B with d,(p(d’),b) = d,(d',a). From p € 1,4, it follows easily that ¢ :=
pU{(a,b)} is a partial isomorphism preserving the d,-distances, hence g € I,.. If (x)
does not hold, we choose an arbitrary element b such that d,(p(a’),b) = o for all
a € dom(p) (such an element b must exist since every model of @ is infinite).
Now it is easy to see that g := pU{(a,b)} € I,. =

1.9 Exercise. Let S = . Show that any two infinite S-structures are partially iso-

morphic.

1.10 Exercise. (a) Give an example of structures which are partially isomorphic
but not isomorphic.

(b) Give an example of structures which are finitely isomorphic but not partially
isomorphic.

1.11 Exercise. Give an uncountable model of the system @, of axioms in Exam-
ple 1.8.
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1.12 Exercise. Define 2l to be finitely embeddable in *5 (written: 2l — ¢ B) if there
is a sequence (I,;),en with the properties from Definition 1.3(a),(b). Analogously
define %A to be partially embeddable in ‘B, written: 2l —, ‘B. Show:

(a) If A — ;B and A is finite, then 2l is embeddable in %5, i.e., 2 is isomorphic to
a substructure of 5.

(b) If A —, ‘B and A is at most countable, then 2l is embeddable in 5.

(c) If 2l is an ordering and ‘B is a dense ordering, then 2 —, ‘B.

XII.2 Fraissé’s Theorem

Using the concepts introduced in Section 1, we now formulate the main result of
this chapter.

2.1 Fraissé’s Theorem. Let S be a finite symbol set and 2, B S-structures. Then
A=B iff A=,B.

Note that Fraissé’s Theorem provides us with a characterization of elementary

equivalence which does not refer to the first-order language.

Before proving the theorem (in the next section) we give several examples showing
how it can be used to check the elementary equivalence of structures.

2.2 Proposition. (a) Any two dense orderings are elementarily equivalent. In par-
ticular, (R, <) = (Q,<).

(b) Any two {0,0}-structures satisfying the axioms in 1.8 are elementarily equiv-
alent.

Proof. (a) follows from Fraissé” Theorem 2.1, since (cf. Lemma 1.7) any two dense
orderings are partially isomorphic, and thus, also finitely isomorphic; (b) follows
analogously by means of Example 1.8. -

For applications on completeness of theories we need the following simple criterion.
2.3 Lemma. For a theory T C Lg the following are equivalent:

(a) T is complete, i.e., for every S-sentence @ either ¢ € T or =@ € T.
(b) Any two models of T are elementarily equivalent.

Proof. Suppose first that (a) holds, and let 2 and B be models of 7. For any S-
sentence @ either e T or~@ e T.If o € T, then A =@ and B = ¢, if —@p € T,
then 2= —@ and B = —¢. Thus QA E¢ iff B E @)

Conversely, let ¢ be an S-sentence and suppose ¢ ¢ T. Since T is a theory, T |= ¢
does not hold, and therefore, there is a model 2 of TU{—¢}. By (b) every model
of T is elementarily equivalent to 2l, and thus is a model of —¢. Hence T = —¢ and,
since T is a theory, =@ € T. -

From Proposition 2.2, with the aid of Lemma 2.3 and Theorem X.6.5, we obtain:
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2.4 Proposition. (a) The theory ®j

ord
decidable. Thus, for example, d{‘;rd =Th(R, <).

(b) The theory (D(E of successor structures is complete and R-decidable. Thus, for
example, dﬁ(‘,z =Th(N, o). .

of dense orderings is complete and R-

In preparation for the proof of Fraissé’s Theorem we show that we can restrict our-
selves to relational symbol sets. (A direct proof for arbitrary finite symbol sets is
sketched in Exercise 3.15.)

Let S be an arbitrary symbol set. As done before Theorem VIII.1.3, we choose, for
each n-ary f € S, a new (n+ 1)-ary relation symbol F and, for each ¢ € S, a new
unary relation symbol C. Let S” consist of the relation symbols from S together with
the new relation symbols; thus S” is relational. For an S-structure %A, let 2" be the
S”-structure obtained from £, replacing functions and constants by their graphs (as
in Section VIIL.1).

When defining partial isomorphisms we treated functions and constants in such a
way (cf. Definition 1.1) that for arbitrary structures 2 and ‘B,

Part(2A,B) = Part(A",B").

From this we obtain

(%) A=B iff A =, B
In Corollary VIII.1.4 we showed that
(k%) A=B iff A =B".

Thus, in proving Fraissé’s Theorem, we can restrict to relational symbol sets. For,
if 2 and *B are given, it follows from

A =" iff A =, B’
by (x) and (xx) that
A=B iff A=,B.

2.5 Exercise. Show that for § = 0 the theory {@>, | n > 2} of infinite sets is
complete and R-decidable.

2.6 Exercise. Let S = {P, | n € N} be a set of unary relation symbols. Define the
S-structures 2 and B as follows: A := N, B:= NU{eo}, P* := {m | m € N,m > n},
PE :={m|meN,m>n}U{e}. Show that 2 = B but not A=, B. Thus Fraissé’s
Theorem is, in general, not true for infinite symbol sets. Note, on the other hand, that
for arbitrary S and S-structures 2, B we have (A =B iff for every finite Sy C S,
Als, = Bls,), and therefore (A =B iff for every finite So C S, Als, =r Bls,).
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XI1.3 Proof of Fraissé’s Theorem

In the sequel we prove Fraissé’s Theorem. Let S be a fixed finite, relational symbol
set.

For a formula ¢ we define the quantifier rank qr(¢) of ¢ to be the maximum number
of nested quantifiers occurring in it:

gr(@) := 0, if ¢ atomic;
qr(=¢) := qr(9);
qr(@V y) == max{qr(@),qr(y)};
qr(3xe) := qr(@) + 1.

For example, the formula —3x(VyRxz A Qy) A VzQz has quantifier rank 2. The for-
mulas of quantifier rank zero are the quantifier-free formulas.

One direction of Fraissé’s Theorem follows from
3.1, IfA=4 B then A = 5.

In order to prove 3.1 we must show for every S-sentence ¢ that

A= iff BE=o.

We obtain this by applying the following lemma, taking r = 0, n = qr(¢@), and an
arbitrary p € I, (note that I,, # 0).
3.2 Lemma. Let (I,)nen: A =2; B. Then for every formula ¢:
Ifoels qi(e) <n, p€l,anday,...,a,—; € dom(p), then

A= @lag,...,ar—1] iff BEo[pla),...,plar—1))]
Informally, Lemma 3.2 says that partial isomorphisms from /,, preserve formulas of
quantifier rank < n. It makes precise the idea discussed in 1.2(e) that formulas with

quantifiers are preserved under partial isomorphisms, provided these isomorphisms
admit certain extensions.

(%)

Proof of Lemma 3.2. We show (x) by induction on formulas ¢. Suppose ¢ € LS,
qr(@) <n, p €I, and ay,...,a,—1 € dom(p).

(1) For atomic ¢ the result was proved in 1.2(c).
(i) If @ = —y, then
A= @lao,...,ar—1] iff notA = ylag,...,ar_1]
iff not B = y[p(ap),...,p(a,—1)] (ind. hypothesis)
iff B = ¢[p(ao),...,p(ar-1)].

(iii) For ¢ = yp V y; the argument is analogous.
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(iv) Suppose @ = Jxy. Since ¢ € L3, the variable v, does not occur free in ¢. Thus
Edxy EIv,l;/%, and therefore, we may assume that x = v,. Because qr(¢) =
qr(3xy) <n, we have qr(y) < n— 1. The claim is now obtained from the following
chain of equivalent statements:

(@ A= @lao,...,ar1].

(b) There is a € A such that 2 = ylao,...,ar_1,4].

(c) Thereisa € A and g € I, such that ¢ O p, a € dom(g), and
A = ylao,...,a,-1,d].

(d) Thereisa € A and g € I, such that g D p, a € dom(g), and
% ': W[p(ao)a--.7p(a"*l)7q(a)]’

(e) Thereis b € Band g € I, such that g O p, b € rg(g), and
B ': l//[p(ao),...,p(ar,l),b],

(f) There is b € B such that B |= y[p(ao), ..., p(a,—1),b].

@ BEolplao),. .., plar1)]-

To prove the equivalence of (b) and (c) and of (e) and (f), respectively, one uses the
back- and the forth-property of the sequence (1,),cn. The equivalence of (c) and (d)
follows from the induction hypothesis. —

From the foregoing proof we can extract another result:

Structures 2 and B are said to be m-isomorphic (written: 2 22, B) if there is a
sequence Iy, ..., 1, of nonempty sets of partial isomorphisms from 2l to 5 with the
back-property and the forth-property, i.e.,

forn+1<m, p €, and a € A (resp. b € B), there is g € I, such that
g 2 p and a € dom(q) (resp. b € rg(q)).

In this case, we write (I;)n<m: A =, B.

In case (I;)n<m: 2A =, B, the proof of Lemma 3.2 shows that each p € I, (with
n < m) preserves the validity of formulas of quantifier rank < n. If we write 2( =, B
in case 2 and ‘B satisfy the same sentences of quantifier rank < m, we thus have

3.3 Corollary. If =, B then A =, °B. —

The following considerations lead to the converse of 3.1.

P
For an S-structure B, a finite sequence (by,...,b,_1) € B, written: b € B, and n € N
we introduce a formula (p”% IS € LS: the formula (p; IS describes the “isomorphism

B

type” of the substructure [{bo,...,by_] }]%; for n > 0, (p"% ; indicates to which iso-

morphism types br can be extended in ‘B by adding n elements, one at a time. We
I

shall have that B = (p”% br[b]; and if A = (p; b,[ar] for an S-structure A and d € A,

then the map given by a;- — b; (i <r) will be a partial isomorphism which can be

extended “back and forth n times”. For n > 0 we also allow the case r = 0, i.e., the

case of the empty sequence () of elements from B, and we write Qg for @ ,. For
n =0 we assume r > 0.
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We now give an exact definition. As an abbreviation we set
@, :={p € L} | ¢ is atomic or negated atomic}.
Since S contains only relation symbols, @, is finite and Py is empty.

For an S-structure B we define the formula (pfB I3 by induction on n for all r (r > 0,

if n =0) and all br € B as follows (afterwards we shall show that the conjunctions
and disjunctions occurring in the definition are finite):

0y = Noco B olb]}

1.
on't = W \H{e), g [0 € BYAN (), 1 b e B).

Here, bb abbreviates (bo,...,by_1,b).

Since @, is finite for all , by induction on n we easily obtain:
3.4. The set {(p”% J | B is an S-structure and be B} is finite. =

The conjunctions and disjunctions occurring in the definition are therefore all finite,
and hence the (p; ; are first-order formulas.

35. @) ¢l €LY and qr(gl, ) =n (b) B = ¢!, b,[br}.

B s

Proof. We show (a) and (b) by induction on n. We consider (b). For n =0 (and r > 0)
the claim follows immediately from the definition of (p% IS For the step from 7 to

n+ 1, the induction hypothesis yields for all ¥’ € B,

Bl [b.0),

hence, for all ¥’ € B,
r I
L n / n
B V{g , [bEBYBY] and BTl 6]
Thus
I I
n L n /
B = er\/{cp%’b,b |beB}bp] and DBE /\{Ev,(p%,brb/ | b € B}[b]
and therefore, B = (pgr;r [br] .
Let br € B. If 2 is also an S-structure and a € A, then 1.2(c) shows:
3.6. AE (p% br[ar] iff by setting p(a;) = b; for i < r one gets a partial isomor-

phism from 2 to B (written: d be Part(2,B)).

We generalize the direction from left to right:



268 XII An Algebraic Characterization of Elementary Equivalence
r
37. IfFA = (p; b,[ar], then d s b € Part(21,B).

Proof. 'We use induction on n. For n = 0 the claim follows from 3.6. For the
induction step, let 2 |= (pgr;,[ar}. We choose a € A arbitrarily. Since we have

A= Vv,V{(p%ﬁb,b | b e B}[ar]', there is some b € B such that 2 |= (pg”B.I;b[ar,a]. By
induction hypothesis, da bb e Part(21,B), hence d be Part(2(,B). =
We fix two S-structures 2 and ‘B. For n € N we set

Jhi={d—b|reN, dea, erBandQl}:(p;hr[ar]}.

Then we obtain:

3.8. (a) J, C Part(A,B) for all n.
(b) (Jn)nen has the back- and the forth-property.
(©) Ifn>0and A |= @y (= @ ), then O € Jy, hence J, # 0.

Proof. Since (a) follows immediately from 3.7 and (c) from the definition of J,,, we
r
only have to prove (b). First we show the forth-property. Let p = d — b € J, | and

a €A Then A = (pgb],[ar]; in particular, 2 |= v, V{3 . | b€ B}[a]. Therefore

there is a b € B such that 2 |= (p; 0 [d,a]. Then da bbis a partial isomorphism

in J, which extends p and whose domain contains a. — Since we also have 2 =

/\{Elvrq)"% JALE B}[d], for each b € B there is a € A such that 2 |= o b,b[ar, a) and

hence da brb € Jy, i.e., there is a partial isomorphism in J, which extends p and
has b in its range. This proves the back-property. —

With 3.8 we easily obtain the direction of Fraissé’s Theorem which was still open:
If 2 =B then 2 =; B. So let A = B. Since, for n > 1, B |= @g (cf. 3.5(b)), we
have 2 = . By 3.8(c) we get J, # 0 for all n and therefore (J,),en: 21 =f B
(cf. 3.8(a), (b)). !

From the preceding considerations we instantly obtain:

3.9 Theorem. Let S be a finite relational symbol set, and let A and B be S-
structures. Then the following are equivalent:

(a) A=B. ©) (Jn)nen: A=, B
(b) oA = QL forn > 1. d) A=, B =

Since qr(@g ) = m for m > 1, we further get:

3.10 Theorem. Let S be a finite and relational symbol set, and let A and B be
S-structures. Then the following are equivalent for m > 1:

(a) A=,,B. © (Jn)n<m: A=, B,
(b) 2= o, d) A=, B. 1
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In Section V1.3 we have shown that some classes are not A-elementary. The argu-
ments involved the Compactness Theorem and used infinite structures. The preced-
ing considerations provide a method for showing that certain properties cannot be
expressed by a first-order sentence, even if we restrict ourselves to finite structures.
We explain the approach treating, as an example, the connectedness of finite graphs
(in V1.3.6 we considered the connectedness for the class of all graphs). A further
example is contained in Exercise 3.16(b).

3.11 Theorem. Let R be a binary relation symbol. There is no {R}-sentence whose
finite models are the finite connected graphs. Hence, the class of connected graphs
is not elementary.

Proof. For k > 0 let &, be the graph corresponding to the (k + 1)-cycle with the
vertices 0,...,k, i.e.,

& = ({0,...,k},R%%),

where

RO = {(i,i+1)|i<k}U{(i,i—1)|1<i<k}U{(0,k),(k,0)},
and let $); consist of two disjoint copies of &y, say,

= ({0,....k} x {0,1},RFk)

with

R = {((1,0),(4,0)) | (i, /) € RO} U{((i,1),(j, 1)) | (i.)) € R%}.
We claim:
(%) For k > 2". &; =, Hi.

Then we are done. In fact, let ¢ be an {R}-sentence and m = qr(¢). Then we have
Bom 2, Hom by (%), i.e., BGon =, Hom, and therefore (Gom = @ iff  Hom = @).
Since Bom is connected, but Hom» is not, the class of finite models of ¢ cannot be
identical with the class of all finite connected graphs.

For the proof of (%) we define, for fixed k > 2™ and n > 0, “distance functions” d,
on Gy x Gy and d,,/ on H, x Hy as follows:

connecting a and b in &,  if this length is < ontl.

length of the shortest path
dy(a,b) = {
oo otherwise;

dy(a,b) ifi=j;
o otherwise.

dn/((a>i)7 (buj)) = {

For n < m we set

I, := {p € Part(&y, 9y) | |[dom(p)| < m—n, and for all a,b € dom(p),
dy(a,b) = dy'(p(a), p(b))}-

Similarly to Example 1.8, one can easily show now that (I,),<mu: &g =y Hi. B
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3.12 Exercise. Let S be finite and relational, and let the S-structure 8 contain ex-
actly n elements. Then for every S-structure 2A:

A=B iff AR g,

1e ¢%+1

3.13 Exercise. Let S be finite and relatlonal and let B be an S-structure. Show that
for all nand r (with n+r > 0) and for all b € B, = (p’”rl —

characterizes B up to isomorphism.

3.14 Exercise. Again, let S be ﬁnite and relational. For an S-structure 5 and b cB

define l//'”rl (for n+r > 0) by ly [ (p?Bl; and ly"“ : Vv,\/{l,l/"’gbrb | b€ B}.

Show: (a) l// IS is a universal formula
(b) For an S- structure 2 the following are equivalent:
— 2l satisfies every universal S-sentence which holds in ‘5.

- A= yg foralln > 1.
— 2 — /B (for notation see Exercise 1.12).

(c) Part (b) corresponds to Theorem 3.9. Formulate and prove the version analo-
gous to Theorem 3.10.

3.15 Exercise. Transfer the results of this section to arbitrary finite symbol sets. For
this purpose define a modified rank mrk for terms and formulas as follows:

mrk( ):=0, mrk(c) =1
mrk(fty...1,) := 14+ mrk(sy) + ... +mrk(z,)
mrk (Rt ... t,,) = mrk(ty) + ... + mrk(z,)
mrk(t) = ;) := max{0, mrk(¢;) + mrk(r,) — 1}
) o

= max{mrk (), mek(y)}
1 +mrk(o).

mrk(@ V y
mrk(3xe) :

Furthermore, for » > 0 define (similarly to @, on p. 267)
@, ;= {¢ € L} | ¢ is atomic or negated atomic and mrk(¢) = 0}.

Show: (a) Theorems 3.9 and 3.10 and the considerations leading to them remain
valid if we replace the quantifier rank everywhere by the modified rank and &,
by @,’. The same holds for the preceding exercises.

(b) If S is relational, then &, = ®,” and qr(¢@) = mrk(¢) for all ¢ € LS.

3.16 Exercise. LetS:={<,R} with binary relation symbols < and R. For k € N let
= ({0,...,k}, <4 RA), where < is the natural order on {0, ...,k} and R4 is
the successor relation, i.e., R% = {(i,i+1) | i < k}. Show:
(a) Fork,l,m € N with k,I > 2190, =, ;.
Hint: Define “distance functions” d,, on N x N by
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b—a if |b—al <2"!

oo otherwise.

dy(a,b) == {
For n < m set

L, = {p € Part(Ay,2;) | |dom(p)| <2+4+m—n, 0,k € dom(p),
p(0) =0, p(k) =1,and for all a,b € dom(p),
dn(a,b) = dn(p(a), p(b))}

and show for k,1 > 2" that (I,)p<m: A Zn Ay
(b) Thereisno ¢ € Lg such that for all k, ; = ¢ iff kis even.

3.17 Exercise. Let S := {P,...,P,} with unary P,. Show: For each S-structure 2
and each m > 1 there is a structure B with 2 =, *B containing at most m - 2" el-
ements. Hint: Consider the 2" many subsets of A of the form A;N...NA,, where
A; =P} orA; = A\ PA. For B take a structure in which the corresponding sets have
the same number of elements, if this number is < m, and m elements otherwise.

3.18 Exercise. Again, letS={Py,...,P,} withunary P,,m > 1 andlet ¢ € Lj be a
sentence of quantifier rank < m. Show:
(a) If ¢ is satisfiable, then ¢ is satisfiable already over a domain with at most m - 2"
elements.
() {y|weL;, yvalid} is R-decidable.

X1I1.4 Ehrenfeucht Games

The algebraic description of elementary equivalence is well-suited for many pur-
poses. However, it lacks the intuitive appeal of a game-theoretical characterization
due to Ehrenfeucht, which we describe in the present section.

Let S be an arbitrary symbol set and let 2l and ‘B be S-structures. To simplify the
formulation we assume AN B = 0. The Ehrenfeucht game G(24,B) corresponding to
2l and *B is played by two players, I (“he”) and II (“she”), according to the following
rules:

Each play of the game begins with player I choosing a natural number r > 1; then r
is the number of subsequent moves each player has to make in the course of the
play. These subsequent moves are begun by player I, and both players move alter-
nately. Each move consists of choosing an element from A U B. If player I chooses
an element a; € A in his ith move, then player II must choose an element b; € B in
her ith move. If player I chooses an element b; € B in his ith move, then player II
must choose an element a; € A. After the rth move of player II the play is com-
pleted. Altogether some number » > 1, elements ay,...,a, € A and by,...,b, € B
have been chosen. Player II has won the play iff by p(a;) :=b; fori=1,...,ra
partial isomorphism from [ to ‘B is defined.
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We say that player Il has a winning strategy in G(2(,28) and write “II wins
G(21,8)”, if it is possible for her to win each play. (We omit an exact definition
of the notion of “winning strategy.”)

4.1 Lemma. 2A=,B iff Il winsG(2,B).

This lemma, together with Fraissé’s Theorem 2.1, yields the desired game-theoreti-
cal characterization of elementary equivalence:

4.2 Ehrenfeucht’s Theorem. Let S be a finite symbol set. Then for any S-structures
A and B:

A=B iff wins G(A,B).
Proof of Lemma 4.1. Suppose (I),en: 2A22p B. Then also (1)) ,en: A= B, where
I' .= {p| there is g € I, such that p C ¢}. We describe a winning strategy for player
1I:

If player I chooses the number r at the beginning of a G(2(,B)-play, then for
i=1,...,r player II should choose the elements a; (or respectively b;) so that by
pi(a;j) :=bj for 1 < j <i one obtains a partial isomorphism p;: {ai,...,a;} —
{b1,...,b;} with p; € I'_,. This is always possible because of the extension prop-
erties of partial isomorphisms in (I}),en. For i = r it follows that player II has a
winning strategy for the game.

Conversely, suppose that player II has a winning strategy in G(2(,8). We define a
sequence (I,)nen as follows: For n € N let

p€l, :iff pecPart(A,B) and there are j € Nand ay,...,a; € A such that
—dom(p) = {ay,...,a;};
— there is an m > n and a G(2(,B)-play which II plays according
to her winning strategy, which player I opens by choosing the
number m + j, and where in the first j moves the elements

ai,...,aj€Aand p(ay),...,p(aj) € B are chosen.

From the rules of the game we immediately obtain that (I,),en: 2 =2 B. =

4.3 Exercise. For r > 1 let G,(2(,B) be the game obtained from the Ehrenfeucht
game G(2(,B) by fixing r to be the number player I has to choose first. Show:
A= B iff I wins G-(2,B).
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Chapter XIII
Lindstrom’s Theorems

In this final chapter we present some results, due to Lindstrom [28], which we have
already mentioned several times. They show that first-order logic occupies a unique
place among logical systems. Indeed, we shall prove:

(a) There is no logical system with more expressive power than first-order logic, for
which both the Compactness Theorem and the Lowenheim—Skolem Theorem hold
(Section 3).

(b) There is no logical system with more expressive power than first-order logic,
for which the Lowenheim—Skolem Theorem holds and for which the set of valid
sentences is enumerable (Section 4).

XIIL.1 Logical Systems

In the following definition of a “logical system” we collect several properties which
are shared by the logics we have considered so far. As we are mainly interested in
semantic aspects, we speak of a logical system as soon as we are given, for every
symbol set S, an “abstract” set whose elements play the role of S-sentences, and a
relationship between structures and such sentences which corresponds to the satis-
faction relation and determines whether an “abstract” sentence holds in a structure.

1.1 Definition. A logical system £ consists of a function L and a binary relation

=. The function L associates with every symbol set S a set L(S), the set of S-

sentences of . The following properties are required:

(a) If So C S then L(Sp) C L(S)).

(b) If2A =4 ¢ (i.e., if A and @ are related under = &), then there is an S such that
20 is an S-structure and @ € L(S).

(¢) (Isomorphism property) If 2 =4 ¢ and A =B, then B =« ¢.

(d) (Reduct property) If So C Sy, ¢ € L(Sp) and 2 is an S;-structure, then

Q[)Zg(p iff Ql|50 )Zg Q.
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Examples of logical systems are .27, 41,2}, Lo, 0. and £p. For instance, in the
case of 4 we choose L to be the function which assigns to a symbol set S the set
Li(S) := L3 of first-order S-sentences, and we take =4 to be the usual satisfaction
relation between structures and first-order sentences.

If £ is a logical system and ¢ € L(S), let
Mod$, () := {2 | 2 is an S-structure and A = & @}.
In case S is clear from the context we just write Mod ¢ ().

The class Mod, (¢) can be regarded as a mathematically precise counterpart to the
meaning of @. It suggests the following definition of when a logical system . has
at least the expressive power as ., namely, if for every .Z-sentence @ there is an
#’'-sentence y with the same meaning:

1.2 Definition. Let .2 and . be logical systems.

— Let S be a symbol set, ¢ € L(S) and y € L'(S). Then ¢ and y are said to be
logically equivalent if Mod*, (@) = Mod;,(l;/).

— ' is at least as strong as £ (written: £ < &) if for every S and every
@ € L(S) there is a y € L'(S) such that ¢ and v are logically equivalent.

— ZLand &' are equally strong (written: & ~ L") if ¥ <& and &' < L.

Examples. We have .21 < LY LY < Ar; not £ < &y (cf. Exercise 1X.1.7);
L < Lo, 0 (cf. Exercise IX.2.7).

On our abstract level we now formulate some properties of logical systems %,
which are known to hold for the systems we have considered so far.

Boole(.¥) (“% contains propositional (“Boolean”) connectives”):
(1) Given S and ¢ € L(S), there is a y € L(S) such that for every S-structure 2:
A=y y iff notAEg @.
(2) Given Sand @,y € L(S), there is a ¥ € L(S) such that for every S-structure 2l:
gy iff (AEg e or A=y ).

If Boole(.%) holds, then —¢ and (¢ V y) stand for sentences y in the sense of (1)
and (2), respectively. The notations (@ A y), (¢ — y),... are used analogously.

Rel(.¥) (“Z permits relativization™):

For S and ¢ € L(S) and a unary relation symbol U there is a y € L(SU{U})
such that

QU Ery iff U=z

for all S-structures 2 and all S-closed subsets U of A. ([UA4]? is the substruc-
ture of 2 with domain U#.)

If Rel(.Z) holds, let @V be a sentence y with the above property.
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Repl(.¥) (“.Z permits replacement of function symbols and constants by relation
symbols™):

If S is a symbol set and S” is chosen as on p. 113 — the function symbols and
constants from § are replaced by relation symbols for their graphs —, then for
every @ € L(S) there is a y € L(S") such that for all S-structures 2l:

AEgo iff A =gy

(For the definition of A" see also Section VIIL1). If Repl(.Z), we write ¢" for a
formula y with the above property.

1.3 Definition. A logical system .Z is said to be regular if it satisfies the properties
Boole(.¥), Rel(.¥), and Repl(.¥).

All logical systems which we have hitherto considered are regular. In the case of
A we verified Rel(-#]) and Repl(-#) in Section VIIL.1 and Section VIIL.2. The
arguments given there can also be applied without difficulty to the other logical
systems.

We tacitly adopt some semantic notions whose definitions can be extended from %}
to other logical systems .Z in a straightforward manner. For example, ¢ € L(S) is
said to be satisfiable if ModS, (@) # 0, and valid if Mod3,(¢) is the class of all
S-structures. If @ C L(S) then @ = ¢ means that every model of & (in the sense
of =) is a model of ¢. Note that these definitions refer to a fixed symbol set S.
However, using the reduct property of Definition 1.1(d) one can argue that they do
not depend on S. In the sequel, applications of the reduct property will be made
without explicit mention.

We introduce the following abbreviations:
LoSko(.Z) (“The Lowenheim—Skolem Theorem holds for .£”):

If @ € L(S) is satisfiable, then there is a model of ¢ whose domain is at most
countable.

Comp(.%) (“The Compactness Theorem holds for .£”):

If @ C L(S) and if every finite subset of @ is satisfiable, then P itself is satis-
fiable.

In this terminology the result of Lindstrom mentioned in the introduction to the
present chapter under (a) reads as follows:

If £ is a regular logical system such that 4 < ¢, LSko(¥), and
Comp(.%), then .Z ~ 4.

We shall use the following result to restrict ourselves to a relational S in the proofs
of Lindstrom’s Theorems.

1.4 Lemma. Let £ be a regular logical system. If, for all relational symbol sets S,
every L(S)-sentence is logically equivalent to a first-order sentence, then & < ‘4.
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Proof. We prove the claim using Repl(-%’) and the results from Section VIIIL.1: Let S
be an arbitrary symbol set and y € L(S). With Repl(.¥) we choose the L(S")-
sentence Y’. Since S” is relational, by assumption there is a first-order sentence
@ € Li(S") logically equivalent to y". For ¢ we choose the Lj(S)-sentence ¢ " ac-
cording to TheoremVIII.1.3. Then the following holds for every S-structure 2A:

Akyy iff =gy’

iff Ao
iff A=
Hence y and ¢ " are logically equivalent. B

1.5 Exercise. Let .Z be given by:
— L(S) := {@ | ¢ is an L§-sentence of the form 3X; ... 3X,y, where ¥ does not
contain a second-order quantifier}.
— For ¢ € L(S) and S-structures 2, 2A = @ iff A =4, .
Show: (a) .Z is a logical system.
(b) LoSko(.Z), Comp(.Z), Rel(.Z), and Repl(.Z) hold.
(c) Boole(.¥) does not hold.
(d) A< L, butnot & < 4.
(e) The set of valid L(S,)-sentences is not enumerable. Hint: Note that Th(91) is
not enumerable and use the axiom system IT given in Exercise I11.7.5.

This system .Z shows that Boole(.%) is necessary in Lindstrom’s First Theorem 3.5.
1.6 Exercise. Show: Zp <.71, not 4 <.Zp, not Zp < .Zy.

XIII.2 Compact Regular Logical Systems

Before proving Lindstrém’s Theorems we derive some properties of logical systems
for which the Compactness Theorem holds.

In the following, . is a regular logical system such that £ < . For a first-order
S-sentence @, let @* be a sentence in L(S) logically equivalent to ¢. For a set @ of
first-order S-sentences, define @* := {¢* | ¢ € P}.

As usual, Comp (%), the Compactness Theorem for satisfaction, yields the Com-
pactness Theorem for the consequence relation:

2.1 Lemma. Suppose Comp(.%), and let DU{@} C L(S) and ® =y ¢. Then there
is a finite subset &y of ® such that Py =g @.

Proof. Choose —¢ by Boole(.Z). Then @ U {—¢} is not satisfiable. By Comp(.Z)
there is a finite subset @y of @ so that &y U {—¢} is not satisfiable, i.e., we have

P =z ¢ 5
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If Comp(-%) holds, the meaning of an L(S)-sentence only depends on finitely many
symbols from S:

2.2 Lemma. Suppose Comp(.Z) and y € L(S). Then there is a finite subset So of S
such that for all S-structures A and *B:

If Als, = Blsy, then A =gy iff BlEry)

Proof. We restrict ourselves to the case where S is relational (the case we shall
subsequently need). There is no difficulty in extending the proof to arbitrary symbol
sets.

Choose new unary symbols U, V, and f. Define @ to consist of the following first-
order SU{U,V, f}-sentences, which say that f is an isomorphism between the sub-
structure induced on U and the substructure induced on V:

dxUx, dxVx,

Vx(Ux =V fx), Vy(Vy = Ix(Ux A fx =y)),

VxVy(Ux AUyA fx = fy) > x=y),
and, for every R € S, R n-ary:

Vxp .. VY, (Uxi Ao AUxy) = (Rx1 ... X0 < Rfx1 .. fXy)).
Then, first (note that 4 < .¥),
M ' =y yl oy
In fact, assume that 2 is an S-structure and that (4, U4, V4, f4) =& ®*, and hence,
(A,U4, VA f4) |= @. Then U” and V4 are nonempty and f*|;4 is an isomorphism
from [U4]* to [VA]®. By the isomorphism property (cf. Definition 1.1(c)) we have
U gy iff VA 2y,
that is, by Rel(.%),
QAU Ezy? iff AV Er v
Using the reduct property and Boole(.¢), we obtain
AUV e v oy

Thus (1) is proved. By Comp(.¥) there is a finite subset @y of & such that
2 L e A A

Since @y consists of first-order sentences, we may choose a finite subset Sy of S
such that @y consists of Sp-sentences. We show that Sy has the desired properties.
Suppose A and B are S-structures and 7w: 2A|s, = B|s,, where we assume ANB = 0.
(Otherwise, we can take an isomorphic copy of 8 and use the isomorphism prop-
erty.) We define over C := AUB an SU{U,V, f}-structure (¢&,U¢,VC, fC) as follows
(note that § is relational):
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RE€:=RAURBforR € S,
U¢:=A, v@:=B,
£€ such that f€|,c = .
Then (€,U€,VC, f€) is amodel of @y, i.e., (€, UC,VE, f€) = &;. Hence by (2),

(CUEVE ) Er vl &y,
and therefore, using [U¢]¢ = 2 and [V¢]¢ =B,

Q[):gl[/ iff %}Zgl]/ B

XIII.3 Lindstrom’s First Theorem

In the following, let .Z be a regular logical system with .27 < .. Furthermore, let S
be a relational symbol set and y an L(S)-sentence which is not logically equivalent
to any first-order sentence. To prepare for Lindstrom’s Theorems we first show that
there are structures 2l and B with 2 |=¢ y and B =» -y, which are — in a sense
made precise below — nearly identical with respect to the first-order language.

For a first-order S-sentence @, let ¢* be a logically equivalent sentence in L(S).

3.1 Lemma. Let S be a relational symbol set and y an L(S)-sentence which is not
logically equivalent to any first-order sentence. Then, for every finite So C S and
every m € N, there are S-structures A and 5 such that:

(+) 2[|50 =, %|So’ A ’Z;f Vv, and ‘B )Zn(/ Y.

Proof. Let Sy be a finite subset of S and, without loss of generality, m > 1. We set,
using the formulas ¢g of Section XII.3,

Q= \/{(pgfls0 | 2 is an S-structure and 2 =& y}.

By XII.3.4, this disjunction is finite, hence ¢ is a first-order sentence. Obviously
v — @* is valid. Since, by assumption, ¥ is not logically equivalent to ¢, and
hence not to ¢*, there is an S-structure B such that B = ¢@* and B =& —y. Since
B |= @, there is an S-structure 2 such that 2 = y and B |= (pg‘so. Therefore, we

also have (s, =, Bs, (cf. Theorem XI1.3.10). B

In the proofs of Lindstrom’s Theorems we shall essentially use the fact that the
claim of Lemma 3.1 can be formulated in .. Let us turn to such a formulation,
using the terminology of partial isomorphisms as introduced in Section XII.3. For
m € N and for Sy we choose y, 2, B, and (I,),<n such that (I,),<m: ™As, =n
Bls,, A =2 v, B = —-y. We may assume that AN B = 0 (otherwise we take
an isomorphic copy of 2). Let the symbol set ST be obtained from S by adding
the following new symbols: a constant ¢, a unary function symbol f, and relation
symbols P,U,V,W (unary), <,I (binary) and G (ternary). We define an ST -structure
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¢ which contains 2 and ‘B and allows us to describe the m-isomorphism property

(In)n<m: Als, =m Bls, by including the partial isomorphisms from /, as elements
of its domain. More exactly:

(@ C:=AUBU{0,...,m} UU,<pIn;
(b) UC:=Aand [UC]%s :=9;
(¢) V€:=Band [VC]%s := B;
((b) and (c) are possible since AN B = 0 and since S is relational.)
(d) W€ :={0,...,m}, < is the natural ordering relation on {0,...,m}, ¢ :=m,

and f€|yc is the predecessor function on W€, ie., fC(n+1) :=nforn <m
and, say, f€(0) :=0;

(e) PC = Ungmln;
() ISnp :iff n<mandpe€l,;
(g) Gpab :iff PCp,ac dom(p)and p(a)=b.

Figure XIII.1 gives an illustration.

Fig. XTIL.1

The structure € is then a model of the conjunction y of the following finite set of
sentences of L(ST), which yields the desired formulation of (+). (Note that y does
not depend on m.) Here and later we use first-order sentences as an intuitive notation
for the corresponding sentences of .Z.

(i) Yp(Pp — Vx¥y(Gpxy — (UxAVy))).
(i) Vp(Pp — Vxvx'Vyvy' ((Gpxy AGpx'y') — (x=x <y =y'))).
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(iii) For every R € Sy, R n-ary:
Vp(Pp — Vx1 .. Vx,¥y1 .. .Yy, ((Gpxiyi A ... AGpxpyn)
— (Rxy...x, <> Ry1...yn))).

((1), (ii), and (iii) say that for a fixed p € P, Gp - - describes the graph of the par-
tial isomorphism p from the Sp-substructure induced on U to the Sp-substructure
induced on V.)

(iv) The axioms of @ for partially defined orderings (cf. 111.6.4) and the sen-
tences

Vx(Wx <> (x=cVIy(y <xVx<y))) AVx(Wx = (x <cVx=c))

(< is the empty relation and W = {c}, or W is the field of < and c is the greatest
element; in both cases we say that W is the field of <),

Vx(Fyy <x— (fx <xA-Jz(fx <zAz<x)))
(f is the predecessor function).
(v) Vx(Wx — 3p(Pp Alxp))
(if x is in the field of <, then I, = {p | Pp AIxp} is nonempty).

(vi) VaVpVu((fx <xANIxp AUu) —
AqIv(Ifxqg A Gquv ANYX'YY (Gpx'y — Ggx'y')))
(the forth-property).

(vii) An analogous sentence for the back-property.
(viii) UxAIyVyAwY A (—y)V

(note that UC = A, VC =B, A =2 v, B =g ).
We have:

3.2. For every m € N there is a model € of y in which the field W€ of <€ consists
of exactly (m+ 1) elements. 4

We now show:
3.3. Assume L6Sko(.%). Then one of the following conditions (a) or (b) holds:
(a) There are S-structures 2 and B such that
Ay v, BEy -y, and U5, = Bs,.
(b) In all models ® of x, the field WP of <P is finite.
Proof. First we show:

If the S*-structure © is a model of x, in which the field WP of <P is infinite,
then the U-part and the V-part of © are domains of S-substructures 2( :=
(©) [UP)®ls and B := [VP]®ls such that

AEz vy, BEg-y, and A, =, Bls,.
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Indeed: Since © satisfies the sentences in (viii), U D 2 0 and yb # 0; and since S is
relational, UP and VP are domains of S-substructures. Again by (viii), we have

D2y’ and D g (-y),

and therefore

Ay y and B =g oy

From (i), (ii), (iii) we know that every p € PP corresponds, via G, to a partial iso-
morphism from 2], to B|s,, which we also denote by p. We extract from PP a sub-
set I in the following way: Let fOc, flc, f?c,... be abbreviations for ¢, fc, ffc,....
Since WP is infinite and cP is the last element of <P, the relation <? has an infinite
descending chain (f is the predecessor function, cf. (iv)):

<P ()P <P (fe)P <P P
We set
I:={p| thereis an n with I’ (f"c)Pp}
and show
I RAlsy =) Bls-
Indeed, by (v) we get that I = 0, and by (vi) and (vii) that I has the forth- and the
back-property. For example, for the forth-property we conclude as follows: If p € I,

say IP(f"c)Pp, and a € A = UP, then by (vi) there is a g such that I?(f"1c)Pq
(thus g € I), ¢ 2 p, and a € dom(q). Hence, (o) is proved.

Now we return to the proof of 3.3 and suppose that (b) does not hold. So there is a
model of j, in which the field W of < is infinite. We show below, using L6Sko(.%),
that we may assume the domain of this model to be countable. Then, by (o), the
following holds for the U-part 2 and the V-part B:

Q[lig v, %):g -V, and Q[‘So %p %|SO'

Since 2|5, and Bs, are partially isomorphic and at most countable, they are iso-
morphic (cf. Remark XII.1.5(d)). Hence part (a) in 3.3 is satisfied.

It remains to justify the transition to a countable model. So let © be a model of x
with infinite field W2 of <?. As mentioned before, to obtain from © a countable
model of x with an infinite field, we use L6Sko(.Z). Since LoSko(.Z) only holds
for sentences, not for infinite sets of sentences, we have to ensure by a single sen-
tence that the field of < is infinite. This is done as follows: <P has an infinite
descending chain (see above),

<P ()P <P (fe)P <P (P
Let Q be a new unary relation symbol and let ¥ be the L(S™ U {Q})-sentence
Y = Qc AVx(0x — (fx <xAQfx))

(““Q contains ¢, and every element in Q contains an immediate <-predecessor which
also belongs to 0”).
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With QP := {(f"c)P | n € N} we have:
(©7QD) 'Z.ff X/\ 0.

So, since y A ¥ is satisfiable, by LoSko(.%) there exists an at most countable model
(&, QF) of x A®. Obviously, € is an at most countable model of j, and the field WZ
of <F is infinite. .

For the following applications we summarize our considerations (of 3.2 and 3.3):

3.4 Main Lemma. Let ¥ be a regular logical system with 4 <.£ and L6Sko(.Z).
Furthermore, let S be a relational symbol set, and let ¥ be a sentence in L(S), which
is not logically equivalent to any first-order sentence. Then (a) or (b) holds:

(a) For all finite symbol sets So with Sy C S there are S-structures 2| and *B such
that

Akzy, BlEgy, and A, =B,
(b) For a unary relation symbol W and a suitable symbol set ST with SU{W} C S*
and finite ST\ S, there is an L(S™)-sentence ¥ such that

(i) In every model € of y, WC is finite and nonempty.
(ii) For every m > 1 there is a model € of ¥, in which W€ has exactly m
elements. B

Now we show:

3.5 Lindstrom’s First Theorem. For a regular logical system £ with 4 < &
the following holds:

If LoSko(.¥) and Comp(.%), then £ ~ “A.
Proof. Assume, towards a contradiction, that y is a sentence in L(S) which is not
logically equivalent to any first-order sentence. By Lemma 1.4 we may assume that
S is relational. Since Comp(-%’) holds, by Lemma 2.2 the meaning of y depends

only on finitely many symbols. So we can choose a finite subset Sy of S such that
for all S-structures 2, *B:

If Als,=Bls, then A=y y iff Bl=gy).

Hence the condition (a) in Lemma 3.4 is not satisfied, and therefore (b) must hold,
i.e., there is an .Z-sentence y which satisfies (i) and (ii) in 3.4(b). But this contra-
dicts Comp(.%): By (i), the set of sentences

{x}U{“W contains at least n elements” | n € N}
is not satisfiable, but by (ii), every finite subset has a model. —

To clarify the role of the conditions L6Sko(-¢’) and Comp(-%¢’) in Lindstrom’s First
Theorem, we describe the main idea of the proof once again:

Starting with the assumption that y is an .Z-sentence which is not logically equiv-
alent to any first-order sentence, for any m > 1 we obtain structures 2 and B with
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(1) AEgyyand B Ey ~y
2 A2, B.
By Comp(.¥) we get structures 2 and B with
(1 Ay yand B =y ~y
2) A=, B.

L6Sko(.Z) allows us to find countable structures which satisfy (1) and (2’) and
hence

(1) A=y yand B Ey Yy
@" AP,

a contradiction. In (2), (2), and (2"") we do not explicitly refer to a finite symbol set;
however, this is not important since, by Comp(.%), the sentence W depends only on
finitely many symbols (cf. Lemma 2.2).

Lindstrom’s First Theorem characterizes first-order logic in the following sense:
Among the regular logical systems there is none of greater expressive power which
still satisfies the Compactness Theorem and the Léwenheim—Skolem Theorem.

If one considers the defining properties of regular logical systems .Z, the properties
Rel(.%) and Repl(.Z) do not seem as fundamental as the others. An analysis of the
proof of 3.3 shows that both these properties were used to speak about two struc-
tures 2 and B in .Z by placing them together in the structure €. There are alternative
properties that can be used instead of Rel(.¢’) and Repl(.¥’): For given structures 2
and B, say A = (A,P%) and B = (B, P®) with A = B (one can reduce to the case
where both domains are the same), we consider the structure € = (A, P%, 0%) with
P® = P% and Q¢ = PP If . is one of the logical systems considered in Chap-
ter IX, then it is possible to talk about 2 in &, since 2 = €|{P}, and about B, since
for every @ € L({P}) there exists a ¢’ € L({Q}) which says the same in € as ¢ does
in B (where ¢’ is obtained from @ by replacing P by Q). In the proof of Lindstrém’s
First Theorem, we can eliminate the use of Rel(.Z) and Repl(.Z), if . permits this
kind of replacements. But if there is no substitute for Rel(.#’) and Repl(.%), there
are counterexamples to Theorem 3.5 (cf. [4]).

The following two exercises show alternatives to Lindstrom’s First Theorem in
which other properties of logical systems are used in place of LoSko(.%) and
Comp(.Z), respectively. The subsequent two exercises demonstrate how the method
in the proof of Theorem 3.5 can also be used to prove properties of first-order logic.

3.6 Exercise. The role of LoSko(.%) in Lindstrom’s First Theorem can be taken
over by a further property of logical systems .#, namely by:

Part(.¥)  (“Partially isomorphic structures are .Z’-equivalent”) means that for
every S and every S-structures 2l and ‘B,

if 2 =, B, then A and B are models of the same .Z’(S)-sentences.
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Show: If .Z is a regular logical system with .23 < .2, Comp(.%), and Part(.%’), then
£~ A.

3.7 Exercise.  This exercise shows that, in a suitable framework, the property
Comp(.Z) in Lindstrom’s First Theorem can be replaced by the following weak
analogue of the Upward Lowenheim—Skolem Theorem VI1.2.3 and the subsequent
two regularity conditions.

LoSko-up(.Z) (“.Z satisfies the Upward Lowenheim—Skolem Theorem”) means
that every .Z’-sentence which has an infinite model also has an un-
countable model.

F-Quant(¥) (“.Z allows existential quantification”) means that for every S, every
¢ ¢ S, and every L(SU{c})-sentence ¢ there is an L(S)-sentence y
such that for all S-structures 2(,

A=y iff thereisana € A with (2, a) = ¢.

Together with Boole(.Z’), the closure under propositional connectives, this property
guarantees closure under first-order quantification.

gRel(.¥) (“% allows generalized relativization”) means that . allows relati-
vization to relations of the kind {c | x(c)} with .Z-sentences ), not
only relativization to unary relation symbols as with Rel(.%).

A regular logical system .7 is strongly regular if it satisfies Boole(.Z’), 3-Quant(.%),
gRel(.¥), and Repl(.Z). For logics .Z and .#’, we mean by . <g, .¢’ that for
all finite symbol sets S, every £ (S)-sentence is equivalent to an .’ (S)-sentence.
Similarly we define .Z ~g, .Z".

(a) Give a precise formulation of gRel(Z) for relational symbol sets.

(b) Using part (b) of the Main Lemma 3.4., prove: If .Z is a strongly regular logical
system with £ <g, £, L6Sko(.Z), and LoSko-up(L), then L ~gy 4.

3.8 Exercise. Show that a first-order sentence whose class of models is closed un-
der substructures is logically equivalent to a universal sentence. (For the converse,
see Corollary I11.5.8.)

Hint: Let S be finite, y € Li(S), Mod’(y) be closed under substructures. For m > 1
set " := \/{wg | B is an S-structure and B |= y} (cf. Exercise XII.3.14 for the
definition of wg). Then |= y — @™, and @™ is universal. Suppose ¥ is not logically
equivalent to any @"™. As in the proof of Theorem 3.5, find S-structures 2 and ‘B
such that 2 = -y, B = v, and 2 is embeddable in 9. So 9B has a substructure
isomorphic to 2, which is not a model of y, a contradiction.

3.9 Exercise. Let P be a k-ary relation symbol which is not in the symbol set S, and
let @ be a set of (SU{P})-sentences. P defines P implicitly if for every S-structure 2
and P!, P> C A* the following holds:

If (A, P') = @ and (2, P?) |= @ then P' = P2
The set @ defines P explicitly if there is a y € Lf such that
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DE=Vvy.. V1 (Pvy...vi1 <> W).
Show the equivalence of (i) and (ii), i.e., Beth’s Definability Theorem:

(i) < defines P explicitly.
(i1) < defines P implicitly.

Hint: For the direction from (ii) to (i) consider, for n > 0, the following formula:
2" :=V{e" .| Ais an S-structure, (A, P) = &, and PAfz}.
A,a

Using the methods developed in this section, show that there is an n € N for which
O3] ): Yvo... Vv (PV() Ve & xn).

XIII.4 Lindstrom’s Second Theorem

In our considerations of logical systems we now pay special attention to syntactic
aspects. In this context we recall the following properties of first-order logic: For a
decidable symbol set §

— the S-sentences are concrete finite symbol strings each of which contains only
finitely many symbols from S,

— the set of S-sentences is decidable,

— operations such as negation, relativization and the replacement of function
symbols can be carried out effectively,

— the set of valid S-sentences is enumerable.

We shall consider these aspects for logical systems in general, thereby arriving at the
concept of an effective logical system. Within this framework we can then formu-
late and prove the result of Lindstrdm mentioned in the introduction to this chapter
under (b).

When speaking of a decidable set, we understand it to be a set of words over a
suitable alphabet that is R-decidable in the sense of Definition X.2.5.

4.1 Definition. Let .Z be a logical system. . is called an effective logical system
if for every decidable symbol set S the set L(S) is decidable, and for every ¢ € L(S)
there is a finite subset So of S such that ¢ € L(Sy).

4.2 Definition. Let .Z and .¢” be effective logical systems.

(a) L <o & if for every decidable S there is a computable function * which
associates with every ¢ € L(S) a sentence ¢* € L'(S) such that Mod%, (¢) =
Modiﬁ,((p*).

(b) .,%Nefff/ if & Seff.i/p/ and g/ Seffg.
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The logical systems .43, £}, A1, and % are effective, but £, , is not. We have,
for instance, £7 <cr LY, LYY ZLetr L1

4.3 Definition. A logical system . is said to be effectively regular if £ is effec-
tive and if the following effective analogues of Boole(.Z), Rel(.¥), and Repl(.¥)
hold.

For every decidable symbol set S:

— There exists a computable function which assigns to every ¢ € L(S) a sen-
tence —¢, and, in addition, a computable function which assigns to every ¢
and y in L(S) a sentence (¢ V y). (Here —¢, for instance, denotes an L(S)-
sentence Y such that A =g v iff not A=y @)

— For every unary U, there is a computable function which associates with every
¢ € L(S) a sentence @Y.

— There is a computable function which associates with every ¢ € L(S) a sen-
tence @ € L(S") (where S” is chosen as a decidable symbol set).

The logical systems .47, £}, -Zi1, and £} are effectively regular.

Let .Z be an effectively regular logical system. We say that for .£ the set of valid
sentences is enumerable if for every decidable S, the set

{oeL(S) | Fe o}
is enumerable.

Clearly, if .2 has an adequate proof calculus, then for . the set of valid sentences
is enumerable. In particular, for %7 and for .}, the set of valid sentences is enumer-
able.

Lindstrém’s Second Theorem tells us that among the effectively regular logical sys-
tems with L6Sko(.%) there is no system which is both properly stronger than %
and has an adequate proof calculus.

4.4 Lindstrom’s Second Theorem. Let £ be an effectively regular logical sys-
tem such that 4 < L. If LoSko(.Z) and if for £ the set of valid sentences is
enumerable, then L ~eir L.

Proof. Let & satisfy the hypotheses of the theorem. We prove that .Z <.y %7 in two
steps.

First, we show:

For every decidable S and for every y € L(S), there is a logically equivalent
first-order S-sentence ¢.

(+)

Then we prove that the transition from y to ¢ can be carried out effectively: Given
a decidable S, we set up an algorithm which yields for every y € L(S) a first-order
S-sentence with the same models.
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Since .Z is an effective logical system, we only need to give a proof of (+) for
finite decidable S (cf. Definition 4.1). Since (the effective variant of) Repl(-#’) holds
for £, we can assume S to be relational by an argument similar to that in the proof
of Lemma 1.4.

Therefore, let S be decidable, finite, and relational.

To prove (+) we assume, towards a contradiction, that € L(S) is a sentence which
is not logically equivalent to any first-order sentence. Then (a) or (b) in Lemma 3.4
holds. Part (a) says for Sy := S (note that S is finite) that there are S-structures 2A
and B such that 20 = B, 2 |= y and B = —y. Since this contradicts the isomor-
phism property in Definition 1.1 of a logical system, part (b) in Lemma 3.4 holds;
that is, for a suitable finite symbol set ST, containing S and a unary relation symbol
W, there is a sentence y in L(S*) with (i) and (ii):

(i) In every model € of y, W€ is finite and nonempty.

(ii) For every m > 1 there is a model € of x such that W¢ has exactly m elements.

Thus, as € ranges over the models of )y, W€ ranges over the finite sets (isomorphism
property!). We shall now see that we can use (i) and (ii), together with Trakhtenbrot’s
Theorem X.5.4, to conclude that for . the set of valid sentences is not enumerable,
in contradiction to our assumption on .. We argue as in the proof of the incom-
pleteness of second-order logic (cf. Theorem X.5.5).

By Trakhtenbrot’s Theorem X.5.4 there is a decidable symbol set S; such that the
set of fin-valid first-order Sj-sentences is not enumerable. We may assume that Sy is
relational and disjoint from S

Let * be a computable function which associates with every first-order Si-sentence @
a sentence @* € L(S) that has the same models. Then for ¢ € Lg‘ we have

() ¢ is fin-valid iff gy — (¢*)V.

To prove this, we assume first that ¢ is fin-valid. If 2[ is an (ST US})-structure such
that 2 = x. then WA is finite and nonempty by (i), and thus [W4]%ls1 = ¢. But
then [WA]Q[‘SI = @*, and hence 2 =¢ (¢*)". The converse is obtained similarly
by applying (ii).

The equivalence (o) enables us to obtain from an enumeration algorithm ‘B for the
set of valid L(S™ US| )-sentences an enumeration algorithm £ for the fin-valid first-
order S;-sentences, thus yielding a contradiction to Trakhtenbrot’s Theorem X.5.4.
The algorithm £ proceeds as follows: For n = 1,2,3,... the (lexicographically)
first n first-order S;-sentences @y, . .., ¢, are generated, and the L(ST US| )-sentences
x— (e)"V,....x — (¢;)V are formed. (Note that the map * is computable and
that the operations of relativization and implication are effective.) Then, using 33,
one generates the first n valid L(SJr U S )-sentences, listing those ¢; for which the
sentence ¥ — (¢7)" occurs. This finishes the proof of (+).
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Now, given a decidable S, we describe an effective procedure which associates with
every sentence W € L(S) a first-order S-sentence with the same models. Let 3 be
an enumeration algorithm for the set of valid L(S)-sentences, and * a computable
function which assigns to every first-order S-sentence ¢ an L(S)-sentence ¢* with
the same models.

Given y, proceed as follows: For n = 1,2,3,... use *J3 to generate the first n valid
sentences Y1, ..., ¥, from L(S); then generate the (lexicographically) first n first-
order S-sentences @, ..., @,, and finally, form the L(S)-sentences ¥ < @;,...,
Y <> @,. Check when there are i and j for the first time such that y; = y <> @;
(by (+) this must eventually happen). Then let ¢; be the ¢ associated with . —

Lindstrom’s results initiated a series of investigations of properties of logical sys-
tems and relations between them, in a general setting (cf. [4]). In this way it is
possible to bring important aspects of such properties into better perspective, thus
gaining new insights into concrete logical systems, and even into first-order logic.
We illustrate this briefly, taking the Compactness Theorem as an example.

An ordering (A, <#) that contains no infinite descending chain
<Aa2 <Aa1 <Aa0

is said to be a well-ordering. All finite orderings are well-orderings, as are (N, <N),
and the ordering which results when (N, <) is extended by adding an isomorphic
copy. On the other hand, (Z, <%) and (Q, <©) are not well-orderings.

For the following discussion let .Z be a regular logical system such that £} < .Z.
A well-ordering (A, <) is said to be Z-accessible if there is an S with < € S and a
satisfiable L(S)-sentence y such that

— in every model B of v, (field <?,<5) is a well-ordering;
— there is a model B of v such that (A,<%) C (field <?, <B).

Since .41 < .Z, all finite well-orderings are .#-accessible. If Comp(.¢’) holds then
no infinite well-ordering is .Z-accessible. For if a sentence y has a model 2(, where
(field <4, <) is an infinite well-ordering, then one can show, by a method similar
to that used in Exercise V1.4.11, that ¥ has a model 98 in which (field <Z, <#) has
an infinite descending chain.

If one assumes L3Sko(.Z) and strengthens the regularity conditions slightly, for
example, by demanding the relativizations to hold in a suitable way also for relation
symbols of larger arities,! then we get the following equivalence:

not Comp(.Z) iff (N, <) is Z-accessible.

These considerations motivate us to look beyond the simple dichotomy “Comp(.%)
—not Comp(.%)”, and to make finer distinctions: the more (infinite) .#-accessible

! For further details see [4]. Here we only mention that the systems discussed in Chapter IX satisfy
these strengthened regularity conditions.
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well-orderings there are, the more the Compactness Theorem is violated for .Z.
As a measure for the violation one can take the “smallest” well-ordering which is
not Z-accessible, the so-called well-ordering number of £. The study of well-
ordering numbers has led to a series of fruitful investigations (cf. [4]). In particular,
it turns out that for certain logical systems one can use arguments involving the
well-ordering number to compensate for the absence of the compactness property.
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constant, 14
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containing witnesses, 74
continuum hypothesis, 105, 137
contraposition, 60
correct rule, 57
correct sequent, 57
Correctness of the Sequent Calculus,
65
countable, 12
at most, 12

decidable, 148, 149
register-, 156
decide, 156
decision problem, 165
decision procedure, 149
declarative, 213
Dedekind’s Theorem, 47
definition, 122
explicit, 284
extension by, 123
implicit, 284
A-elementary class, 87
derivable, 57
H-, 231
UH-, 251
derivable in a calculus, 15
derivation, 15
DFA, 196
diagonal argument, 162
direct product, 28, 36
disjunction, 16, 139
disjunctive normal form, 125, 220,
221
DNF, see disjunctive normal form
domain, 26

Edmonds, 161
effective, 149
Ehrenfeucht game, 271
Ehrenfeucht’s Theorem, 272
elementarily equivalent, 90, 260
elementary class, 87
Elgot, 191
embeddable, 263

finitely, 263

partially, 263
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Entscheidungsproblem, 165
enumerable, 147, 150
register-, 156
enumerate, 156
enumeration procedure, 150
epistemology, 3, 98
equality, 13, 135
axioms for, 241
equation, 212
equivalence relation, 5, 42
equivalence structure, 5, 87
equivalent
for satisfaction, 127
logically, 32, 33, 218, 274
everyday language, 7
expansion, 35
extensional, 29

field, 44, 87
algebraically closed, 170
archimedean, 91
archimedean ordered, 139
ordered, 35, 44
finitely axiomatizable, 169
finitely embeddable, 263
finitely isomorphic, 260
finitistic, 180
first-order language, 9
first-order object, 9
Fixed Point Theorem, 177
follows from, 5, 6
for all, 13, 33
forall, 30
formal proof, 8
formalization, 41
formally provable, 56, 57
formula, 7, 16
atomic, 16
equality-free, 213
existential, 41
Horn, 36, 44
positive, 31
propositional, 216
term-reduced, 111
universal, 40

forth-property, 260

Fraissé’s Theorem, 263

Fraenkel, 103

free model, 210

free occurrence, 23

Frege, 3, 18

function, 26
arithmetical, 175
partial, 45

function symbol, 13

function variable, 135

functionally complete, 222

general unifier, 244
Godel, 81, 106, 167, 172, 176
Godel numbering, 158, 177
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Godel’s Completeness Theorem, 8,

81,95, 109
Godel’s First Incompleteness
Theorem, 179

Godel’s Second Incompleteness

Theorem, 107, 180

graph, 44, 87, 234

connected, 88, 139, 269

directed, 44

of a function, 45, 101, 112
ground clause, 246
ground instance, 236, 249
group, 4, 87

free, 212

free abelian, 212

simple, 142

torsion, 46, 88, 139
group theory, 4, 147

halt-instruction, 153
halting problem, 159
Henkin, 81
Henkin’s Theorem, 74
Herbrand model, 215
minimal, 216
Herbrand structure, 215
Herbrand’s Theorem, 208
Hilbert, 3

Hilbert’s program, 3, 107, 180

hold, 30
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homomorphism, 210

Horn formula, 36, 44
negative, 224, 239
positive, 224, 239
propositional, 223
universal, 210

Horn sentence, 37
universal, 165, 211

identitas indiscernibilium, 135

if and only if, 13, 33
if-then, 13, 30, 33
iff, 20

implication, 16
incompleteness

of second-order logic, 167

Incompleteness Theorem
Godel’s First, 179

Godel’s Second, 107, 180

inconsistent, 67
independent, 36, 89
induction

on formulas, 19

on terms, 19

over a calculus, 18
induction axiom, 47, 92
induction schema, 169
inductive definition

on formulas, 22

on terms, 22
inductive proof, 18
inductive set, 105
inference, 7, 55
infinitary language, 138
infinitesimal, 93
input, 148
instance, 236

ground, 236
integers, 115
intensional, 29
interpretation, 27

syntactic, 116
intuitionist, 98
isomorphic, 37

m-, 266
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finitely, 260

partially, 260
isomorphism, 37

partial, 258
Isomorphism Lemma, 37
isomorphism property, 273

jump-instruction, 153

label, 153
language
alphabet of a, 14
everyday, 7
first-order, 9, 16
formal, 7
infinitary, 138
many-sorted, 46
second-order, 9, 134
Leibniz, 3, 81, 135, 165
length, 149
lexicographic order, 150
liar paradox, 177
Lindstrom, 273
Lindstrom’s First Theorem, 282
Lindstrom’s Second Theorem, 286
literal, 227
Llull, 81, 165
Lob axioms, 181
logic
first-order, 16
mathematical, 3
monadic second-order, 190
MSO-, 190
second-order, 133, 167
weak monadic second-order, 190
weak second-order, 138, 143, 168
WMSO-, 190
logic programming, 205, 213, 252
logical system, 273
effective, 285
effectively regular, 286
regular, 275
strongly regular, 284
logically equivalent, 32, 33, 218, 274
Lowenheim, Skolem, and Tarski,
Theorem of, 86
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Lowenheim—Skolem Theorem, 83,
136, 138, 140
downward, 84
upward, 85

m-admissible, 193
mathematics, 3
classical, 98
consistency of, 107, 181
intuitionistic, 98
set-theoretical setup of, 98
Matiyasevich, 175, 181
matrix, 126
metalanguage, 18
model, 30, 35, 217
free, 210
minimal, 210, 224
model theory, 86
model-checking, 203
Modus ponens, 61
monadic second-order logic, 190
MSO-logic, 190

natural numbers, 105

negation, 16

negation complete, 74

NFA, 194

non-deterministic automaton, 194

non-deterministic register program,
162

nonstandard analysis, 93

nonstandard model of arithmetic, 92

normal form
conjunctive, 129, 220
disjunctive, 125, 220
prenex, 126, 238
Skolem, 127, 238

not, 13, 30

notion of proof, 55

object
first-order, 9
second-order, 9
object language, 18
operation, syntactic, 147
or, 13, 30
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ordering, 43, 114
w;-like, 143
dense, 261, 263
field of a, 43
partial, 43
partially defined, 43, 87
well-, 288
ordinal number, 105
output, 148

“P = NP”-problem, 162, 223
paradox
liar, 177
Skolem’s, 102
parameter, 23
partially embeddable, 263
partially isomorphic, 260
Peano, 18
Peano arithmetic, 168
Peano axioms, 47, 91, 99
Peano structure, 99, 105
philosophy, 3
philosophy of science, 4
platonism, 98
Polish notation, 23
polynomially bounded in time, 161
prefix, 126
prenex normal form, 126, 238
Presburger, 182
Presburger arithmetic, 182
Presburger’s Theorem, 184
print-instruction, 153
procedural, 213
procedure, 148
decision, 149
enumeration, 150
process, 148
program, 153
non-deterministic, 162
PROLOG, 213, 234, 242
proof, 4, 6, 32
notion of, 58, 66, 95
proposition, 7
propositional logic, 161, 216
language of, 216
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propositional variable, 216
provable, 7
formally, 57, 66

quantifier
for all, 7
number, 126
restricted, 42
there are at least countably many,
145
there are uncountably many, 143
there exists, 7
there exists exactly one, 53
quantifier elimination, 183
quantifier elimination in Th(91.)
Theorem on, 183
quantifier rank, 265
quantifier-free, 39, 125
quotient structure, 241

R-, see register-
rank, 53

modified, 270
recursion theory, 148
recursive, 157
recursively enumerable, 157
reduct, 35
reduct property, 273
register, 153
register machine, 153
register program, 153
register-axiomatizable, 169
register-computable, 156
register-decidable, 156
register-enumerable, 156
regular logical system, 275
relation, 5, 26

arithmetical, 175
relation symbol, 14
relation variable, 134
relational, 112
relativization, 115, 119
representable, 176
resolution, 227

H-, 231
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U-, 246, 250

UH-, 251
Resolution Lemma, 228
resolution method, 226
Resolution Theorem, 228
resolution tree, 229
resolvent, 227

U-, 246

unification, 246
ring, 114

of integers, 115
Robinson, 226
rule, 18

connective, 58

correct, 57

derivable, 60

equality, 58, 61

list of rules in &, 65

quantifier, 58, 61

structural, 58
Russell, 3, 81

S-closed, 39
SAT, 161
satisfaction
equivalent for, 127
satisfaction relation, 30, 274
satisfiable, 32, 275
clause, 227
fin-, 166
formula, 32
propositional formula, 218
propositionally, 236
set of clauses, 227
set of formulas, 32
satisfy, 30, 217
second-order language, 9
second-order object, 9
self-referential, 177
semantic, 26
sentence, 24
of £, 273
separator, 243
sequent, 56
correct, 57
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sequent calculus, 57, 96
of propositional logic, 222
Theorem on the Adequacy of, 81
set
concept of, 100, 106
set theory, 181
background, 102
object, 102
system of axioms for, 100
Zermelo—Fraenkel axioms for, 103
Skolem, 103, 182
Skolem arithmetic, 182
Skolem normal form, 127, 238
Skolem’s paradox, 102
Skolem’s Theorem, 92
sort, 45
sort reduction, 46
spectrum, 45
statement
cardinality, 43
self-referential, 177
string, 11
empty, 11
strong
at least as, 274
equally, 274
strongly regular logical system, 284
structure, 4, 26
many-sorted, 45
quotient, 241
substitution
simultaneous, 49
Substitution Lemma, 51
substitutor, 242
substructure, 39, 284
generated, 39
Substructure Lemma, 40
subtract-instruction, 153
succedent, 56
successor arithmetic
weak monadic, 191
symbol, 11
symbol set, 14
relational, 112
syntactic, 26
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syntactic interpretation, 116
associated, 122

syntactic operation, 56, 97

system of axioms, 6, 89

Tarski, 37
Tarski’s Theorem, 179
term, 15
term interpretation, 73, 206
term structure, 72, 206
term-reduced, 111
tertium non datur, 59, 98
theory, 168

complete, 169

of a structure, 90
theory of computability, 148
there exists, 13, 30
time complexity, 161
torsion group, 46, 88, 139
Trakhtenbrot, 167, 191
Trakhtenbrot’s Theorem, 167
transfinite induction, 105
tree automaton, 204
truth, 178
truth-function, 220
truth-value, 29
Turing, 153, 165

ultimately periodic, 188
uncountable, 12
undecidability
of arithmetic, 170, 171
of first-order logic, 163
of the halting problem, 159
underlining algorithm, 225
unifiable, 244
unification algorithm, 244
unification resolvent, 246
unifier, 244
general, 244
Lemma on the, 244
unit in a ring, 115
units
group of, 115
universal, 40, 210
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universe, 26, 99
urelement, 100, 105

valid, 32, 217, 275
fin-, 166

variable, 14
function-, 135
propositional, 216
relation, 134

vector space, 46
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weak monadic second-order logic,
190
well-ordering, 288
well-ordering number, 289
Whitehead, 81
witness, 74
WMSO-logic, 190
word, 11
length of, 11

Zermelo, 103
Zorn’s Lemma, 80
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